НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 620.197:546.82:544.023.2

ТЕРМОСТИМУЛИРОВАННАЯ ЭВОЛЮЦИЯ ПОВЕРХНОСТИ Ni-, Cu-Содержащих плазменно-электролитических оксидных покрытий на титане

© 2019 г. В. С. Руднев^{1, 2,} *, И. В. Лукиянчук¹, М. С. Васильева^{1, 2}, А. А. Зверева¹

¹Институт химии Дальневосточного отделения Российской академии наук, проспект 100-летия Владивостока, 159, Владивосток, 690022 Россия ²Дальневосточный федеральный университет, ул. Суханова, 8, Владивосток, 690091 Россия *e-mail: rudnevvs@ich.dvo.ru Поступила в редакцию 28.03.2018 г. После доработки 19.04.2018 г.

Принята к публикации 25.05.2018 г.

Изучено влияние температуры отжига на воздухе на архитектуру поверхности и состав оксидных покрытий. При температурах отжига $500-700^{\circ}$ С на поверхности присутствуют обогащенные медью наноразмерные кристаллы треугольной формы. Прямоугольные нано- и микрокристаллы с вероятным составом NiWO₄, образуются на поверхности после отжига при $750-850^{\circ}$ С. Щетки нановискеров, близкие по составу к титанатам никеля, покрывают поверхность после отжига при $900-950^{\circ}$ С. Трансформация архитектуры и состава поверхности на микро- и наноуровнях коррелирует с активностью покрытий в катализе реакции окисления CO в CO₂.

Ключевые слова: плазменно-электролитическое оксидирование, титан, покрытия, окислительный отжиг, архитектура поверхности, нано- и микрообразования **DOI:** 10.1134/S004418561904017X

1. ВВЕДЕНИЕ

Композиты "металл/оксидное покрытие" находят широкое применение в катализе [1–3], медицине [4, 5], сенсорике [6, 7]. С целью усиления функциональных свойств, в последнее время особое внимание уделяют разработке способов увеличения поверхности таких композитов, в частности, формированию на их поверхности ансамблей наноразмерных частиц [8–14].

Закрепленные на поверхности металлов оксидные наноструктуры могут быть получены разными способами: термическим окислением металлических субстратов [8, 9], обработкой парами NH₃-H₂O₂ [10], анодным окислением [11], темплатным синтезом [12–14]. В работе [15] оксидные слои V₂O₅-TiO₂ с нанолистовой морфологией были синтезированы на поверхности титана методом плазменно-электролитического оксидирования (ПЭО).

Оригинальный способ получения Ni-содержащих оксидных нановискеров на поверхности титана впервые был предложен в работах [16, 17]. Предыстория развития этих исследований следующая. Ранее в работе [18] было показано, что ПЭО-покрытия, сформированные на титане в фосфатно-боратно-вольфраматном (PBW) элек-

тролите (0.052-0.079 моль/л Na₃PO₄ + 0.026-0.039 моль/л Na₂B₄O₇ + 0.003-0.009 моль/л Na₂WO₄ [19, 20]), содержащем ацетаты Ni(II) и Cu(II), катализируют реакцию окисления СО в СО₂ при температурах выше 350°С. Дополнительная пропитка таких композитов в растворах нитратов Ni(II) и Cu(II) с последующим отжигом на воздухе в течение 4 ч при 500°С приводит к увеличению их каталитической активности в этой реакции, уменьшает температуру начала конверсии до 200°С [18]. Концентрация никеля и меди на поверхности таких покрытий составляет около 20 ат. %. При исследовании температурного поведения покрытий показано, что, начиная с температуры отжига 750°С, на их поверхности появляются одиночные вискеры, а после отжига при температурах >850°С поверхность покрывается щеткой вискеров длиной около 10 мкм и диаметром от нескольких десятков до 200 нм [16, 17], рис. 1. Отмечено, что при повышении температуры отжига с поверхности в глубину покрытия уходит медь, по-видимому, за счет процессов термодиффузии [16, 17]. Состав вискеров был определен как Ni₅TiO₇. Однако согласно [21], состав вискеров скорее соответствует $Ni_5TiO_4(BO_3)_2$.

Рис. 1. СЭМ изображения поверхности модифицированных Ni-, Си-содержащих покрытий после дополнительного отжига на воздухе при 850°С (а) и 950°С (б) [17].

Одновременно с увеличением температуры отжига и уменьшением содержания на поверхности меди уменьшается активность образцов в окислении СО в СО₂ [17]. Между тем, образцы, покрытые щеткой никель-титановых оксидных нановискеров, эффективно разлагают нафталин в качестве модельного соединения смолы в процессе каталитического парового риформинга, что делает перспективным их применение в процессах газификации биомассы [16].

Развитие данного подхода было продолжено в исследованиях [22-24]. Исключив соли меди из составов электролита для ПЭО и пропиточного раствора, авторы [22] также получили нановискеры Ni₅TiO₇ на поверхности покрытия. Авторы [22] считают, что Ni₅TiO₇ в аморфном состоянии присутствует уже в исходном ПЭО-покрытии и выступает зародышем роста нановискеров при температуре отжига 1050°С. Материалом для их роста служат оксид титана (рутил) в покрытии и никель, сорбированный в покрытии и порах. Используя ту же стратегию, но при температурах отжига 650-850°С на поверхности были получены вольфраматы Zn(II) и Ni(II) в виде наностержней, наносеток, наноцветов или нанополос, то есть, сформированы композиты ZnWO₄/TiO₂/Ti, NiWO₄/TiO₂/Ti [23]. Новая стратегия, заключающаяся в исключении стадии пропитки в растворе нитратов, была использована в [24] для синтеза композитов MnWO₄/TiO₂/Ti. По сути в качестве пропиточного раствора служил электролит для ПЭО. Отжиг при 850°С приводил к росту нановискеров MnWO₄ на поверхности. Авторы [23, 24] считают, что в описанных случаях вольфраматы $ZnWO_3$, NiWO₃ MnWO₃ в аморфном состоянии присутствуют уже в исходном ПЭО-покрытии и служат зародышами для соответствующих нанообразований при повышенных температурах. Описанные примеры показывают перспективу применения ПЭО-слоев, формируемых в PBWэлектролите, как основы для термостимулированного роста закрепленных на их поверхности нанообъектов определенного состава.

В предыдущей работе [17] мы исследовали термическое поведение композитов NiO + + CuO/TiO₂/Ti, полученных сочетанием методов ПЭО и импрегнирования с последующим отжигом при 500°С. Однако исследование было проведено без контроля изменения морфологии и состава микро- и наноструктур, образующихся на каждом этапе. Цель настоящей работы – изучить эволюцию и состав микро- и наноструктур на поверхности композитов NiO + CuO/TiO₂/Ti во всем диапазоне температур отжига 500–950°С.

2. МАТЕРИАЛЫ И МЕТОДЫ

2.1. Приготовление образцов. ПЭО-слои формировали на титановой проволоке диаметром 2 мм и длиной 16 см из сплава титана BT1-0 (содержание Ті выше 99.6%). Перед оксидированием, для стандартизации поверхности, проволоку полировали химическим способом до зеркального блеска (8–9 класс чистоты) в смеси HF : $HNO_3 =$ = 1 : 3 (по объему) при 70°C. Затем образцы промывали дистиллированной водой и сушили при 70°C на воздухе.

ПЭО-слои, содержащие соединения никеля и меди, формировали, как и в работах [16, 17], в водном электролите состава 0.066 М Na₃PO₄ + + 0.034 М Na₂B₄O₇ + 0.006 М Na₂WO₄ + 0.1 М Ni(CH₃COO)₂ + 0.025 М Cu(CH₃COO)₂ в гальваностатическом режиме при анодной поляризации с эффективной плотностью тока i = 0.1 A/см² в течение 10 мин. Источником тока служил управляемый компьютером тиристорный агрегат TEP4-100/460, работающий в однополярном режиме. Противоэлектрод — корпус ванны из нержавеющей стали с водяной рубашкой охлаждения. Электролит перемешивали с помощью механической мешалки, температура раствора не превышала 30°С.

Полученные образцы с покрытиями толщиной ~25 мкм погружали в водный раствор, содержащий 1 моль/л Cu(NO₃)₂ и 1 моль/л Ni(NO₃)₂. В отдельных экспериментах применяли растворы с концентрацией солей 0.5 и 2 моль/л. Композиции выдерживали в пропиточном растворе в течение 1 ч. После этого образцы подсушивали над электроплитой на воздухе и отжигали в печи при 500°С в течение 4 ч. Далее проволоку с модифицированным покрытием разрезали на фрагменты длиной 1.5 см. Приготовленные образцы отжигали на воздухе при температурах 700, 750, 800, 850, 900 и 950°С, причем образцы помещали в печь, уже разогретую до заданных температур.

2.2. Методы исследования образцов. Морфологию поверхности изучали с помощью сканирующего электронного микроскопа (СЭМ) высокого разрешения Hitachi S5500 (Япония) с энергодисперсионным спектрометром UltraDry (Therma

Элемент, ат. %	С	0	Р	Ti	Ni	Cu
Поверхность по РЭС [17]	18.0	42.2	1.5	_	21.0	16.7
Поверхность, рис. 2б	—	48.8	0.9	4.3	20.4	26.6
Состав кристаллов I, рис. 2б	8.8	31.5	_	3.8	5.5	50.5

Таблица 1. Усредненный состав поверхности и треугольных кристаллов после отжига на воздухе при 500°С в течение 4 ч

Scientific, USA). Перед исследованиями на образцы напыляли золото. Используя энергодисперсионную приставку, исследовали как средний элементный состав площадок поверхности размерами 60 × 40 мкм, так и состав характерных образований, фокусируя анализирующий луч на площадках меньших размеров (от 50 × 50 нм и выше).

Рентгенограммы образцов с покрытиями снимали на рентгеновском дифрактометре "D8 AD-VANCE" (Германия) в Си K_{α} -излучении. При выполнении рентгенофазового анализа (РФА) использовали программу поиска "EVA" с банком данных PDF-2.

3. РЕЗУЛЬТАТЫ

3.1. Поверхность модифицированных ПЭО покрытий. Морфология поверхности исходных ПЭО-покрытий представлена на рис. 2а. В результате пропитки и отжига при 500°С в течение 4 ч на отдельных участках поверхности образуются сообщества кристаллов треугольной формы толщиной ~50 нм и высотой ~500 нм, рис. 26–2д. Усредненный состав поверхности покрытия, показанной на снимке рис. 26, в том числе и с системами треугольных образований, а также состав треугольных кристаллов (участок I) по данным энергодисперсионного анализа приведен в табл. 1.

Анализ данных табл. 1 и рис. 2д показывает, что в составе треугольных образований преобладает медь. Данные по элементному составу нанокристаллов дают основание предположить наличие в их составе оксидов титана, никеля и меди со значительным преобладанием последних. Между тем, концентрации никеля и меди, измеренные для больших площадок (40 \times 60 мкм), примерно одинаковы, табл. 1. Причем, данные по элементному составу, полученные методами рентгеноэлектронной спектроскопии ранее [17] и энергодисперсионного анализа в настоящей работе близки, табл. 1.

Как видно из снимков рис. 26, 2д, кристаллы растут вблизи пор. По-видимому, в поре и вокруг нее аккумулированы компоненты пропиточного раствора. Видно, что кристаллы есть не только вокруг поры, но и внутри нее, рис. 2д. Анализ состава кристаллов внутренней части поры (площадка 1) и вокруг поры (площадка 2) подтверждает, что в кристаллах резко повышено содержание меди (рис. 2д).

Таким образом, уже после отжига при 500°С наблюдается довольно сложная архитектура поверхности: имеются обогащенные медью нанообразования, сконцентрированные вблизи пор.

3.2. Поверхность после отжига при температурах от 500 до 900°С. Как видно из сравнения рис. За и Зб, поверхности образцов, отожженных при 500 и 700°C, подобны. В обоих случаях на части поверхности присутствуют треугольные нанообразования. Соответственно, как в среднем по поверхности, так и в треугольных нанокристаллах много меди, табл. 2. После отжига при 750°С содержание меди в среднем по поверхности резко уменьшается, а после отжига при 800 и 850°С медь в поверхностном слое толщиной ~1 мкм (глубина анализа) не обнаружена. Т.е. в полном согласии с данными работ [16, 17] медь уходит с поверхности в глубину оксидного слоя. Температура начала интенсивной термодиффузии меди находится между 700 и 750°С, табл. 2. Отметим, что при повышении температуры отжига с 500 до 800°С в поверхностном слое также уменьшается, но не столь резко, содержание никеля, но увеличиваются концентрации углерода, фосфора и вольфрама.

Одновременно с уходом меди изменяется геометрия нано- и микрообразований, занимающих часть поверхности. После отжига при 750 и 800°С это вытянутые в длину кристаллы длиной около 1 мкм, рис. 3в, 3г, при 850°С — кристаллы толщиной в несколько мкм и длиной до 8 мкм. Наряду с данными микрокристаллами, встречаются отдельные вискеры, рис. 3д. Далее, во всех случаях при температурах отжига 900—950°С преимущественно образуются вискеры (рис. 3е), по форме и размерам аналогичные наблюдаемым в работах [16, 17].

В прямоугольных кристаллах заметно повышается содержание никеля и до температуры 850°С – вольфрама, табл. 2. Интересно отметить отсутствие фосфора во всех кристаллах, а также углерода в прямоугольных кристаллах, образовавшихся при температуре 850°С, и в вискерах при 900°С. В первом случае измеренное отношение элементов Ni: Ti: O: W в кристаллах равно 9.6: 1.0: 6.5: : 2.2, во втором – в вискерах – 2.9: 1.0: 5.2: 0.

Рис. 2. Морфология поверхности ПЭО-покрытий, сформированных в PBWNiCu электролите (a), дополнительно пропитанных в растворе 1 M Cu(NO₃)₂ + 1 M Ni(NO₃)₂ и отожженных на воздухе в течение 4 ч при 500°С (б-д). Цифрами I (б), 1 и 2 (в) обозначены анализируемые участки. Состав участка I приведен в таблице, составы участков 1 и 2 – на рисунке.

Учитывая данные работ [16, 17, 21–23], можно предположить, что при температуре отжига 850° С образуются кристаллы как $Ni_5 TiO_7$ или $Ni_5 TiO_4 (BO_3)_2$, так и NiWO₄, а при температуре отжига 900°С преимущественно титанаты или титанобораты никеля.

С целью установления состава кристаллов была получена рентгенограмма образца с покрытием, отожженным при 850°С, рис. 4а. Для сравнения приведена рентгенограмма модифицированного покрытия, отожженного при 500°С. Как видно из анализа рентгенограммы (850°С), в составе покрытия присутствуют оксид титана в модификации рутил, титанофосфат никеля и вольфрамат никеля, в то время как титанат и титаноборат никеля не обнаружены, рис. 46.

3.3. Влияние концентрации пропиточных растворов. На рис. 5 показана поверхность ПЭО образцов, пропитанных в растворах 0.5 M Ni(NO₃)₂ + + 0.5 M Cu(NO₃)₂ и в 2 M Ni(NO₃)₂ + 2 M

Рис. 3. Микро- и нанообразования на поверхности образцов, отожженных в течение 4 ч на воздухе при температурах 500 (a), 700 (б), 750 (в), 800 (г), 850°C (д) и в течение 1 ч при 900°C (е).

Cu(NO₃)₂ и отожженных. Видно, что после отжига при 750°С образцов, пропитанных в растворе с пониженной концентрацией нитратов (рис. 5а, 5б), кристаллы растут локально, плотно заполняя поры. По-видимому, при таких концентрациях объема пропиточного раствора достаточно для образования кристаллов только в порах. На поверхности образцов, отожженных в течение 1 ч при 900°С, во всех случаях растут нанопроволоки (рис. 5в, 5г), близкие по составу, согласно данным работ [16, 17, 21–23], к Ni_5TiO_7 или $Ni_5TiO_4(BO_3)_2$. Чем выше концентрация пропиточного раствора, тем более плотно нанопроволоки заполняют поверхность, но тем меньше они по длине и диаметру (сравнить рис. 3е, 5в, 5г).

4. ДИСКУССИЯ

Температура отжига, используемая при получении исходных образцов, выбрана исходя из данных работы [18]. В этой работе получали об-

T °C		Э	лементн	ый состан	Форма нано- и микрокристаллов			
готж, С			поверх	ность поі				
	С	0	Р	Ti	Ni	Cu	W	
500	_	48.8	0.9	4.3	20.4	26.6	_	Треугольные
700	7.6	49.3	0.7	3.0	18.4	20.7	0.3	Треугольные
750	12.4	59.9	1.9	4.7	14.5	6.0	0.6	Прямоугольные
800	10.5	68.5	4.9	4.9	7.5	—	3.7	Прямоугольные
850	28.2	54.0	3.8	5.2	7.7	_	1.1	Прямоугольные + отдельные вискеры
900								Вискеры
$T_{\text{отж}}, °C$		Э	лементн	ый состан	Форма нано- и микрокристаллов			
			k	сристалль	Ы			
	С	0	к Р	кристалль Ti	Mi	Cu	W	-
500	C 8.8	O 31.5	р –	кристалль Ті 3.8	5.5	Cu 50.5	W _	Треугольные
500 700	C 8.8 11.1	O 31.5 43.6	P - -	христалль Ті 3.8 1.8	Ni 5.5 8.4	Cu 50.5 35.0	W - 0.1	Треугольные Треугольные
500 700 750	C 8.8 11.1 26.9	O 31.5 43.6 58.2	P 	ті Ті 3.8 1.8 7.3	Ni 5.5 8.4 5.8	Cu 50.5 35.0 1.4	W - 0.1 0.4	Треугольные Треугольные Прямоугольные
500 700 750 800	C 8.8 11.1 26.9 12.6	O 31.5 43.6 58.2 63.8	P 	ті Ті 3.8 1.8 7.3 7.2	Ni 5.5 8.4 5.8 11.1	Cu 50.5 35.0 1.4 -	W - 0.1 0.4 6.8	Треугольные Треугольные Прямоугольные Прямоугольные
500 700 750 800 850	C 8.8 11.1 26.9 12.6 –	O 31.5 43.6 58.2 63.8 33.4	P 	ті 3.8 1.8 7.3 7.2 5.1	Ni 5.5 8.4 5.8 11.1 49.4	Cu 50.5 35.0 1.4 -	W 0.1 0.4 6.8 11.1	Треугольные Треугольные Прямоугольные Прямоугольные Прямоугольные + отдельные вискеры

Таблица 2. Влияние температуры отжига на состав поверхности покрытий, а также на состав и форму нано- и микрокристаллов

разцы, активные в окислении СО в СО₂. Образцы формировали в PBW-электролите, который дополнительно содержал 0.1 моль/л Ni(CH₃COO)₂ и 0.025 моль/л Cu(CH₃COO)₂, а затем пропитывали в растворе, содержащем 1 M Ni(NO₃)₂ + 1 M Cu(NO₃)₂ и отжигали при 500°C для полноты разложения нитратов.

Результаты настоящей работы показывают, что уже на отдельных участках поверхности исходных покрытий имеются треугольные нанообъекты толщиной ~50 нм и высотой ~500 нм, рис. 2, содержащие оксиды меди. Отметим, что в треугольные ("чещуйчатые") нанообразования размерами ~300-700 нм преобразовывались слои меди, нанесенные химическим или электрохимическим осаждением на алюминий, титан или фехраль после каталитических испытаний в среде 5% СО + воздух при постепенном повышении температуры до 500°С [25]. Причем данные по элементному анализу позволяли предполагать наличие в таких слоях оксидов меди как CuO, так и Cu₂O. Возможно, что такие нанообразования характерны для оксида меди, образующегося после отжига на воздухе при 500°С на различных основах.

Как видно из рис. 2, треугольные нанообразования преимущественно располагаются вблизи пор. Можно предположить, что именно в этих местах скапливается пропиточный раствор в ходе отжига образцов.

Терморазложение компонентов раствора при температуре 500°С должно протекать согласно реакциям [26]:

$$Ni(NO_3)_2 \rightarrow NiO + 2NO_2 + 1/2O_2, \qquad (1)$$

$$\operatorname{Cu}(\operatorname{NO}_3)_2 \to \operatorname{CuO} + 2\operatorname{NO}_2 + 1/2\operatorname{O}_2.$$
(2)

Между тем, в образовавшихся кристаллах наблюдается повышенная концентрация меди, несмотря на то, что пропиточный раствор содержит медь и никель в эквимолярном соотношении. Кроме того, как это видно из приведенных на рис. 2д данных элементного анализа, в кристаллах повышенное содержание металлов по отношению к концентрации кислорода. Особенно это заметно для кристаллов в поре. По-видимому, на первом этапе происходит терморазложение солей, согласно уравнениям (1) и (2) и уход с поверхности газообразных продуктов разложения. Далее преобладают процессы диффузии. По-видимому, коэффициент диффузии меди в исследуемых

Рис. 4. Рентгенограммы отожженных в течение 4 ч при 500 и 850° С образцов с модифицированными ПЭО-покрытиями (а) и стандартные рентгенограммы для NiWO₄, Ni₅TiO₇ и Ni₅TiO₄(BO₃)₃ (б).

Puc. 5. СЭМ изображения поверхности образцов дополнительно пропитанных в растворах 0.5 M Ni(NO₃)₂ + 0.5 M Cu(NO₃)₂ (a-в) и в 2 M Ni(NO₃)₂ + 2 M Cu(NO₃)₂ (r). Отжиг в течение 4 ч при 750°C (a, 6) и в течение 1 ч при 900°C (b, r).

композитах заметно выше коэффициента диффузии никеля. В условиях эксперимента, медь, диффундируя в глубину и на поверхность, образует на поверхности при температурах отжига 500 и 700°С медьсодержащие треугольные кристаллы.

Повышенные концентрации металлов и пониженные содержания кислорода в порах и их окрестностях означает возможное наличие в этих участках как окисленных, так и восстановленных металлов. Аналогичная ситуация характерна для ПЭО-покрытий, формируемых в электролитах с коллоидными гидроксидами переходных металлов, например, с гидроксидами железа и/или кобальта [27].

С ростом температуры отжига до 750–800°С медь диффундирует уже преимущественно в глубину покрытия. Треугольные нанообразования трансформируются в прямоугольные микронных размеров с повышенным содержанием никеля и заметным вольфрама. Данные работы [23], а также данные рентгенофазового анализа (рис. 4), позволяют предположить, что в этом случае микро и нанокристаллы – вольфраматы никеля.

При дальнейшем повышении температуры отжига до 900°С и выше на поверхности начинают образовываться нанопроволоки, заполняющие поверхность в виде нанощеток.

Таким образом, задавая температуру отжига, можно контролируемо получать целый спектр нано-образований определенной геометрии и состава на поверхности покрытий. Последнее должно проявляться на свойствах формируемых покрытий. Действительно, архитектура и состав Ni-, Cu-содержащих нанообразований на поверхности, табл. 2 и рис. 3, хорошо коррелируют со способностью покрытий катализировать реакцию окисления CO в CO₂, рис. 6. Трансформация треугольных нанообразований с повышенным содержанием меди в прямоугольные с повышенным содержанием никеля приводит к падению активности. Образцы, отожженные при 850°C, малоактивны в окислении CO в CO₂.

В работах [23, 24] показано, что, используя электролит на основе PBW-электролита с добавками солей марганца, цинка или никеля, можно как с дополнительной пропиткой в растворах соответствующих солей, так и без после высокотемпературного отжига при 650–850°С получать наноразмерные вольфраматы соответствующих металлов, закрепленные на поверхности титана.

2019

Рис. 6. Температурная зависимость конверсии CO (*X*) для модифицированных покрытий, отожженных на воздухе при температурах: 500, 600, 700, 750 и 850°C [17].

В последнем случае функцию пропиточного раствора выполняет электролит.

Отметим, что сравнение результатов, приведенных в [23] и [22], также приводит к выводу о важности не только состава электролита и пропиточных растворов, но и учета используемых значений температур отжига: при T = 850°C на поверхности композитов, сформированных в одинаковых условиях, растут нановискеры вольфраматов никеля, а при T = 1050°C – титанатов никеля.

Образование нанопроволок протекает в том же температурном интервале, что и выход оксида титана в модификации рутил на поверхность немодифицированных покрытий на титане [28, 29]. В этих работах показано, что при температуре около 850°С и выше титан диффундирует через поры на поверхность покрытий, где образует правильные нано-, а затем и микрокристаллы рутила, рис. 7. Кроме того, известно [27], что при формировании ПЭО-покрытий в щелочном электролите PBW с добавками ацетатов никеля, железа или кобальта в порах покрытий образуются агломераты кристаллитов с повышенным содержанием этих металлов, рис. 8. В этом случае стенки и дно пор также содержат повышенные концентрации металлов из электролита. Возможно, при температурах ≥850°С термостимулированный поток титана через поры на поверхность приводит к его взаимодействию с никелем, сконцентрированном в порах, с последующим образованием на поверхности титанатов никеля.

В настоящей работе, как и в работах [16, 17, 22–24] в качестве базового применен PBW-электролит. Очевиден вопрос, как на состав растущих нано-, микрокристаллов и нанопроволок будет влиять состав базового электролита, а также способность формируемого ПЭО-покрытия взаимодействовать с пропиточным раствором (покрытия с разными влагоемкостью, гидрофильно-гидрофобным балансом поверхности и др.).

Рис. 7. Выход титана на поверхность с образованием нано- и микрокристаллов рутила для немодифицированных образцов с ПЭО-покрытиями при температуре отжига 850–900°С [28, 29].

5. ЗАКЛЮЧЕНИЕ

Таким образом, на поверхности ПЭО-покрытий, сформированных в PBWCuNi-электролите и модифицированных оксидами никеля и меди в результате пропитки в растворах нитратов и отжига на воздухе при 500-700°C, образуются обогащенные медью наноразмерные кристаллы треугольной формы, аккумулированные в порах и в окрестности пор. Увеличение температур отжига приводит к диффузии меди вглубь покрытий, трансформации треугольных нанообразований в прямоугольные (750-800°С), содержащие вольфрамат никеля, а затем и к появлению никель титановых оксидных нановискеров (выше 850°С). Увеличение концентрации пропиточного раствора способствует уменьшению длины и диаметра нановискеров, образующихся при 900°С, и более плотному заполнению ими поверхности при отжиге. Все отожженные покрытия имеют слоистое строение: на основной матрице плотного оксидного покрытия расположен слой нанокристаллов, состав которых определяется температурой отжига.

Рис. 8. Кристаллиты в порах покрытий, сформированных на титане методом ПЭО в PBW-электролите с добавлением оксалата железа [30].

Результаты настоящей работы, а также данные работ [16, 17, 22–24] показывают, что сочетание ПЭО в PBWM-электролите с пропиткой и последующим отжигом, или просто с отжигом является оригинальным путем контролируемого получения оксидных систем с развитой архитектурой поверхности.

Покрытия с развитой на нано- и микроуровне поверхностью представляют интерес для различных практических применений. Например, для применения в катализе, медицине при нанесении на имплантаты, в качестве покрытий с определенной способностью к поглощению и рассеиванию различных излучений, как образцы с определенными магнитными характеристиками.

БЛАГОДАРНОСТИ

Работа частично поддержана грантами РФФИ № 18-03-00418 и РНФ № 18-13-00358.

СПИСОК ЛИТЕРАТУРЫ

- Yu X.W., Chen L., He Y.Y., Yan Z.C. // Surf. Coat. Technol. 2015. V. 269. P. 30–35.
- Papurello R.L., Cabello A.P., Ulla M.A., Neyertz C.A., Zamaro J.M. // Surf. Coat. Technol. 2017. V. 328. P. 231–239.
- Domínguez M.I., Pérez A., Centeno M.A., Odriozola J.A. // Appl. Catal. A: Gen. 2014. V. 478. P. 45–57.
- Rafieerad A.R., Ashra M.R., Mahmoodian R., Bushroa A.R. // Materials Science and Engineering C. 2015. V. 57. P. 397–413.
- Shibli S.M.A., Mathai S. // J. Mater. Sci.-Mater. Med. 2008 V. 19. № 8. P. 2971–2981.
- 6. Zhao R.R., Xu M.Z., Wang J.A., Chen G.N. // Electrochim. Acta. 2010. V. 55. № 20. P. 5647–5651.
- Marinina G.I., Vasilyeva M.S., Lapina A.S., Ustinov A.Y., Rudnev V.S. // J. Electroanal. Chem. 2013. V. 689. P. 262–268.
- Jiang X.C., Herricks T., Xia Y.N. // Nano Lett. 2002. V. 2. № 12. P. 1333–1338.
- 9. Sun Y., Xu R., Yang J.Y., He L., Nie J.C., Dou R.F., Zhou W., Guo L. // Nanotechnology. 2010. V. 21. № 33. Paper 335605.

- Neyertz C.A., Gallo A.D., Ulla M.A., Zamaro J.M. // Surf. Coat. Technol. 2016. V. 285. P. 262–269.
- 11. Hahn R., Brunner J.G., Kunze J., Schmuki P., Virtanen S. // Electrochem. Commun. 2008. V. 10. № 2. P. 288–292.
- 12. *Jitaru M., Toma A.M., Tertis M.C., Trifoi A.* // Environ. Eng. Manag. J. 2009. V. 8. № 4. P. 657–661.
- Say W.C., Chen C.C. // Jpn. J. Appl. Phys. Part 1 Regul. Pap. Brief Commun. Rev. Pap. 2007. V. 46. № 11. P. 7577–7580.
- 14. *Chen C.-C., Fang D., Luo Z.P.* // Rev. Nanosci. Nanotechnol. 2012. V. 1. P. 229–256.
- Bayati M.R., Molaei R., Zargar H.R., Kajbafvala A., Zanganeh S. // Mater. Lett. 2010. V. 64. P. 2498–2501.
- Jiang X., Zhang L., Wybornov S., Staedler T., Hein D., Wiedenmann F., Krumm W., Rudnev V., Lukiyanchuk I. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 8. P. 4062–4066.
- Rudnev V.S., Wybornov S., Lukiyanchuk I.V., Staedler T., Jiang X., Ustinov A.Yu., Vasilyeva M.S. // Appl. Surf. Sci. 2012. V. 258. P. 8667–8672.
- Руднев В.С., Тырина Л.М., Устинов А.Ю., Выборнова С., Лукиянчук И.В. // Кинетика и катализ. 2010. Т. 31. № 2. С. 281–287. (Rudnev V.S., Tyrina L.M., Ustinov A.Yu., Wybornova S., Lukiyanchuk I.V. // Kinet. Catal. 2010. V. 51. № 2. Р. 266–272).
- Руднев В.С., Гордиенко П.С., Курносова А.Г., Орлова Т.И. Способ микродугового оксидирования вентильных металлов и их сплавов // Патент РФ № 1783004. Опубл. 23.12.92. Бюлл. № 47.
- Руднев В.С., Гордиенко П.С., Яровая Т.П., Завидная А.Г., Железнов В.В. // Журн. прикл. химии. 1994. Т. 67. № 8. С. 1279–1282. (Rudnev V.S., Gordienko P.S., Yarovaya T.P., Zavidnaya A.G., Zheleznov V.V. // Russ. J. Appl. Chem. 1994. V. 67. № 8. Р. 1128–1131).
- 21. *Nalbandyan V.B.* "Ni₅TiO₇" is Ni₅TiO₄(BO₃)₂ // J. Solid State Chem. 2017. V. 249. P. 27–28.
- 22. Jiang Y.A., Liu B.D., Yang L.N., Yang B., Liu X.Y., Liu L.S., Weimer C., Jiang X. // Sci. Rep. 2015. V. 5. Paper No. 14330.
- 23. Jiang Y.N., Liu B., Zhai Z., Liu X., Yang B., Liu L., Jiang X. // App. Surf. Sci. 2015. V. 356. P. 273–281.
- 24. Jiang Y.N., Liu B.D., Yang W.J., Yang B., Liu X.Y., Zhang X.L., Mohsin M.A., Jiang X. // Cryst. Eng. Comm. 2016. V. 18. P. 1832–1841.
- Lukiyanchuk I.V., Rudnev V.S., Serov M.M., Krit B.L., Lukiyanchuk G.D., Nedozorov P.M. // Appl. Surf. Sci. 2018. V. 436. P. 1–10.

- 26. Синтезы неорганических соединений. Т. 1 / под ред. Джолли У. М.: Мир, 1966. 278 с. С. 179. Preparative inorganic reactions / Jolly W.L. (Ed.). New York; London; Sydney: Interscience Publishers, 1964.
- Rudnev V.S., Lukiyanchuk I.V., Adigamova M.V., Morozova V.P., Tkachenko I.A. // Surf. Coat. Technol. 2015. V. 269. P. 23–29.
- Vasilyeva M.S., Rudnev V.S., Wiedenmann F., Wybomov S., Yarovaya T.P., Jiang X. // Appl. Surf. Sci. 2011. V. 258. № 2. P. 719–726.
- 29. Руднев В.С., Малышев И.В., Лукиянчук И.В., Курявый В.Г. // Физикохимия поверхности и защита ма-

териалов. 2012. Т. 48. № 4. С. 391–397. Rudnev V.S., Malyshev I.V., Lukiyanchuk I.V., Kuryavyi V.G. // Prot. Met. Phys. Chem. Surf. 2012. V. 48. № 4. P. 455–461.

 Руднев В.С., Адигамова М.В., Лукиянчук И.В., Устинов А.Ю., Ткаченко И.А., Харитонский П.В., Фролов А.М., Морозова В.П. // Физикохимия поверхности и защита материалов. 2012. Т. 48. № 5. С. 459– 469. Rudnev V.S., Adigamova M.V., Lukiyanchuk I.V., Ustinov A.Yu., Tkachenko I.A., Kharitonskii P.V., Frolov A.M., Morozova V.P. // Prot. Met. Phys. Chem. Surf. 2012. V. 48. № 5. P. 543–552.