МЕТОДЫ ИЗУЧЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СИСТЕМ

УДК 54.08

КВАРЦЕВЫЕ СОРБЦИОННЫЕ СЕНСОРЫ ПАРОВ АЦЕТОНА

© 2019 г. В. Н. Симонов^{1, 2, *}, А. А. Фомкин¹, Д. А. Власов¹, Т. Ю. Гранкина¹

 ¹Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина РАН (ИФХЭ), Ленинский проспект, 31, корп. 4, Москва, 119071 Россия
²Национальный исследовательский ядерный университет "Московский инженерно-физический институт", Каширское ш., 31, Москва, 115409 Россия

*e-mail: simonov.valer@yandex.ru Поступила в редакцию 08.10.2018 г. После доработки 09.01.2019 г. Принята к публикации 03.02.2019 г.

Получены и проанализированы соотношения между параметрами пленки-сорбента, чувствительностью и порогом чувствительности кварцевых сорбционных сенсоров. Показано, что для сорбционных сенсоров паров и газов на основе полимерных пленок существует область оптимальных значений толщины, обусловленная влиянием ее на упругие свойства материала. Для сенсоров паров ацетона с пленкой из полиметилметакрилата (ПММА) такая область составляет (0.4–0.6)% от толщины пластины сенсора при нанесении пленки на обе стороны пластины.

Ключевые слова: сенсоры, кварцекристаллическая гравиметрия, QCM, пьезорезонатор, полимерные пленки, изотерма сорбции

DOI: 10.1134/S0044185619040235

введение

Кварцекристаллическая гравиметрия или, как ее еще называют, кварцекристаллическое микровзвешивание (QCM) имеет множество приложений в аналитической химии, электрохимии, биохимии, медицине. Пьезоэлектрический (как правило, кварцевый) резонатор (ПР), будучи чрезвычайно чувствительным к изменению условий на границе поверхности, помогает обнаружить пары и газы в микроконцентрациях, монослои малых молекул, сложные массивы биополимеров, биомакромолекул или отдельные клетки [1-5]. При реализации сорбционных сенсоров обычно считалось, что их рабочие характеристики зависят исключительно от сорбционной емкости пленки [6, 7]. Поэтому, как правило, работы велись в направлении ее повышения подбором специального полимера [6] или разработкой технологии формирования пленки [7]. Однако, при изменении концентрации анализируемых веществ изменяются не только масса, но и механические свойства пленки. В результате этого выходной сигнал – изменение частоты колебаний ПР – получает дополнительное приращение, что приводит к увеличению чувствительности сенсора. Несмотря на большое количество работ в области кварцевой гравиметрии, анализу системы как источника количественной информации в режиме влияния акустических свойств пленки уделено недостаточное внимание. Данная работа имеет целью восполнить имеющиеся пробелы в этой области применительно к методам обнаружения паров ацетона, который широко используется в промышленности в качестве растворителя, сырья для синтеза многих важных химических продуктов и, как известно, является маркером некоторых социально значимых заболеваний (сахарный диабет, рак легких, галитоз и др.) [8]. В работе основное внимание уделено чувствительности сенсора, поскольку критические значения объемных концентраций паров ацетона, зачастую составляют миллионные доли.

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Рассматриваемый сенсор представляет собой ПР в виде пьезоэлектрической пластины, на которую нанесены электроды и пленка сорбента. При изменении внешних условий, например, концентрации *C* анализируемых веществ изменяется масса пленки и комплексный модуль упругости материала пленки. В результате изменяется резонансная частота колебаний. Сенсор включен в схему измерения частоты, по значению которой определяется концентрация анализируемого вещества.

Традиционно пленка наносится на одну из сторон пластины. Однако, из теории колебаний упругой пластины с вязкоупругой пленкой на поверхностях [9, 10] следует, что имеется возможность снижения порога чувствительности сенсора путем равномерного перераспределения пленки с одно стороны пластины на обе стороны. В результате такого перераспределения толщина пленок уменьшается вдвое, следовательно, в 4 раза уменьшаются потери и порог чувствительности от 2-х пленок половинной толщины. Влияние же двух пленок на коэффициент чувствительности останется практически тем же самым, что и влияние одной пленки удвоенной толщины, нанесенной на одну из сторон пластины [10]. Это обстоятельство учтено в данной работе: пленка наносилась на обе стороны пластины.

Изменения частоты Δf , вызванные наличием пленки на поверхности резонатора описываются выражениями, в которые входят плотность ρ_q и модуль сдвига c_{66} кварца, отношение M масс пленки и пластины (массонагрузка), модуль сдвига G_1 и тангенс угла потерь λ материала пленки [9, 10]. Дифференцирование этих выражений по концентрации C позволяет получить формулу для коэффициента чувствительности сенсора K_C :

$$K_{C} = df / dC = f_{0}K_{M}M_{0}(1 - 2M_{0} + 3M_{0}^{2} + M_{0}^{2}\pi^{2}c_{66}\rho_{q}/(k^{2}\rho_{f}G_{1})) - (1) - f_{0}(K_{\rho} + K_{G_{1}})M_{0}^{3}\pi^{2}c_{66}\rho_{q}/(3k^{2}\rho_{f}G_{1})),$$

где $K_M = (1/M_0) dM/dC$, $K_\rho = (1/\rho_{f_0}) d\rho_f/dC$, $K_{G1} = (1/G_{10}) dG_1/dC$ – коэффициенты чувствительности пленки соответственно по изменению массонагрузки, плотности пленки и упругости, M_0 , f_0 , ρ_{f_0} и G_{10} – соответственно массонагрузка, частота, плотность пленки и модуль упругости при C = 0.

При малых M_0 влияние модуля упругости пленки незначительно, и K_C от M_0 зависит практически линейно $K_{C_0} = f_0 K_M M_0$. Коэффициент K_M и сумма $K_{\rho} + K_{G_1}$, являющаяся удвоенным коэффициентом чувствительности акустического импеданса ПММА к парам ацетона, в данной работе определены экспериментально. Значения модуля G_1 и его зависимость от толщины пленок заимствованы из работы [11].

МЕТОДИКА

Для оптимизации конструкции сенсоров были проведены экспериментальные исследования таких параметров сенсоров как чувствительность и активное сопротивление сенсоров в зависимости от толщины h_f , характеризуемой пропорциональной ей величиной начальной массонагрузки M_0 . (Оперировать величиной M_0 удобней, чем толщиной h_f , поскольку ее легче задавать и рассчитывать при формировании пленки). На основании этих исследований была найдена оптимальная толщина пленок с точки зрения достижения минимального порога чувствительности. Чувствительность сенсоров определялась по значению коэффициента при линейном члене рабочей характеристики сенсора, вычисляемой в виде полинома 3-ей степени с помощью табличного процессора Excel.

В экспериментальных исследованиях были использованы термостабильные кварцевые резонаторы АТ-среза с добротностью на уровне 10⁵ и номинальными частотами 5 и 20 МГц, являющимися границами наиболее широко используемого диапазона частот сенсоров. В качестве сорбента использовались пленки, изготовленные из ПММА марки Асгугех (Компания "Руспласт", РФ). Пленки формировались капельным нанесением на всю поверхность пластины растворов ПММА в диметилформамиде (ДМ Φ) вначале на одну, потом на другую стороны. Концентрация использованных растворов составляла (0.14–5)%. Массу m_{k} нанесенного раствора контролировали в процессе нанесения, измеряя вес резонатора с наносимым раствором на весах Сартогосм СЕ224-С с ценой деления 0.1 мг. Массонагрузку М₀ рассчитывали по формуле:

$$M_{0} = m_{f} / m_{O} = 4C_{p} m_{k} / H \pi D^{2} \rho_{q}, \qquad (2)$$

где C_p – концентрация раствора, m_k – масса капли, m_Q и D – масса и диаметр пластины резонатора.

Диаметр и толщина пластины измерялись микрометром с ценой деления 2 мкм. Погрешность расчета M_0 с учетом погрешностей определения всех параметров, входящих в формулу (2), определялась практически погрешностью измерения массы капли и не превышала $\pm 3\%$.

Нанесенную на каждую из сторон ПР пленку высушивали в течение суток в атмосфере воздуха при комнатных значениях влажности и температуры, а затем для стабилизации в течение трех суток выдерживали при температуре 100 ± 5°С. У сформированного таким образом сенсора в течение одного-двух дней после высушивания измеряли рабочую характеристику – зависимость частоты f(C) и зависимость активного сопротивления R(C) в диапазоне концентрации паров ацетона от 0 до $(0.2-0.3) \times 10^6$ ppm при температуре $22 \pm 3^{\circ}$ С по методике, описанной в [12]. Рабочие характеристики f(C) аппроксимировали полиномом третьей степени, коэффициент при линейном члене полинома принимали за значение чувствительности сенсора К_с. После измерения параметров сенсора на него наносили следующие

Рис. 1. Зависимость чувствительности сенсоров от массонагрузки M_0 : эксперимент – кружки, расчет – сплошная линия.

слои пленки, повторяя процедуру формирования пленки и измерения характеристик до тех пор, пока сопротивление сенсора не превышала 8–10 кОм. Измерения параметров сенсоров с сопротивлением *R* менее 500 Ом осуществлялись с использованием генератора ТГК-3 (НПО "ФОНОН", РФ) и частотомера ЧЗ-63, а сенсоров с сопротивлением более 500 Ом с использованием модуля возбуждения колебаний и измерения параметров (МВИ), описанного в [12]. Цена последнего разряда частотомера 0.1 Гц, погрешность измерения сопротивления в ТГК-3 ~10%, погрешность измерения в МВИ: частоты от ±10 Гц (при *R* = = 1 кОм) до ±100 Гц (при *R* =10 кОм), сопротивления ~±15%.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экспериментальные значения чувствительности К_с сенсоров номинальной частотой 5 МГц и средним значением начальной добротности $Q_0 =$ $= 10^5$ вынесены в виде графика $K_C(M_0)$ на рис. 1. Сплошной линией показана расчетная зависимость (1) при $K_M = 0.4 \times 10^{-3}$ ppm⁻¹ и $K_{\rho} + K_{G_1} = -1.05 \times 10^{-6}$ ppm⁻¹. С увеличением M_0 значения Кс возрастают вначале практически линейно, далее после $M_0 \approx 0.1\%$ пропорционально ~ M_0^3 . Разброс экспериментальных значений относительно расчетных преимущественно лежит в пределах ±20%. Источником отклонений чувствительности от расчетной кривой в области малых M_0 является, наряду с погрешностью определения массы пленки, неконтролируемая неравномерность толщины пленок по поверхности ПР, которая особенно сказывается при тонких пленках. В области высоких M_0 дополнительное влияние ока-

Рис. 2. Экспериментальная (кресты) и аппроксимирующая (линия) зависимости активного сопротивления сенсора от массонагрузки M_0 .

зывают различия между заимствованными из литературы и реальными значениями плотности и модулей упругости и потерь материала пленки.

Зависимость рис. 1 показывают, что чувствительность K_C может быть увеличена на порядок и более увеличением толщины пленки и подбором материала пленки с высокой чувствительностью модуля упругости к адсорбируемому пару. Однако такое увеличение сопровождается увеличением влияния акустических потерь, выражающееся в повышении активного сопротивления R резонатора. Это, в свою очередь, приводит к снижению кратковременной стабильности частоты выходного сигнала и повышению порога чувствительности.

На рис. 2 приведена экспериментальная зависимость относительного сопротивления R/R_0 , от массонагрузки M_0 , из которой видно, что сопротивление в диапазоне M_0 растет пропорциональ-

но M_0^3 , с некоторыми отклонениями, которые объясняются зависимостью модулей упругости и вязкости пленки от толщины, особенно в области малых ее значений [11].

Относительно большой разброс экспериментальных значений объясняется как теми же причинами, что и разброс K_C , так еще и погрешностью измерения R.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Полученные результаты дают возможность определить оптимальное значение массонагрузки для минимизации порога чувствительности, что особенно важно применительно к сенсорам микроконцентрации. В связи с тем, что порог чувствительности кварцевых ПР определяется минимумом фазового шума выходного частотного сигнала, выраженного в единицах концентрации,

Рис. 3. Зависимости параметров P (ромбы) и S (линия) от массонагрузки M_0 .

в качестве критерия оптимума логично использовать отношение сопротивления к коэффициенту чувствительности. Это отношение $P(M_0) = (R)/(R_0)/K_C$, как функция начальной массонагрузки M_0 , полученное с использованием экспериментальных значений K_C и R/R_0 , приведено на графике рис. 3. Разброс значений объясняется теми же причинами, что и разбросы K_C и R.

Из рис. 3 следует, что оптимальные значения M_0 , полученные по экспериментальным данным, лежат вблизи значения 0.45%, т.е. там, где $P(M_0)$ имеет минимум. В пересчете на толщину пленок, нанесенных на каждую сторону ПР, с учетом разброса экспериментальных значений это ~(0.4–0.6)% от толщины пластины ПР. Чувствительность K_C при оптимальной массонагрузке для ПР частотой 5 МГц составляет 0.0076 Гц/ррм.

На этом же графике приведена расчетная зависимость коэффициента $S(M_0) = P(M_0)/P(M_0 =$ = 0.5%), отображающего, во сколько раз снижается порог чувствительности при значениях массонагрузки, отличающихся от оптимального значения $M_0 = 0.45\%$. Так, например, описанный в [7] сенсор с массонагрузкой $M_0 = 0.02\%$ в 12 раз менее чувствителен, чем реализованный в данной работе с массонагрузкой $M_0 = 0.5\%$.

Следует отметить, что наличие экстремума зависимости P(C) объясняется исключительно влиянием h_f на модули упругости и вязкости пленки [11]. Если бы эти модули являлись константами, как у объемного материала, то параметр P с ростом M_0 монотонно бы убывал, стремясь к некоторому постоянному значению. Очевидно, что поскольку все пленочные материалы обладают свойством зависимости механических свойств от толщины пленки, наличие оптимального значения массонагрузки присуще пленкам не только ПММА, но и других материалов. Полученные данные позволяют сформулировать требования к частотомеру регистратора концентрации паров ацетона в выдыхаемом воздухе больного диабетом. Из выражения (1) и графика рис. 1 следует, что при критических значениях концентрации ацетона в выдыхаемом воздухе 2 ррм [13] разрешающая способность регистратора по частоте должна быть не хуже, чем 0.015 Гц для сенсора 5 МГц и 0.09 Гц для сенсора 30 МГц.

Применительно к задаче создания измерителя паров ацетона в выдыхаемом воздухе нет жестких ограничений по времени измерения, потребляемой мощности и т.д. Следовательно, могут быть использованы сравнительно время затратные режимы, включающие не только измерение, но и программные методы повышения точности, а также термостатирование, обнуление памяти перед измерением (для минимизации влияния старения) и т.д. Поэтому полученные в данной работе результаты позволяют надеяться на успешное применение рассматриваемых сенсоров в качестве основы для сравнительно недорогого портативного или стационарного прибора неинвазивной диагностики. Кроме того, предложенные методы повышения чувствительности сенсоров универсальны и могут быть использованы в сочетании с традиционными методами, например, использованием пленочных материалов с более высокой адсорбционной емкостью, чем ПММА.

ЗАКЛЮЧЕНИЕ

Проведенные исследования позволили разработать теорию влияния упругих и вязкостных свойств пленки на чувствительность и порог чувствительности сенсора, использовать более выгодное (двухстороннее) позиционирование пленки на ПР и определить оптимальное значение ее толщины. Полученные результаты универсальны и открывают дополнительные возможности по использованию акустогравиметрических сенсоров в различных областях науки и техники, включая задачи неинвазивного контроля социально значимых заболеваний.

Работа выполнена в рамках проекта № 16-07-0097-а, поддержанного Российским Фондом фундаментальных исследований, по Программе конкурентоспособности НИЯУ "МИФИ".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Lucklum R., Hauptmann P. //* Anal. Bioanal. Chem. 2006. V. 384. P. 667–682.
- Prakrankamanant P. // J. Med. Assoc. Thai. V. 97. Suppl. 4. 2014. P. S56–S64.
- Matthew J. van der Werff, Yuan YongJ., Xu W.L. Quartz Crystal Microbalance for Medical Diagnostics // 1st International Conference on Sensing Technology, No-

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 55 № 4 2019

vember 21–23, 2005 Palmerston North, New Zealand. P. 500–504.

- Xi J., Chen Jennifer Y., Garcia M.P., Penn L.S. Quartz Crystal Microbalance in Cell Biology Studies // Biochip Tissue Chip. 2013. S5. http://dx.doi.org/.doi:10.4172/2153-0777.S5-001
- Simonov V.N., Vlasov D.A., Fomkin A.A., Markova E.B. Solovtsova, O.V. // Protection of Metals and Physical Chemistry of Surfaces. 2018, vol. 54, Issue 4, pp. 609– 616.
- 6. *Cao Z., Murayama K., Aoki K.* // Analitica Chimica Acta. 2001. V. 448. № 1–2. P. 47–59.
- Russell S.P., Weinkauf D.H. // Polymer. 2001. V. 42. P. 2827–2836.

- 8. Дмитриенко М.А. // Практическая медицина. Гастроэнтерология. 2014. Т. 77. № 1. С. 192–200.
- 9. *Du B., Johannsmann D. //* Langmuir. 2004. V. 20. P. 2809–2812.
- Johannsmann D. // J. of Applied Physics. 2001. V. 89. № 11. P. 6356–6364.
- 11. *Morray B., Li S., Hossenlopp J., Cernosek R., Josse F. //* IEEE International Frequency Control Symposium and PDA Exhibition. 2002.
- 12. Симонов В.Н., Фомкин А.А., Власов Д.А. // Измерительная техника. 2016. № 10. С. 65. (Simonov V.N., Fomkin A.A., Vlasov D.A. // Measurement Techniques. 2017. 18 February. P. 1). doi 10.1007/s11018-017-1102-х
- Deng C., Zhang J., Yu X., Zhang W., Zhang X. // J. Chromatogr. B. 2004. V. 810. P. 269–275.