____ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ ____

УДК 628.386

КИНЕТИКА АДСОРБЦИИ ИОНОВ НИКЕЛЯ(II) И МЕДИ(II) МОДИФИЦИРОВАННЫМИ АЛЮМОСИЛИКАТАМИ

© 2019 г. Е. Г. Филатова^{1,} *, Ю. Н. Пожидаев¹, О. И. Помазкина¹

¹Иркутский национальный исследовательский технический университет, Иркутск, Россия *e-mail: efila@list.ru

> Поступила в редакцию 16.08.2018 г. После доработки 13.04.2019 г. Принята к публикации 15.04.2019 г.

Изучена кинетика адсорбции ионов никеля(II) и меди(II) алюмосиликатами, модифицированными N,N'-бис(3-триэтоксисилилпропил)тиокарбамидом (БТМ-3) и HCl с использованием кинетических моделей псевдопервого и псевдовторого порядков. Показано, что при модификации алюмосиликатов, сокращается время установления равновесия. В 1.33 раза при адсорбции ионов меди(II) и в 2 раза для ионов никеля(II). Увеличивается скорость и энергия адсорбции. Установлено, что кинетику адсорбции исследуемых ионов наилучшим образом описывает модель всевдовторого порядка. Значения коэффициентов корреляции составило при этом 0.997–0.998. Максимальное значение константы скорости адсорбции 33.7 × 10^{-5} г/(ммоль мин) соответствует ионам никеля(II) для алюмосиликатов, модифицированных HCl. Начальная скорость адсорбции составила при этом 8.70×10^{-3} ммоль/(г мин). Ионам Cu(II) соответствует максимальное значение константы скорости адсорбции 2.91 × 10^{-5} г/(ммоль мин) для алюмосиликатов, модифицированных БТМ-3.

Ключевые слова: модифицированные алюмосиликаты, кинетика адсорбции, модели псевдопервого и псевдовторого порядков, ионы никеля(II) и меди(II)

DOI: 10.1134/S0044185619050085

введение

Непрерывно возрастающее негативное воздействие антропогенной нагрузки на природную среду влечет за собой создание приоритетных технологий рационального использования природных ресурсов. А также повышение экологической безопасности производства в целом. При этом использование природных материалов – алюмосиликатов, в качестве недорогих адсорбентов весьма перспективно и экологически оправдано. эффективным показателям практического Κ применения адсорбентов можно отнести их стоимость, адсорбционную емкость, время наступления равновесия в системе адсорбат-адсорбент, скорость адсорбции и др. Результаты исследования кинетики адсорбции ионов токсичных металлов представлены в работах [1-3, 6-8].

В работе [1] исследована кинетика адсорбции ионов Pb(II), Cu(II) и Zn(II) природным цеолитным туфом из Марамуреша Каунти (Северная Румыния) при температурах 25 и 50°С. В результате изучения кинетики адсорбции исследуемых ионов тяжелых металлов были получены различные кинетические модели (псевдопервого порядка, псевдовторого порядка и Weber–Morris). При этом наилучшие результаты получены при использовании модели псевдопервого порядка.

Авторами [2] изучена конкурентная адсорбция ионов Cd(II), Cu(II), Ni(II) и Pb(II) из промышленных сточных вод с использованием иранского природного алюмосиликата. Изучение скорости адсорбции и установления равновесия проводили на одно- и многокомпонентных растворах. Оптимальные условия процесса очистки исследованы путем наблюдения за влиянием рН, присутствием конкурирующих ионов, изменением массы алюмосиликата и различным временем контакта. Кинетику адсорбции на алюмосиликате описывали реакцией первого порядка, показывающей, что удаление около 100% ионов Pb(II) происходит в течение 40 мин, а достижение равновесного состояния для ионов Cd(II), Cu(II), Ni(II) в течение 24 ч.

В работе [3] дана оценка использования каолина и бентонита в качестве материалов для наноразмерного нуль-валентного железа, применяемого для одновременного удаления ионов Cu(II) и Zn(II) из водного раствора. Из трех составляющих наиболее эффективным для одновременного удаления ионов Cu(II) и Zn(II) оказался бентонит. Из водного раствора, содержащего 100 мг/дм³ ионов Cu(II) и Zn(II), удалено 92.9% – Си и 58.3% – Zn. Исследования кинетики показали, что удаление Cu(II) и Zn(II) наноразмерным материалом хорошо согласуется с моделью псевдопервого порядка.

Известно, что адсорбционную емкость природных адсорбентов можно увеличить, используя модифицирование адсорбентов [4, 5]. Авторами в работе [6] использован иранский природный клиноптилолит туфа, который предварительно обработан и измельчен на микро- и наночастицы механическим способом. Модифицирование микро- и наночастиц, а также их Ni-замещенных форм проведено с помощью диметилглиоксима (ДМГ). Удаление ионов Ni(II) на модифицированных и немодифицированных образцах исследованы периодическим способом. Обнаружено, что наночастицы модифицированные (ДМГ) имеет более высокую способность к удалению ионов Ni(II). Сравнение двух кинетических моделей показывает, что кинетическая адсорбция может быть хорошо описана уравнением псевдо- второго порядка, которое указывает, что ограничение скорости процесса связано с химической реакцией.

В публикации [7] авторы получили композитный материал, содержащий альгинат кальция, клиноптилолит, уголь, гуминовые кислоты. Полученные образцы изучены в качестве адсорбентов для удаления кадмия, ртути и свинца. Данные для каждого иона металла на всех адсорбентах показали хорошее соответствие кинетической модели псевдо-второго порядка. Равновесные данные установлены с помощью моделей Лэнгмюра, Фрейндлиха, Дубинина—Радушкевича и изотермы Темкина.

В исследовании [8] изучена возможность использования синтетического цеолита 4А для удаления ионов Cu(II) из водных растворов. Исследовано влияние pH и температуры на процесс адсорбции. Оптимальное значение pH адсорбции равно 8. Скорость реакции описывали моделью псевдовторого порядка. Эксперименты по адсорбции ионов Cu(II) проводили при комнатной температуре 25°С, для описания изотермы использовали уравнения Лэнгмюра и Фрейндлиха. Максимальное удаление меди, полученное из серии исследований, составило 99.99%.

Из краткого обзора представленных работ следует, что кинетику адсорбции на природных алюмосиликатах наилучшим образом описывает модель псевдопервого порядка, для модифицированных и синтетических образцов — преимущественно псевдовторого порядка. Целью работы явилось исследование кинетики адсорбции ионов Ni(II) и Cu(II) из водных растворов модифицированными алюмосиликатами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объекта исследования использовали природные алюмосиликаты Забайкальского месторождения. В экспериментах использовали предварительно отсеянную на сите фракцию размером 1.0 мм.

Рентгенофазовый анализ проводили на автоматизированном рентгеновском дифрактометре D8 ADVANCE, оснащенном зеркалом Гёбеля и детектором VÅNTEC-1 PSD. Съемку проводили в пошаговом режиме в диапазоне углов 20 от 5 до 70 град, с использованием Си-излучения. Расчет рентгенограммы выполнен с помощью программного обеспечения дифрактометра. Для идентификации фаз использовали базу порошковых дифрактограмм PDF-2. Содержание минеральных компонентов в пробе рассчитано по программе TOPAS.

Модифицирование алюмосиликатов осуществляли следующим образом: 10 г алюмосиликата контактировали при перемешивании с 100 г 30%-ного раствора N,N'-бис(3-триэтоксисилилпропил)тиокарбамида (БТМ-3) в гексане [9]. Перемешивание осуществляли в течение 3 ч при температуре 50°С. По истечении указанного времени, алюмосиликат отделяли от раствора, высушивали на воздухе и выдерживали в сушильном шкафу в течение 1 часа при 110°С. Полученный продукт охлаждали в вакуум-эксикаторе и определяли изменение массы в процессе модификации.

Модификацию алюмосиликатов HCl осуществляли в соответствии с методикой: 10 г высушенных до постоянной массы при температуре 120–150°С алюмосиликатов перемешивали 24 ч с 200 мл 12%-ного раствора HCl в воде. Затем суспензию фильтровали и промывали дистиллированной водой до нейтральной реакции. Полученные модифицированные алюмосиликаты сушили до постоянной массы и анализировали на содержание основных элементов. При этом увеличение массы алюмосиликата составило 20%.

Кинетику адсорбции модифицированных алюмосиликатов изучали в статических условиях. В работе использовали модельные растворы, приготовленные из реактивов $NiSO_4 \cdot 7H_2O$ и $CuSO_4 \cdot 5H_2O$ квалификации "х. ч." и дистиллированную воду. Содержание ионов металлов в растворах определяли по стандартным методикам [10, 11]. Исходная концентрация ионов Ni(II) составила 160 мг/дм³, Cu(II) – 120 мг/дм³. Масса исследуемых адсорбентов – 1 г. Исследуемые растворы готовили объемом 0.1 дм³. Массовое отношение жидкой и твердой фаз составляло 1 : 100. Величину адсорбции (A, ммоль/г) вычисляли по формуле:

$$A = \frac{C_0 - C_{\text{равн}}}{m} V, \tag{1}$$

Рис. 1. Дифрактограмма алюмосиликатного образца. — Гейландит, — кристобалит, — санидин.

где C_0 и $C_{\text{равн}}$ — исходная и равновесная концентрации металла в растворе, ммоль/дм³; V — объем раствора, дм³; m — масса адсорбента, г.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Согласно результатам рентгенофазового исследования установлено, что образец алюмосиликатной породы состоит из гейландита $Ca[Al_2Si_7O_{18}] \cdot 6H_2O - 64.3\%$, а также примесной породы — санидина KAlSi₃O₈ — 20.5% и кристобалита SiO₂ — 15.2% (рис. 1).

Исследование кинетики адсорбции проводили с помощью построения и обработки кинетических кривых (рис. 2 и 3).

Адсорбционное равновесие, отвечающее постоянству составу концентраций ионов металлов в системе адсорбат-алюмосиликат, составило 60 мин для ионов Ni(II) (рис. 2) и 90 мин для Cu(II) (рис. 3). В случае природных алюмосиликатов время достижение равновесия при адсорбции ионов Ni(II) и Cu(II) составляло 120 мин [12]. Как видно, из представленных данных (рис. 3) алюмосиликаты, модифицированные БТМ-3, значительно лучше адсорбируют ионы Cu(II). Высокое значение адсорбции в данном случае, можно объяснить благодаря присутствию в составе аппрета химически-активных тиокарбамидных групп, исследуемый процесс в этом случае сопровождается образованием на поверхности материала устойчивых координационных соединений [13], что обусловливает большую эффективность таких материалов. Если сравнивать их адсорбируемость с алюмосиликатами, модифицированными HCl, то величина адсорбции для

Рис. 2. Кинетические кривые адсорбции ионов Ni(II).

Рис. 3. Кинетические кривые адсорбции ионов Cu(II).

509

Ионы	Модифицирон	занные БТМ-3	Модифицированные HCl		
	A, ммоль/г	A, μγ/γ	A, ммоль/г	A, μγ/γ	
Ni(II)	0.214	12.6	0.197	11.6	
Cu(II)	0.128	8.1	0.085	5.4	

Таблица 1. Величина адсорбции модифицированных алюмосиликатов

Таблица 2. Константы скорости уравнения псевдопервого порядка

Ионы	Модифициров	занные БТМ-3	Модифицированные HCl		
	$k \times 10^{2}$, мин ⁻¹	R^2	$k \times 10^2$, мин ^{-1}	R^2	
Ni(II)	1.85	0.947	3.18	0.950	
Cu(II)	2.28	0.958	0.72	0.936	

БТМ-3 возрастает в 1.5 раза. Если сравнивать с природными аналогами [12] – в 1.7 раза. Значение адсорбции ионов Ni(II) модифицированными образцами расходятся незначительно (рис. 2 и табл. 1). Если сравнивать величину адсорбции для природных [12] и модифицированных алюмосиликатов, то ее значение увеличивается в последнем случае более чем в 2 раза.

Кинетику адсорбции обычно описывают уравнением псевдопервого порядка

$$lg(A - A_{\tau}) = lg A - k\tau/2.303, \qquad (2)$$

где A — адсорбция, ммоль/г; A_{τ} — адсорбция за время τ , ммоль/г; k — константа скорости адсорбции псевдопервого порядка, мин⁻¹.

Для определения константы скорости адсорбции *k* и коэффициента корреляции R^2 использованы линейные зависимости $lg(A - A_{\tau}) = f(\tau)$ (рис. 4 и 5).

Рис. 4. Кинетические кривые адсорбции ионов Ni(II) псевдопервого порядка.

По тангенсу угла наклона, представленных зависимостей (рис. 4 и 5) получены значения константы скорости адсорбции для ионов Ni(II) и Cu(II). Определены коэффициенты корреляции (табл. 2).

Максимальное значение константы скорости адсорбции 3.18×10^{-2} мин⁻¹ соответствует ионам Ni(II), минимальное 0.72×10^{-2} мин⁻¹ – Cu(II). Значение коэффициента корреляции варьируется от 0.936 до 0.958. Отсюда можно сделать заключение, что кинетику адсорбции ионов Ni(II) и Cu(II) модифицированными образцами можно описывать уравнением псевдовторого порядка.

Уравнение адсорбции псевдовторого порядка

$$\tau/A_{\tau} = 1/h + \tau/A, \qquad (3)$$

где A – адсорбция, ммоль/г; A_{τ} – адсорбция за время τ , ммоль/г; h – начальная скорость адсорбции при $\tau \to 0$ $h = kA^2$, ммоль/(г мин); k – кон-

Рис. 5. Кинетические кривые адсорбции ионов Cu(II) псевдопервого порядка.

Рис. 6. Кинетические кривые адсорбции ионов Ni(II) псевдовторого порядка.

станта скорости адсорбции псевдовторого порядка, г/(ммоль мин).

По величине отрезков, полученных при пересечении представленных прямых с осью ординат (рис. 6 и 7), определены значения начальной скорости адсорбции и константы скорости псевдовторого порядка для ионов Ni(II) и Cu(II). Получены коэффициенты корреляции (табл. 3).

Начальная скорость адсорбции ионов Ni(II) составила 8.70 × 10⁻³ ммоль/(г мин) алюмосиликатами, модифицированными HCl, и 5.26 × $\times 10^{-3}$ ммоль/(г мин) — для образцов, модифицированных БТМ-3. Максимальное значение константы скорости адсорбции 33.7 × 10⁻⁵ г/(ммоль мин) соответствует ионам Ni(II), минимальное 1.40×10^{-5} г/(ммоль мин) — Cu(II) для модификаций HCl. Значение коэффициента корреляции составляет 0.997-0.998. Отсюда можно сделать заключение, что адсорбция ионов Ni(II) и Cu(II) модифицированными алюмосиликатами может быть описана уравнением всевдовторого порядка. Ранее установлено, что адсорбцию ионов Ni(II) и Cu(II) на алюмосиликатах, модифицированных БТМ-3, наиболее адекватно описывает модель адсорбции Ленгмюра и Фрейндлиха [9]. При модификации HCl наиболее применима модель адсорбции Ленгмюра [14].

Таким образом, установлено, что при модифицировании алюмосиликатов, сокращается время

Рис. 7. Кинетические кривые адсорбции ионов Cu(II) псевдовторого порядка.

установления адсорбционного равновесия. В 1.33 раза при адсорбции ионов Cu(II) и в 2 раза для ионов Ni(II). Увеличивается скорость и энергия адсорбции. Так значение свободной энергии адсорбции ионов Ni(II) 17.74 и 12.50 кДж/моль для Cu(II), указывают на ионообменный механизм [9, 15], а закрепление ионов тяжелых металлов имеет химическую природу.

выводы

1. Изучена кинетика адсорбции ионов Ni(II) и Cu(II) алюмосиликатами, модифицированными БТМ-3 и HCl с использованием кинетических моделей псевдопервого и псевдовторого поряд-ков.

2. Показано, что при модификации алюмосиликатов, сокращается время установления равновесия. В 1.33 раза при адсорбции ионов Cu(II) и в 2 раза для ионов Ni(II). Увеличивается скорость и энергия адсорбции.

3. Установлено, что кинетику адсорбции исследуемых ионов модифицированными алюмосиликатами наилучшим образом описывает модель всевдовторого порядка. Значения коэффициентов корреляции составило при этом 0.997—0.998.

4. Максимальное значение константы скорости адсорбции 33.7×10^{-5} г/(ммоль мин) соответствует ионам Ni(II) для алюмосиликатов, модифи-

Ионы		Модифицированные БТМ-3			Модифицированные HCl			
	1/h	<i>h</i> × 10 ³ , ммоль/(г мин)	<i>k</i> × 10 ⁵ , г/(ммоль мин)	<i>R</i> ²	1/h	<i>h</i> × 10 ³ , ммоль/(г мин)	<i>k</i> × 10 ⁵ , г∕(ммоль мин)	<i>R</i> ²
Ni(II)	190	5.26	24.1	0.998	115	8.70	33.7	0.998
Cu(II)	563	1.78	2.91	0.997	517	1.93	1.40	0.998

Таблица 3. Константы скорости уравнения псевдовторого порядка

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 55 № 5 2019

цированных HCl. Начальная скорость адсорбции составила при этом 8.70 × 10⁻³ ммоль/(г мин).

5. Ионам Cu(II) соответствует максимальное значение константы скорости адсорбции 2.91 × $\times 10^{-5}$ г/(ммоль мин) для алюмосиликатов, модифицированных БТМ-3. Начальная скорость адсорбции составила при этом 1.78×10^{-3} ммоль/(г мин).

Работа выполнена при финансовой поддержке проекта Российского фонда фундаментальных исследований 18-08-00718.

СПИСОК ЛИТЕРАТУРЫ

- 1. Smical I. // AACL Bioflux. 2011. V. 4. № 4. P. 481.
- Merrikhpour H., Jalali M. // Clean Technologies and Environmental Policy. 2013. V. 15. № 2. P. 303.
- Shi L.-N., Zhou Y., Chen Z., Megharaj M., Naidu. R. // Environmental Science and Pollution Research. 2013. V. 20. № 6. P. 3639.
- Mthombo T.S., Mishra A.K., Mishra S.B., Mamba B.B. // J. Applied Polymer Science. 2011. V. 121. № 6. P. 3414.
- Liang Y.M., Yu L., Hua T.J., Cong S. // Advanced Materials Research. 2011. V. 299–300. P. 764.

- 6. Nezamzadeh-Ejhieh A., Kabiri-Samani M. // J. Hazardous Materials. 2013. V. 260. № 9. P. 339.
- Dogan H. // Toxicological and Environmental Chemistry. 2012. V. 94. № 3. P. 482.
- 8. *Dizadji N., Vossoughi S.S.S., Dehpouri S. //* Chemical Engineering Transactions. 2012. V. 29. № 3. P. 1519.
- Помазкина О.И., Филатова Е.Г., Пожидаев Ю.Н. // Физикохимия поверхности и защита материалов. 2017. Т. 53. № 3. С. 255.
- Лурье Ю.Ю., Рыбникова А.И. Химический анализ производственных сточных вод. М.: Химия, 1974. 336 с.
- 11. *Марченко* 3. Фотометрическое определение элементов. М.: Мир, 1971. 502 с.
- Филатова Е.Г., Пожидаев Ю.Н., Помазкина О.И. // Физикохимия поверхности и защита материалов. 2016. Т. 52. № 3. С. 285.
- Физическая химия адсорбционных явлений / А.Ю. Цивадзе, А.И. Русанов, А.А. Фомкин и др. М.: Граница, 2011. 304 с.
- Филатова Е.Г., Помазкина О.И., Пожидаев Ю.Н. // Физикохимия поверхности и защита материалов. 2017. Т. 53. № 6. С. 596.
- 15. *Filatova E.G., Pomazkina O.I., Pozhidaev Y.N.* // J. Water Chem. Technol. 2014. V. 36. № 6. P. 303.