____ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ _____

УДК 541.183

АНАЛИЗ АДСОРБЦИИ ГАЗОВ И ПАРОВ НА УГЛЕРОДНЫХ ПОВЕРХНОСТЯХ МЕТОДОМ МОЛЕКУЛЯРНОЙ ДИНАМИКИ

© 2019 г. А. М. Толмачев^{1,} *, П. Е. Фоменков¹, Т. А. Кузнецова¹, А. С. Павлюченков¹

¹Московский государственный университет имени М.В. Ломоносова. Химический факультет, ГСП-2, Ленинские Горы, дом 1, строение 3, Москва, 199992 Россия

> *e-mail: amtolmach@yandex.ru Поступила в редакцию 22.02.2019 г. После доработки 21.03.2019 г. Принята к публикации 15.04.2019 г.

Проведен молекулярно-динамический эксперимент для анализа изотерм адсорбции на поверхности графена при температурах ниже и выше критических для адсорбтивов. Показана возможность описания мономолекулярных изотерм адсорбции газов на плоских углеродных поверхностях уравнениями решеточной модели и уравнениями теории объемного заполнения микропор. Полученные результаты сравнены с данными об адсорбции в микропорах активных углей. При описании изотерм полимолекулярной адсорбции уравнениями БЭТ и Арановича проведен анализ заполнения каждого из слоев.

DOI: 10.1134/S0044185619050255

введение

Современные адсорбционные технологии часто требуют использования высоких температур и давлений. Для разработки соответствующих процессов необходимы данные об абсолютных изотермах адсорбции газов. Если в случае микропористых адсорбентов имеются как экспериментальные изотермы [1], так и уравнения для их количественного описания [2, 3], то в случае макропористых адсорбентов экспериментальных избыточных изотерм при температурах выше критических, требующих использования высоких давлений, немного [4, 5], а их пересчет в абсолютные изотермы практически не проводился. Соответственно уравнений для их описания, позволяющих получать характеристики таких адсорбционных систем, практически нет. В этой связи разработка численных методов получения экспериментальных изотерм и методов их описания является важной задачей. В случае полимолекулярной адсорбции при температурах ниже критической значительный интерес представляет анализ последовательного заполнения слоев адсорбатом. В настояшей работе рассмотрен метод получения абсолютных изотерм адсорбции газов и паров на поверхности графена на основе молекулярно-динамического эксперимента и показана возможность их количественного анализа и описания уравнениями решеточной модели, теории объемного заполнения микропор (ТОЗМ) [6], БЭТ [7] и Арановича [8].

МЕТОДИКА ЭКСПЕРИМЕНТА

Моделирование проводилось в ячейке ($12 \times 12 \times 12 \times 12$ нм) с подвижными стенками и периодическими граничными условиями, в которую помещалась щелевидная микропора шириной h, ограниченная квадратными пластинами графена размером 5×5 нм (рис. 1).

Ширина поры была равна 1.1 нм. В этом случае адсорбция осуществлялась как внутри поры, так и на внешних поверхностях. В ячейку добавлялось 10000 молекул адсорбтива и проводился расчет молекулярно-динамических траекторий. Элементарный шаг интегрирования уравнения движения составил 1 фс. Длина траектории равнялась 1 нс. Координаты системы сохранялись каждую пикосекунду. Анализ траекторий проводился по последним 500 пикосекундам. Постоянная температура поддерживалась за счет коллизионного термостата [9], а давление поддерживалось с помощью баростата Ланжевена [10]. Обрезание кулоновских и ван-дер-ваальсовских взаимодействий происходило, если расстояние между атомами составляло больше 1.2 нм. Учет электростатических взаимолействий дальнего порядка не производился изза незначительного вклада электростатики в общую энергию системы. При расчетах выше критических температур для адсорбтивов мгновенный снимок равновесного распределения метана в ячейке приведен на рис. 2. На рис. 3 приведены распределения плотностей в ячейке для температур выше и ниже критической.

Рис. 1. Ячейка с микропорой шириной h, образованной двумя графеновыми поверхностями 5×5 нм. Атомы водорода на гранях поверхностей не указаны.

Из рис. 2, 3а, 3б видно, что при $T \gg T_{\kappa p}$ адсорбция (конденсация) метана в поре 1.2 нм и этана в поре 1.0 нм сопровождается при относительно низких давлениях практически мономолекулярной адсорбцией на двух внешних поверхностях поры. Однако, как и при адсорбции в микропорах, наличие адсорбционного поля приводит к "конденсации" адсорбата и во втором слое при относительно высоких давлениях. На основании этих данных получали равновесные значения чисел молекул в микропорах и в первом слое на внешней поверхности поры m(P) и соответствующие равновесные давления, т.е. изотермы адсорбции в микропорах и изотермы монослойной адсорбции на углеродной поверхности.

Данные рис. Зв позволяли проанализировать изотерму полимолекулярной адсорбции и последовательное заполнение слоев адсорбата.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В работах [11–14] было показано, что изотермы адсорбции в микропорах активных углей, рассчитанные методом молекулярной динамики, количественно совпадают с изотермами, полученными в физическом эксперименте. При этом для количественного описания экспериментальных (и рассчитанных) изотерм на микропористых активных углях при температурах выше критических для адсорбтива можно использовать уравнения теории объемного заполнения микропор (TO3M) и систему уравнений абсолютной адсорбции Толмачева–Арановича, полученных в

Рис. 2. Мгновенный снимок равновесного распределения метана в ячейке с микропорой при температуре выше критической (303 K).

рамках решеточной модели, с заменой давления насыщенных паров адсорбтивов (P_s), используемых в качестве стандартных давлений при температурах ниже критических, на стандартные давления (**P***), которые находятся линейной экстраполяцией зависимостей логарифма давления насыщенного пара адсорбтива от обратной температуры в закритическую область температур.

Соответствующие уравнения представлены ниже [12, 13]:

$$\ln a = \ln a_0 - \left(\frac{RT}{E_0}\right)^2 \ln^2 \frac{P^*(T)}{P}.$$
 (1)

В большинстве случаев реальные размеры микропор допускают размещение в них 1-го или 2-х слоев адсорбата, и уравнения в рамках вакансионной модели для одно-(2,4,5) и двухслойного заполнения (3,4,5) имеют вид [13]:

$$\ln \frac{X_{1}(n)[1-Y_{1}]}{Y_{1}[1-X_{1}(n)]} + 2\frac{\varepsilon_{01}}{kT} - \frac{\varepsilon_{11}}{kT} 6X_{1}(1) - \frac{\varepsilon_{11}}{kT} 12Y_{1} = 0,$$

$$\ln \frac{X_{1}(n)[1-Y_{1}]}{Y_{1}[1-X_{1}(n)]} + 1.12\frac{\varepsilon_{01}}{kT} - \frac{\varepsilon_{11}}{kT} 9X_{1}(1) - \frac{\varepsilon_{11}^{*}}{kT} 12Y_{1} = 0,$$
(3)

$$kT = a_1^0 \sum_{i=1}^{N_1(1)} X_1(n), \qquad (4)$$

$$Y_1 = \frac{P}{P^*(T)}.$$
 (5)

В уравнениях (1)–(5) и далее: a, a_1, a_0 – равновесные при давлении P и "предельная" при стандартном давлении газа P^* (моль кг⁻¹) величины адсорбции; E_0 (кДж моль⁻¹) – характеристическая энергия адсорбции; a_1^0 –емкость монослоя 1-го

Рис. 3. Распределение при $T > T_{\rm Kp}$ плотностей в ячейке: (а) метана (пора 1.1 нм) при 370 К и давлениях (бар) в ячейке: 70 (\blacktriangle), 200 (\blacklozenge), 633 (\blacksquare); (б) этана (пора 1.0 нм) при 400 К и 200 бар; (в) метана (пора 1.1 нм) при 170 К ($T < T_{\rm Kp}$) Пунктирные линии обозначают графеновые поверхности.

компонента (моль кг⁻¹), Y_1 , X_1 — мольные доли первого компонента в равновесных объемном (в данном случае — вакансионном [15]) и адсорбционном растворах, ε_{11} , ε_{11}^* , ε_{01} — энергии парного взаимодействия в адсорбтиве, адсорбате и адсорбата с адсорбентом. Отметим, что уравнение (5) определяет мольную долю адсорбтива в объемной фазе, которая рассматривается как бинарный паровой раствор вакансий и адсорбтива. При монослойной адсорбции на внешней поверхности поры в уравнении (2) необходимо убрать коэффициент 2 при ε_{01}/kT , поскольку адсорбат взаимодействует только с одной графитовой поверхностью (уравнение (2a) (2).

Результаты описания изотерм адсорбции метана и этана на углеродных поверхностях уравнениями (1) и (2)–(5) представлены на рис. 4а и 5а, а на рис. 46, 56 представлены результаты обработки изотерм в соответствии с уравнением Дубинина–Радушкевича.

Рис. 4. (а) Рассчитанная (сплошная кривая, первый слой) изотерма метана (*m* молекул) при 303 К на удвоенной углеродной поверхности и ее описани уравнениями (1) (\bigcirc) и (2)–(5) (\blacksquare); (б) обработка этой изотермы в координатах уравнения (1).

Хорошо видно, что уравнения (1) и (2)–(5) количественно описывают изотермы монослойной поверхностной адсорбции.

Это подтверждается данными таблиц, приведенными в [16], в которых сравниваются полученные в результате молекулярно-динамических расчетов изотермы адсорбции метана при адсорбции в микропорах (2 слоя) и на двух внешних поверхностях и относительные ошибки их описания уравнениями (1) и (2)–(5). Ошибки описания изотерм невелики и близки в обоих случаях.

В табл. 1, 2 сравниваются значения параметров уравнений при адсорбции метана и этана на поверхности и в микропоре. Наблюдается удовлетворительное соответствие параметров уравнений (1), (2)–(5), характеризующих соответствующие адсорбционные системы. Более пологий ход изотерм на поверхности связан с отсутствия взаимодействия со второй стенкой, что в случае уравнения (1) проявляется в уменьшении значений характеристической энергии.

Интересно отметить, что в отличие от метана при адсорбции несимметричных молекул этана значения параметра ε_0/kT на поверхности меньше аналогичных значений в микропоре за счет разной ориентации молекул этана у поверхности. При этом в соответствии с решеточной моделью

Рис. 5. (а) Рассчитанная (сплошная кривая, первый слой) изотерма этана при 333 К на удвоенной углеродной поверхности и ее описание уравнениями (1) (□) и (2)–(5) (■). (б) Обработка этой изотермы в координатах уравнения (1).

[12] значения ε_0/k сохраняют постоянные значения при различных температурах. Это означает, что механизмы заполнения монослоя на поверхности и в микропоре аналогичны. Необходимы,

Рис. 6. Полимолекулярная изотерма метана (в координатах *m*, мол- P/P_s) на удвоенной поверхности графена ($S = 5000 \text{ Å}^2$) при температуре 170 К.

конечно, дополнительные сравнительные исследования соответствующих систем.

При температурах ниже критической анализ данных, приведенных на рис. Зв, позволяет определить последовательность заполнения слоев адсорбата и сопоставить результаты обработки полимолекулярных изотерм с данными молекулярно-динамических расчетов. В качестве примера на рис. 6 приведена рассчитанная изотерма полимолекулярной адсорбции метана при T = 170 K, а в табл. З и 4 приведены соответствующие данные для метана и этана.

Данные табл. 3 позволяют проследить при каких заполнениях первого слоя начинается заполнение второго и третьего слоев, а при адсорбции этана (табл. 4) интересно сравнить заполнение

Таблица 1. Параметры уравнений (1) и (2)–(5) для адсорбции метана в микропоре и на удвоенной поверхности графена (первые слои)

Т	240 K		30.	3 K	370 K		
параметры	пора	поверхность	пора	поверхность	пора	поверхность	
m _s	255	240	248	235	239	227	
ε_0/k	-0.81	-0.79	-0.78	-0.79	-0.82	-0.79	
E_0	10.6	7.7	11.2	8.9	12.3	10.1	

Таблица 2. Параметры уравнений (1) и (2)-(5) при адсорбции этана в микропоре и на удвоенной поверхности графен

Т	273 K		293	3 K	333 K		
параметры	пора	поверхность	пора	поверхность	пора	поверхность	
$m_{\rm s}({\rm mol})$	209	204	203	196	199	185	
ϵ_0/k	-0.74	-0.64	-0.75	-0.65	-0.76	-0.66	
E_0	9.8	9.2	10.4	9.7	10.8	9.1	

<i>Р</i> , бар	Количество молекул в слоях						
	1	2	3				
2	101	4	1				
5	126	18	3				
10	140	70	22				
15	142	72	25				
20	144	88	39				
23.7	149	118	92				

Таблица 3. Распределение молекул метана на поверхности графена в поверхностных слоях при 170 К

микропор, первых и вторых слоев при переходе от $T < T_{\rm кр}$ к температурам незначительно превышающим критическую для этана (295 К). Отметим, что при температурах, незначительно превышающих критическую для этана, адсорбция во втором

слое вносит существенный вклад в общую адсорбцию на поверхности и при относительно низких давлениях, т.е. влияние адсорбционного поля проявляется достаточно заметно.

Результаты описания полимолекулярных изотерм адсорбции метана и этана (двухслойные при $T > T_{\rm kp}$) уравнениями БЭТ [7] и Арановича [8] представлены в табл. 5. Несмотря на то, что определение емкости монослоя ($a_{\rm m}$ (мол.)) было недостаточно точным, полученные результаты показывают удовлетворительные соответствия при сравнении заданной в численном эксперименте поверхности с поверхностями, полученными при расчете по обоим уравнениям. При этом адсорбционные площадки молекул, рассчитанные с экспериментальной поверхностью, близки и согласуются с литературными данными.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-33-00333.

Таблица 4. Распределение молекул этана в поре и на удвоенной поверхности графена в первом и втором слоях при различных температурах, меньших и больших критической (*T*_{кр} = 295 K)

T = 273 K				T = 313 K			T = 333 K				
<i>P/P</i> *	а (мол) в поре	а _{1пов} (мол)	а _{2пов} (мол)	Р/Р*	<i>а</i> (мол) в поре	а _{1пов} (мол)	а _{2пов} (мол)	P/P*	а (мол) в поре	а _{1пов} мол	а _{2пов} мол
0.02	159	107	2	0.02	49	26	0	0.01	30	19	0
0.08	168	115	3	0.04	103	54	2	0.03	59	39	1
0.21	182	144	7	0.09	149	110	5	0.06	119	77	3
0.41	199	177	31	0.18	170	128	17	0.13	148	115	11
0.51	203	184	45	0.36	183	159	41	0.25	168	142	23
0.62	205	189	64	0.53	188	171	64	0.38	176	158	48
0.73	206	198	129	0.71	193	181	109	0.50	183	166	72
0.82	207	202	138	0.89	196	189	143	0.63	185	174	108
1	209	204	142	1	196	192	175	1	191	185	169

Таблица 5. Емкости монослоя a_m (молекул.), площадки молекул (S_a , Å⁻²) и поверхности графена S (Å⁻²), найденные в молекулярно-динамическом эксперименте и рассчитанные с экспериментальными S_a (Å⁻²) по уравнениям БЭТ и Арановича. Пояснения в тексте

	Метан, 170 К			Этан, 273 К			
$S = 2500 \text{ Å}^2$	<i>а_m</i> (мол.)	S_a , Å ⁻²	S, Å ⁻²	<i>а_m</i> (мол.)	S_a , Å ⁻²	<i>S</i> , Å ⁻²	
Эксперимент	149	16.78	2500	102	24.5	2500	
БЭТ	146.1	17.11	2450	96.2	26.0	2360	
Аранович	154.8	16.15	2597	95.1	26.3	2329	
	Этан, 313 К			Этан, 333 К			
Эксперимент	96	26.0	2500	92.5	27.0	2500	
БЭТ	93.6	26.9	2435	90.9	30.9	2275	
Аранович	97.8	25.1	2542	95.5	24.4	2578	

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 55 № 5 2019

СПИСОК ЛИТЕРАТУРЫ

- 1. Толмачев А.М., Годовиков И.А., Кузнецова Т.А., Крюченкова Н.Г. // http://www.adsbank.chem.msu.ru.
- Tolmachev A.M. // Adsorption of Gases, Vapors and Liquids. 2012. Publishing Group Ltd. "Granica". M. P. 214.
- 3. Толмачев А.М., Кузнецова Т.А., Крюченкова Н.Г., Фоменков П.Е. // Физикохимия поверхности и защита материалов. 2015. Т. 51. № 4. С. 339.
- 4. *Specouis J., Findenegg G.N.* // Ber. Bunsenges. Phys. Chem. 1980. V. 84. № 7. P. 690.
- Findenegg G.N., Loring R. // J. Chem. Phys. 1984.
 V. 81. № 7. P. 3270.
- 6. *Dubinin M.M.* // Progress in surface and membrane Sci. N.Y.: Acad. Press, 1975. V. 9. P. 1.
- 7. Brunauer S. // Oxford Univ.Press. 1943.
- Аранович Г.Л. // 1988. Журн. физич. химии. Т. 62. № 11. С. 3000.

- Grest G.S., Kremer K. // 1986. Phys. Rev. A. V. 33(5). P. 3628.
- Feller S.E., Zhang Y., Pastor R.W., Brooks B.R. // J. Chem. Phys. 1995. 103(11). P. 4613.
- 11. Толмачев А.М., Анучин К.М., Фоменко П.Е., Гумеров М.Р. // ЖСХ. 2018. Т. 59. № 8. С. 2013.
- Толмачев А.М., Анучин К.М., Бибин А.В., Крюченкова Н.Г., Фомкин А.А. // Коллоидный журнал. 2012. Т. 74. № 6. С. 769.
- Толмачев А.М., Годовиков И.А., Кузнецова Т.А. // Физикохимия поверхности и защита материалов. 2012. Т. 48. № 2. С. 145.
- Фоменков П.Е., Гумеров М.Р., Толмачев А.М. // Физикохимия поверхности и защита материалов. 2018. Т. 54. № 4. С. 374.
- Aranovich G.L. // Colloid and Interface Science. 1995. V. 141. № 1. P. 30.
- 16. Толмачев А.М., Фоменков П.Е., Кузнецова Т.А., Анучин К.М., Гумеров М.Р. // Физикохимия поверхности и защита материалов. 2018. Т. 54. № 5. С. 411.