## \_\_\_ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ \_\_\_\_ НА МЕЖФАЗНЫХ ГРАНИЦАХ \_\_\_\_

УДК 541.12+536.77

# ВЛИЯНИЕ АДСОРБЦИИ НА СОСТОЯНИЕ РАВНОВЕСНЫХ ШЕРОХОВАТЫХ ПОВЕРХНОСТЕЙ ГРАНИЦ РАЗДЕЛА ФАЗ

© 2019 г. Е. С. Зайцева<sup>1</sup>, Е. Е. Гвоздева<sup>1</sup>, А. Б. Рабинович<sup>1</sup>, Ю. К. Товбин<sup>1, \*</sup>

<sup>1</sup>Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия \*e-mail: tovbinyk@mail.ru Поступила в редакцию 26.11.2018 г. После доработки 12.04.2019 г.

Принята к публикации 15.04.2019 г.

Исследовано влияние адсорбции на характеристики равновесных шероховатых поверхностей границ раздела фаз пар—жидкость и пар—твердое тело около температуры плавления. Для расчета использована дискретная модель плотной фазы — модель решеточного газа, учитывающая прямые корреляции между всеми ближайшими компонентами системы в квазихимическом приближении. Модель для простоты предполагает соизмеримость размеров компонентов и учитывает колебания их частиц через эффективные вклады параметров латерального взаимодействия как для атомов адсорбента, так и молекул адсорбата. Рассчитаны равновесные профили адсорбента A и адсорбата В внутри переходной области (при условии неизменности объемной фазы адсорбента) для физической адсорбции и для хемосорбции. Рассмотрено влияние адсорбции на поверхностное натяжение плотной фазы. Построены оценки вероятности флуктуационных процессов формирования новой фазы, обусловленной шероховатостью поверхности чистого адсорбента A и при учете адсорбции на ней частиц B.

*Ключевые слова:* адсорбция, шероховатая поверхность, модель решеточного газа, квазихимическое приближение, флуктуации

DOI: 10.1134/S0044185619050279

#### **ВВЕДЕНИЕ**

Во многих реальных многостадийных поверхностных процессах стадия адсорбции является неизбежной и/или необходимой стадией [1–10]. Монослойная граница раздела фаз является очень сильной идеализацией структуры поверхности. Более реальными являются представления о разной степени шероховатости поверхности. Существуют два типа процессов создания шероховатых поверхностей. В общем случае это относится к неравновесным процессам на границах раздела (осаждения или конденсации атомов, их растворения или десорбции, скола, деформаций сдвига, и т.д.) и равновесным процессам формирования шероховатости как результату теплового движения поверхностных атомов твердого тела.

В зависимости от соотношения энергии между атомами твердого тела и энергией взаимодействия с адсорбатом реализуется взаимосвязь между адсорбцией и шероховатостью. Если адсорбция слабо влияет на состояние поверхности, то в основном сохраняется степень шероховатости до начала адсорбции. В противном случае адсорбция начинает влиять на состояние степени шероховатости поверхности.

Целью работы является разработка атомистической модели адсорбции с учетом эффектов колебаний атомов адсорбента и адсорбата на открытой шероховатой поверхности и анализ изменения ee шероховатости за счет влияния температуры и адсорбции при равновесном состоянии системы. Модель ориентирована на широкий круг процессов, связанных с физической адсорбцией и хемосорбцией. Увеличение шероховатости увеличивает площадь поверхности по сравнению с гладкой поверхностью.

Данный вопрос исследовался в ранних работах (см. [12] и ссылки в ней). Однако он не получил широко распространения из-за сложного характера уравнений описывающих шероховатые поверхности. Недавно был предложен подход [13], позволяющий рассматривать шероховатые поверхности как переходную область между сосуществующими фазами, и использовать методы расчета поверхностного натяжения на границах раздела фаз [14–16] в равновесных условиях. В рамках такого подхода учет процесса адсорбции рассматривается как переход к системе, содержащей большее число компонентов, чем число компонентов в исходной расслаивающей системе, причем, возможность проникновения адсорбирующегося компонента в объемную плотную фазу исключается. Близкий подход был использован при адсорбции на неперестраивающуюся поверхность адсорбента [17, 18]. В этом случае шероховатая поверхность обладает широким диапазоном поверхностных центров с разной энергией связи. В отличие от старых подходов [12] ориентированных на один-два монослоя в переходной области, подход [13] позволяет рассматривать неограниченное число монослоев.

В случае равновесной адсорбции наличие адсорбата вызывает перестройку приповерхностных плотной фазы (жидкой или твердой) и промежуточная область представляет собой смесь из общего числа компонентов плотной фазы и адсорбата. Для жидкой плотной фазы такая смесь является очевидной, а для твердой фазы — нет.

Очевидно, что при низких температурах естественная шероховатость фазы невелика и ограничена малым числом монослоев, тогда как при увеличении температуры растет и число слоев переходной области. Существенное повышением температуры жидкой фазы может приводить к растворимости адсорбата, что будет менять число компонентов в ее объеме, поэтому наше внимание будет ограничено областью температур вблизи температуры плавления твердой фазы, когда важна только ее шероховатость. Здесь дополнительную роль играет фактор энергии связи между адсорбатом и адсорбентом: при их сопоставимости (в случае хемосорбции) адсорбция может существенно менять состояние поверхности.

Для расчета использована дискретная модель плотной фазы – модель решеточного газа, учитывающая прямые корреляции между всеми ближайшими компонентами системы в квазихимическом приближении [13–22] (модель многократно описана в литературе и здесь не дублируется). Молекулярная модель основана на модели решеточного газа [19-22]. Объем системы разбивается на отдельные элементарные ячейки со стороной в диаметр молекулы  $\lambda$  и объемом  $v_0$ . Обсуждается граница раздела жидкость-пар для капли радиуса *R*. На границе ячейки объединяются в сферические монослои с номером q, отсчитываемым от крайнего монослоя жидкости, в которых они характеризуются числом связей с ближайшими соседями  $z_{an}(R)$  из монослоя *p* как функция от радиуса кривизны границы раздела фаз R [23]. Плоским границам отвечают большие значения радиуса кривизны.

Для простоты предполагается соизмеримость размеров компонентов и учитываются колебания их частиц через эффективные вклады параметров латерального взаимодействия как для атомов адсорбента, так и молекул адсорбата [24–26].

Описание модели подробно дано в работах [13, 17, 18], поэтому здесь приводятся основные урав-

нения для расчета профилей плотности  $\theta_q^A$  для приповерхностной области чистого адсорбента A,

и  $\theta_q^B$  для адсорбированного газа B, и соответствующие им равновесные характеристики изучаемых систем. Формулы приводятся для общего случая искривленных границ, необходимых при анализе флуктуаций, хотя основные иллюстрации приведены для плоских границ.

#### УРАВНЕНИЯ МОДЕЛИ

Учет многослойности границы раздела фаз. Формирование поверхности адсорбента проводится в условиях равновесия между плотной фазой (жидкости или твердого) и паром вещества А при некоторой температуре *T*. Концентрационный профиль А рассчитывается по уравнениям

$$a_q P^A = \frac{\theta_q^A \Lambda_q(R)}{\left(1 - \theta_q^A\right)}$$
  
$$\Lambda_q(R) = \prod_{p=q-1}^{q+1} \left[1 + t_{qp}^{AA} x^{AA}\right]^{z_{qp}(R)},$$
 (1)

где  $a_a = F_q/F_0$  – коэффициент удерживания в решеточной системе или отношение статсумм частиц A в плотной фазе и в паре,  $t_{qp}^{AA}$  — условная вероятность нахождения молекулы сорта A в ячейке слоя *p* рядом с частицей А в ячейке слоя *q*:  $t_{qp}^{AA} = 2\theta_p^A / [\delta_{qp}^{AA} + b_{qp}^{AA}], \delta_{qp}^{AA} = 1 + x^{AA} (1 - \theta_q^A - \theta_p^A) b_{qp}^{AA} =$  $= \left\{ \left[ \delta_{qp}^{AA} \right]^2 + 4x^{AA} \theta_q^A \theta_p^A \right\}^{1/2}, \text{ она связана с вероятно-}$ стью  $\theta_{qp}^{AA}$  нахождения пары частиц АА, причем од-на частица А находится в ячейке слоя *p* и другая частица А находится в ячейке слоя q,  $t_{ap}^{AA}$  =  $= \theta_{aa}^{AA} / \theta_{a}^{A}; \Lambda_{a}(R) - функция неидеальности в$ КХП, зависящая от радиуса капли R;  $\beta = (R_B T)^{-1}$ ;  $R_{B}$  – газовая постоянная;  $P^{4}$  – давление молекул A;  $x^{AA} = \exp\{-\beta \epsilon_{AA}\} - 1, \epsilon_{AA} - энергия взаимодей-$ ствия частиц ближайшей пары частиц AA, описываемая потенциальной функцией Леннард-Джонса (ЛД):  $\varepsilon = 4\varepsilon_{AA} \{ (\sigma_{AA}/r_{qp})^6 - (\sigma_{AA}/r_{qp})^{12} \}$ , где σ<sub>AA</sub> и ε<sub>AA</sub> – ЛД параметры, характеризующие рас-стояние между твердыми несжимаемыми сферами молекул сорта А и глубину потенциальной ямы соответственно. В работе принято энергию отсчитывать от состояния на решетке, что отвечает положительному значению параметра для притяжения частиц. Взаимодействия с вакансиями равны нулю  $\varepsilon_{AV} = \varepsilon_{VA} = 0$ .

Адсорбция на сформированной шероховатой границе раздела фаз. Обозначим в переходной области границы через  $\theta_q^A$  локальные плотности частиц адсорбента A и через  $\theta_q^B$  локальные плотности молекул адсорбата B. В равновесном состоянии шероховатой поверхности эти локальные плотности получаются из решения следующей системы уравнений при заданной температуре *T*:

$$a_{q}^{i}P^{i} = \theta_{q}^{i}L_{q}^{i}/\theta_{q}^{s},$$

$$\Lambda_{q}^{i} = \prod_{p=q-1}^{q+1} \left[\sum_{j=1}^{s} t_{qp}^{ij} \exp\left\{\beta\varepsilon_{ij}\right\}\right]^{z_{qp}(R)},$$
(1a)

где  $P^i$  — давление компонента i,  $t_{qp}^{ij}$  — условная вероятность нахождения молекул i и j,  $1 \le i, j \le s$ , в слоях q и p:  $\varepsilon_{ij}$  — энергия взаимодействия частиц i и j, описываемая потенциальной функцией ЛД.

Уравнения на парные функции распределения в квазихимическом приближении выписываются в виде

$$\hat{\theta}_{qp}^{ij}\hat{\theta}_{qp}^{kl} = \hat{\theta}_{qp}^{il}\hat{\theta}_{qp}^{kj}, \quad \hat{\theta}_{qp}^{kj}(r) = \theta_{qp}^{kj}\exp(-\beta\varepsilon_{qp}^{kj}).$$
(2)

Нормировочные соотношения для парных функций компонентов имеют вид:  $\sum_{i=1}^{s} \theta_{qp}^{ij} = \theta_{p}^{j}$  и  $\sum_{j=1}^{s} \theta_{qp}^{ij} = \theta_{q}^{i}$ , а для унарных функций они равны  $\sum_{i=1}^{s} \theta_{q}^{i} = 1$ .

Решение уравнений на концентрационный профиль (1) и (2) позволяет рассчитать все термодинамические характеристики системы.

Поверхностное натяжение границы. Поверхностное натяжение на границе раздела фаз определяется через концентрационный профиль молекул (или через плотность вакансий) [14–16]

$$\sigma = \frac{1}{\lambda^2 f_{\rho}} \left[ \sum_{1 \le q \le \rho_e} f_q(\pi_1 - \pi_q) + \sum_{\rho_e < q \le \kappa} f_q(\pi_\kappa - \pi_q) \right], \quad (3)$$

где при  $q \le \rho_e$  находятся слои с повышенной плотностью, при  $q \ge \rho_e$  – слои с пониженной плотностью. Вклад каждого монослоя выражается через весовые функции  $f_q = N_q/N$ ,  $N = \sum_{q=2} \kappa^{-1} N_q$ ,  $2 \le q \le \kappa - 1$ . Для плоской границы для всех q выполняется:  $f_q = (\kappa - 2)^{-1}$ , поэтому весовые коэффициенты сокращаются, и выражение (3) для системы с s = 2 переходит в выражение для плоской границы раздела. Здесь  $\pi_1$ ,  $\pi_{\kappa}$ ,  $\pi_q$  – внутренние давления монослое q соответственно:

$$\beta \pi_{q} v_{0} = -\ln \theta_{q}^{V} - \sum_{p} z_{qp} \ln \left( \theta_{qp}^{VV} / \left( \theta_{q}^{V} \theta_{p}^{V} \right) \right) / 2, \quad (4)$$

 $\rho_e$  — координата положения разделяющей поверхности,  $2 \le \rho_e \le (\kappa - 1)$ , определяемая через материальный баланс как эквимолекулярная:

$$\sum_{q=1}^{\rho_e} \sum_{i=1}^{s-1} f_q \left( \theta_1^i - \theta_q^i \right) = \sum_{q=\rho_e+1}^{\kappa} \sum_{i=1}^{s-1} f_q \left( \theta_q^i - \theta_\kappa^i \right).$$
(5)

## ПАРАМЕТРЫ ЧИСЛЕННОГО АНАЛИЗА

Проведенные модельные расчеты иллюстрируют основные особенности поведения равновесных шероховатых поверхностей для случая физической адсорбции и для хемосорбции. На поверхностях жидкости рассматривается физическая адсорбция компонента В, а на поверхностях твердого тела моделируемого для простоты изотропной решеткой с малой шириной переходной области рассматриваются оба типа адсорбции. (Для более реальной модели твердого тела нужен учет присутствия других граней твердого тела.)

При физической адсорбции степень заполнения поверхности меняется в широких пределах. Приведенные выше уравнения соответствуют четырем типам равновесных ситуаций: адсорбция пара компонента А на твердом теле компонента А для условий (сосуществующие фазы), адсорбция жидкости компонента А на твердом теле компонента А (сосуществующие фазы), адсорбция пара В на твердом теле А и адсорбция жидкости В на твердом теле А. Для хемосорбции область изменения заполнения ограничена монослоем. Это отвечает обычным представлениям о ненасыщаемости связей для неспецифической физической адсорбции и специфичности связей при хемосорбции.

Напомним [21], что взаимное отталкивание хемосорбированных частиц описывается отрицательными параметрами латерального взаимодействия, а притяжение физически адсорбированных частиц – положительными. За основу энергетических соотношений выбрана величина  $\varepsilon_{AA}$ энергии взаимодействия компонентов адсорбента А. Для физической адсорбции были заданы:  $\varepsilon_{AB} = 0.015\varepsilon_{AA}, \varepsilon_{BB} = 0.14\varepsilon_{AB}$ ; и для химической адсорбции:  $\varepsilon_{AB} = 0.15\varepsilon_{AA}, \varepsilon_{BB} = -0.33\varepsilon_{AB}$ . Величина  $\varepsilon_{AA}$ в обоих случаях адсорбции условно выбрана за единицу – это относит рассчитанные результаты к системам разного типа и дает относительные корреляции между ними.

Адсорбция газа рассматривается при сверхкритической температуре. В качестве условной меры для давления в данной работе введена вели-

чина  $P_n^B$ , при которой числовая плотность флюида в объеме равна 0.5. По отношению к ней рассматриваются разные варианты давлений рассмотренных систем.

### РЕЗУЛЬТАТЫ РАСЧЕТА КОНЦЕНТРАЦИОННЫХ ПРОФИЛЕЙ

Физическая адсорбция. Для физической адсорбции рассматриваются четыре температуры, которым отвечают  $\kappa = 5$  и 7 (вещество А в твердом состоянии)  $\kappa = 10$  и 12 (вещество А в жидком состоянии), где  $\kappa$  – ширина переходной области

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 55 № 5 2019



Рис. 1. Профили плотности компонентов А и В в переходной области при физической адсорбции.

плюс по монослою от каждой из сосуществующих фаз.

На рис. 1 представлены профили плотности в переходной области чистого вещества А (кривая 1) и плотности А (кривые 2, 3 и 4) в присутствии алсорбата В с профилями, описываемыми кривыми 5, 6 и 7, при давлении газа В, *Р<sup>в</sup>*, приводящем к заполнению адсорбатом 10, 40 и 80% всей переходной области (монослои  $1 \le q \le \kappa$ ), при температурах, которым отвечают  $\kappa = 5$  (рис. 1a) и 7 (рис. 1б) (вещество A в твердом состоянии)  $\kappa = 10$  (рис. 1в) и 12 (рис. 1г) (вещество А в жидком состоянии). Отметим, что для 80% заполнения свободной части переходной области адсорбента А адсорбатом В, соответствует давление  $P_{\kappa}^{\rm B}$ , где  $P_{\kappa}^{\rm B} / P_{n}^{\rm B} = 6$  (данное отношение несущественно меняется с варьированием температуры Т при используемых фиксированных  $\varepsilon_{ii}$ ).

Профили на рис. 1 показывают, что плотность В в переходной области (кривые 5–7) мало отличается от плотности В в газе, что обусловлено слабым взаимодействием адсорбата В с адсорбентом А. Заметное превышение плотности В в переходной области по сравнению с газом имеет место только при высоких температурах с к = 10 и 12 (рис. 1в и 1г) и высоких давлениях, когда переходная область заполнена адсорбатом на 80% (кривая 7 на рис. 1в и 1г). Адсорбция газа несущественно меняет плотность вещества А в переходной области по сравнению с профилем чистого вещества А (кривая I) при малых давлениях В (когда переходная область заполнена на 10% адсорбатом В) и низких температурах с  $\kappa = 5$  и 7 (кривая J на рис. 1а и 16).

При больших температурах и давлениях  $P^{B}$  адсорбция В приводит к уменьшению шероховатости на поверхности вещества А: профили А (1-4) на рис. 1в и 1г с увеличением давления  $P^{B}$  становятся более крутыми. Когда вещество А находится в жидком состоянии и его переходная область на 80% заполнена адсорбатом у поверхности А наблюдается монослой (q = 5 на кривой 4 на рис. 1в и 1г), обедненный содержанием А (плотность А в нем ниже, чем плотность А в объеме).

Кривые  $\theta'_q$  на рис. 1, представляющие собой доли от всего объема монослоя q, которые занимают частицы i, полностью согласуются с обычными представлениями о повышенной концентрации компонента В на поверхности адсорбента А. При расчете величины адсорбции требуется пере-



Рис. 2. Профили плотности компонентов А и В в переходной области при хемосорбции.



**Рис. 3.** Профили плотности компонентов А и В в переходной области с учетом влияния колебаний при физической адсорбции (а) и хемосорбции (б).

считать плотность В в монослое q, к доле объема монослоя q, свободного от частиц А,  $(1 - \theta_q^A)$ . В результате получаем величину  $\theta_q^B/(1 - \theta_q^A)$ , представляющую собой реальную плотность в данном монослое q, которая входит в полную изотерму адсорбции, представленную ниже на рис. 4. (Такие же комментарии ниже относятся к рис. 2 и 3.)

Химическая адсорбция. Для хемосорбции рассматриваются две температуры, которым отвечают  $\kappa = 5$  и 7 (вещество А в твердом состоянии), и три давления  $P^{\rm B}$ , при которых монослой на поверхности вещества А заполнен на 10, 50 и 100%. Так как взаимодействие между адсорбентом и адсорбатом сильное, то монослой заполняется при давлениях  $P_m^{\rm B}$  в несколько раз меньше, чем  $P_n^{\rm B}$ :  $P_m^{\rm B}/P_n^{\rm B} = 0.2$  для рассматриваемых параметров (здесь также данное отношение слабо меняется с варьированием температуры *T* при фиксированных  $\varepsilon_{ij}$ ). На рис. 2 представлены профили плотности в переходной области чистого вещества A (кривая *I*) и плотности A (кривые 2, 3 и 4) в присутствии адсорбата B с профилями, описываемыми кривыми 5, 6 и 7, при давлении газа B,  $P^{B}$ , приводящем к заполнению адсорбатом 10, 50 и 100% монослоя на поверхности A, при температурах, которым отвечают  $\kappa = 5$  (рис. 2а) и 7 (рис. 2б) (вещество A в твердом состоянии).

Профили на рис. 2 показывают, что плотность адсорбата В в переходной области (особенно в монослое q = 4 на рис. 2а и q = 5 на рис. 2б) намного превышает плотность газа В в объеме, что является следствием сильного взаимодействия  $\varepsilon_{AB}$ . Также по сравнению с физической адсорбцией (рис. 1) при химической адсорбции адсорбат В глубже проникает в переходную область вещества А: имеется существенное содержание В в монослое q = 3 на рис. 1а и в монослое q = 4 на рис. 16.

С увеличением содержания адсорбата в переходной области вещества А при хемосорбции так-



Рис. 4. Изотермы физической адсорбции (а) и хемосорбции (б).

же наблюдается тенденция к уменьшению шероховатости на поверхности А: плотность А на рис. 2 в центральном монослое (q = 3 на рис. 2а и q = 4 на рис. 2б) растет, но по сравнению с рис. 1 это выражено слабее, так как, во-первых, результаты по хемосорбции представлены для давлений Р<sup>в</sup> в десятки раз меньше, чем при физической адсорбции, а во-вторых, проникновение адсорбата В в более глубокие монослои переходной области препятствуют тенденции А к уменьшению шероховатости своей поверхности.

Влияние колебаний на профили. Колебания учитывались через температурный вклад в энергию

взаимодействия:  $\varepsilon_{ij}^* = \varepsilon_{ij} (1 - u_T k T / \varepsilon_{ij}), u_T = -0.1$ [24, 25]. Учет колебаний в 3 раза понизил давление газа  $P_{\kappa}^{B}$ , при котором заполняется переходная область адсорбатом при физической адсорбции, и в 2 раза повысил давление газа  $P_m^{B}$ , при котором заполняется адсорбатом монослой на поверхности адсорбента A при хемосорбции.

На рис. 3 представлены профили плотности в переходной области чистого вещества A (кривая *I*) и плотности A (кривые *2*, *3* и *4*) при физической (рис. 3а) и химической (рис. 3б) адсорбции B с профилем, описываемым кривыми *5*, *6* и *7*, при давлении газа B,  $P^{B}$ , приводящем к заполнению адсорбатом 10, 50 и 100% всей переходной области в случае физической адсорбции (рис. 3а) и монослоя на поверхности A в случае хемосорбции (рис. 3б), при температуре с  $\kappa = 5$  (вещество A в твердом состоянии).

Согласно рис. 3 учет влияния колебаний увеличил плотность вещества A (кривые 1-4) в переходной области в том числе и в отсутствии адсорбата B (кривая 1). Учет колебаний привел к росту взаимодействия  $\varepsilon_{AB}$ , благодаря чему для физической адсорбции вид концентрационных профилей стал ближе к профилях при хемосорбции, в частности существенно повысилась разность плотности В в переходной области и в газе: появились пики на профилях 5-7 в монослое q = 4 на рис. За.

В случае хемосорбции (рис. 36) учет колебаний привел к усилению эффекта сглаживания поверхности вещества A с ростом величины адсорбции В: профили 3 и 4 на рис. 3б характеризуются резким перепадом плотности в монослоях q = 3 и 4. Таким образом, учет влияния колебаний при физической адсорбции больше меняет профили адсорбата в переходной области, а при хемосорбции профили адсорбента. В целом профили на рис. За и рис. 3б близки, но стоит заметить, что для хемосорбции они построены при давлениях  $P^{\rm B}$  в 4 раза меньше, чем для физической адсорбции.

Изотермы адсорбции. На рис. 4 представлены изотермы физической адсорбции (рис. 4а) и хемосорбции (рис. 4б) при температурах с  $\kappa = 5$ (кривая 1) и 7 (кривая 2) (вещество А в твердом состоянии) и  $\kappa = 10$  (кривая 3) и 12 (кривая 4) (вещество А в жидком состоянии). По оси ординат отложено давление В в газе, *Р*<sup>в</sup>, нормированное на давление насыщения  $P_n^{\rm B}$ . По оси абсцисс отложены на рис. 4а величина адсорбции  $\Gamma_{\kappa}^{\rm B}$  в пере-ходной области А, нормированная на емкость пе-реходной области  $M_{\kappa}$ , а на рис. 46 величина адсорбции  $\Gamma_m^{\rm B}$  в монослое на поверхности А, нормированная на емкость монослоя на поверхности А М<sub>m</sub>. Проблемы определения емкости монослоя на шероховатой поверхности разобраны в работах [17, 18], в которых показано, как прямой метод моделирования структуры поверхности соотносится с экспериментальными данными.

Рисунок 4а показывает, что с увеличением *Р*<sup>в</sup> при физической адсорбции сначала быстро увеличивается количество адсорбата В в переходной



**Рис. 5.** Положение эквимолекулярной поверхности  $\rho_{\rho}$  при физической адсорбции (а) и хемосорбции (б).

области  $\Gamma_{\kappa}^{B}$ , пока не будет достигнуто  $P_{n}^{B}$ . В данной области изотермы 1-4, построенные для разных температур, практически неотличимы. Затем, когда  $P^{B}/P_{n}^{B} > 1$ , с дальнейшим увеличением давления  $P^{B}$  скорость роста величины адсорбции  $\Gamma_{\kappa}^{B}$  замедляется. В этой области наблюдаются небольшие отклонения изотерм 1-4 друг от друга. В целом, требуются большие давления  $P^{B}/P_{n}^{B} =$ = 20-30, чтобы переходная область полностью заполнилась адсорбатом В  $\Gamma_{\kappa}^{B}/M_{\kappa} = 1$ .

Рисунок 46 показывает, что с увеличением  $P^{\rm B}$  при хемосорбции величина адсорбции в монослое  $\Gamma_m^{\rm B}$  растет практически линейно, пока не достигает значение емкости монослоя  $M_m$ . Монослой при заданных параметрах заполняется примерно при  $P^{\rm B}/P_n^{\rm B} = 0.2$ .

Положение разделяющей поверхности внутри переходной области при адсорбции зависит как функция степени заполнения поверхности адсорбатом. Отметим, что здесь положение эквимолекулярной поверхности  $\rho_e$  рассчитывается статистическим усреднением по всем конфигурациям шероховатой поверхности [13], поэтому изменения этой величины могут быть не дискретные.

На рис. 5 представлено, как с ростом давления  $P^{B}$  изменяется положение разделяющей поверхности  $\rho_{e}$  (в качестве таковой выбрана эквимолекулярная поверхность) внутри переходной области А при физической (рис. 5а) и химической (рис. 56) адсорбции при температурах с  $\kappa = 5$  (кривая *I*) и 7 (кривая *2*) (вещество А в твердом состоянии) и  $\kappa = 10$  (кривая *3*) и 12 (кривая *4*) (вещество А в жидком состоянии).

На рис. 5а кривые 1, 2, построенные для физической адсорбции на твердом теле, показывают, что с ростом давления  $P^{B}$  реперная поверхность  $\rho_{e}$  смещается на один монослой к пару, пока не достигается давление  $P_{n}^{B}$ . Затем реперная поверхность  $\rho_{e}$  практически не смещается. Последнее связано с замедлением скорости адсорбции после  $P^{B}/P_{n}^{B} = 1$ , наблюдаемое на рис. 4а. Кривые 3, 4, построенные для физической адсорбции на поверхности жидкости, показывают, что с ростом давления  $P^{B}$  реперная поверхность  $\rho_{e}$  смещается на два монослоя к жидкости, достигая своего по-

стоянного значения еще до давления  $P_n^{\rm B}$ .

В случае хемосорбции на твердом теле (рис. 5б) реперная поверхность  $\rho_e$  смещается в пределах одного монослоя к пару практически линейным образом для обеих рассмотренных температур.

Поверхностное натяжение зависит от степени заполнения поверхности адсорбатом как функция его давления для обоих типов адсорбции (физической и химической) — здесь следует напомнить о разных диапазонах изменения рассматриваемого давления.

На рис. 6 представлено, как с ростом давления  $P^{B}$  изменяется поверхностное натяжение  $\sigma$ , нормированное на поверхностное натяжение чистого вещества А  $\sigma_{A}$  на разделяющей поверхности внутри переходной области при физической (рис. 6а) и химической (рис. 6б) адсорбции при температурах с  $\kappa = 5$  (кривая *I*) и 7 (кривая *2*) (вещество А в твердом состоянии) и  $\kappa = 10$  (кривая *3*) и 12 (кривая *4*) (вещество А в жидком состоянии).

Рисунок ба показывает, что при физической адсорбции на твердом теле (кривые *1* и *2*) поверхностное натяжение убывает с увеличением  $P^{\text{B}}$ . При  $P^{\text{B}}/P_n^{\text{B}} > 1$  поверхностное натяжение продолжает убывать существенно медленнее, чем при  $P^{\text{B}}/P_n^{\text{B}} < 1$ , так как уменьшается скорость адсорб-



Рис. 6. Изменение поверхностного натяжения вещества А с ростом величины адсорбции на нем в результате физической адсорбции (а) и хемосорбции (б).

ции (см. рис. 4а). При физической адсорбции на поверхности жидкости (кривые *3* и *4* на рис. 6а) поверхностное натяжение резко убывает и достигает нуля еще до того, как давление *Р*<sup>в</sup> доходит до

 $P_n^{\rm B}$ . Это является следствием резкого уменьшения неоднородности поверхности жидкости, наблюдаемое на рис. 1в и 1г, а именно уменьшения фактической ширины неоднородной области. С увеличением температуры получаем, что для задан-

ного давления  $P_n^{\rm B}$  поверхностное натяжение отклоняется сильнее от значения  $\sigma_{\rm A}$ .

Рисунок 6б показывает, что при хемосорбции поверхностное натяжение вещества A убывает с ростом  $P^{B}$ . В отличие от физической адсорбции, поверхностное натяжение тем сильнее отклоняется от  $\sigma_{A}$ , чем ниже температура. В области дав-

лений  $P^{\rm B}/P_n^{\rm B} < 0.2$  поверхностное натяжение убывает быстрее при хемосорбции, чем при физической адсорбции.

## ВЕРОЯТНОСТЬ ПОЯВЛЕНИЯ НОВОЙ ФАЗЫ

Задача описания динамики появления новой фазы должна решаться методами неравновесной термодинамики и/или кинетических теорий. Часто для упрощения решения такой задачи используют флуктуационный подход, когда для выбранного характерного масштаба времени вводят вероятность появления частицы новой фазы или зародыша\_вместо решения систем кинетических уравнений на изменение состояния изучаемой системы. Такой подход принят во многих приложениях [9, 14]. Расчет вероятности флуктуации появления новой фазы оценивается по формуле  $\omega = K \exp(-R_{\min}/R_BT_0)$  [27, 28], где K – константа скорости процесса роста фазы, соответствующая выбранной шкале времени,  $R_{\min}$  – минимальная работа образования зародыша. Для появления зародыша новой фазы, согласно [16], величина  $R_{\min}$ равна  $R_{\min} = \sigma(R)A(R)$  (вместо такого же произведения с коэффициентом 1/3 [9, 14]), где функции  $\sigma(R)$  и A(R) относятся к размерным зависимостям поверхностного натяжения и площади поверхности трехмерной капли. Здесь  $T_0$  – температура состояния системы, из которой происходит флуктуационный переход.

Величины поверхностного натяжения, приведенные выше для макроскопических (плоских) границ, обладают закономерностями уменьшения  $\sigma(R) \rightarrow 0$  при уменьшении размера капли до критического размера существования фазы  $R_0$ [16]. Этот факт приводит к тому, что если воспользоваться нормированными величинами  $\omega/K$ , то они отражают размерные зависимости процесса флуктуационного появления новой фазы.

На рис. 7 показано, как с изменением радиуса капли *R* (величина *R* нормирована на межмолекулярное расстояние  $\lambda$ ), меняется вероятность появления новой фазы  $\omega/K$  данного размера при двух температурах с  $\kappa = 10$  (кривые *1* и *3*) и 12 (2) в отсутствии адсорбата (*1* и *2*) и при хемосорбции компо-

нента В (3) при низких давлениях  $P^{\rm B}/P_n^{\rm B} = 10^{-3}$ .

Кривые для радиусов от  $R_0$  до 200 $\lambda$  для двух температур показывают, что вероятность образования новой фазы возрастает с уменьшением размера зародыша R (все кривые 1-3 имеют отрицательный наклон), с увеличением температуры (кривая 1 для более низкой температуры лежит ниже, чем кривая 2), и в результате адсорбции (кривая 3 лежит ниже кривой 1).

Качественный результат молекулярного описания зарождения шероховатой поверхности состоит в наличии скачка для значения радиуса зародыша, начиная с которого новое образование



Рис. 7. Размерная зависимость вероятности флуктуации появления новой фазы.

становится устойчивым. Здесь это величина равна  $R_0/\lambda = 10$ . Данный результат согласуется ранее полученными значениями  $R_0/\lambda \sim 10$  для формирования равновесной фазы в объеме [16] и на плоской поверхности монослоя адсорбата [29].

### ЗАКЛЮЧЕНИЕ

Для анализа влияние адсорбции на состояние равновесных шероховатых поверхностей границ раздела фаз использована дискретная модель плотной фазы — модель решеточного газа, учитывающая прямые корреляции между всеми ближайшими компонентами системы в квазихимическом приближении. Модель для простоты предполагает соизмеримость размеров компонентов и учитывает колебания их частиц через эффективные вклады параметров латерального взаимодействия, как для атомов адсорбента, так и молекул адсорбата.

Исследовано влияние физической и химической адсорбции на характеристики равновесных шероховатых поверхностей границ раздела фаз пар—жидкость и пар—твердое тело. Разработанные программы позволяют рассчитать поверхностное натяжение для всего температурного диапазона паро-жидкостных систем (от температуры точки плавления до критической температуры), и исследовать температурные зависимости адсорбции. Для твердых тел полученные результаты относятся к температурам около температуры плавления.

Рассчитаны равновесные профили адсорбента А и адсорбата В внутри переходной области (при условии неизменности объемной фазы адсорбента) для физической адсорбции и для хемосорбции. В случае хемосорбции всегда фиксировалось

заметное превышение плотности В в переходной области по сравнению с газом и уменьшение шероховатости на поверхности вещества А под воздействием адсорбата В, а в случае физической адсорбции повышенная концентрация В в переходной области и сглаживание поверхности А наблюдались только при высоких температурах с  $\kappa = 10$  и 12 и высоких давлениях, когда переходная область заполнена адсорбатом на 80%.

Рассмотрено влияние адсорбции на поверхностное натяжение плотной фазы. Получено, что поверхностное натяжение на границе шероховатой поверхности А убывает как с физической адсорбцией, так и с хемосорбцией.

Построены оценки вероятности флуктуационных процессов формирования новой фазы, обусловленной шероховатостью поверхности чистого адсорбента A и при учете адсорбции на ней частиц B. Они показали, что вероятность образования новой фазы возрастает с уменьшением размера зародыша R, с увеличением температуры, и в результате адсорбции.

Данный подход может быть обобщен на расплавы и сплавы многокомпонентных систем, а также на смеси адсорбатов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (код проекта № 18-03-00030а).

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Трепнелл Б*. Хемосорбция. М.: изд-во иностр. лит. 1958. 326 с.
- 2. *Киперман С.Л.* Введение в кинетику гетерогенных каталитических реакций. М.: Наука, 1964. 607 с.
- 3. Волъкенштейн Ф.Ф. Физикохимия поверхности полупроводников. М.: Наука, 1973. 400 с.
- 4. *Дельмон Б.* Кинетика гетерогенных реакций / Пер. с фр. под ред. Болдырева В.В. М.: Мир, 1972. 554 с.
- 5. *Розовский А.Я.* Кинетика топохимических реакций. М.: Химия, 1974. 220 с.
- Баре П. Кинетика гетерогенных процессов / Пер. с фр. под. ред. Болдырева В.В. М.: Мир, 1976. 399 с.
- 7. *Киселев В.Ф., Крылов О.В.* Адсорбционные процессы на поверхности полупроводников и диэлектриков. М.: Наука, 1978. 255 с.
- Моррисон С. Химическая физика поверхности твердого тела / Пер. с англ. под ред. Волькенштейна Ф.Ф. М.: Мир, 1980. 488 с.
- Адамсон А. Физическая химия поверхностей / Пер. с англ. под ред. Зорина З.М., Мулера В.М. М.: Мир, 1979. 568 с.
- 10. *Roberts M.W., McKee C.S.* Chemistry of the metal-gas interface. Oxford: Clarendon Press, 1978.
- 11. *Somorjai G.A.* Chemistry in two- dimension surface. N.Y., Ithaca: Cornell Univ. Press, 1981.
- Даннинг В. // Межфазовая граница газ-твердое тело. Под ред. Флада Э. М.: Мир, 1970. С. 230. [Benson

*G.G., Yun K.S.* // The solid – gas interface / Edited by E. Alison Flood, Dekker Marcel, Inc., N.Y. 1967.]

- Товбин Ю.К. Зайцева Е.С., Рабинович А.Б. // ЖФХ 2018 Т. 92. № 3. С. 474.
- 14. Оно С., Кондо С. Молекулярная теория поверхностного натяжения. М.: Изд-во иностр. лит., 1963. (Ono S., Kondo S. Molecular theory of surface tension in liquids. Berlin–Gottinhen–Heidelberg: Springer–Verlag, 1960.)
- Роулинсон Дж., Уидом Б. Молекулярная теория капиллярности. М.: Мир, 1986. (*Rowlinson J.S., Widom B.* Molecular Theory of Capillarity. Oxford: Clarendon-Press, 1982.)
- 16. *Товбин Ю.К.* Малые системы и основы термодинамики. М.: Физматлит, 2018. 404 с. (*Tovbin Yu.K.* Small systems and fundamentals of thermodynamics. Boca Raton, Fl.: CRC Press, 2019.)
- 17. Зайцева Е.С., Товбин Ю.К. // ЖФХ. 2018. Т. 92. № 5. С. 816.
- Зайцева Е.С., Товбин Ю.К. // Физикохимия поверхности и защита материалов. 2018. Т. 54. № 4. С. 365.
- 19. *Хилл Т.* Статистическая механика. М.: Изд-во иностр. лит., 1960. (*Hill T.L.* Statistical Mechanics. Principles and Selected Applications. N.Y.: McGraw-Hill Book Comp.Inc., 1956.)

- 20. Гирифельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей. М.: ИЛ, 1961. 930 с.
- Товбин Ю.К. Теория физико-химических процессов на границе газ – твердое тело. М.: Наука, 1990. (*Tovbin Yu.K.* Theory of physical chemistry processes at a gas—solid surface processes. Boca Raton, Fl.: CRC Press, 1991.)
- 22. *Товбин Ю.К.* Молекулярная теория адсорбции в пористых телах. М.: Наука, 2012. 624 с. (*Tovbin Yu.K.* Molecular Theory of Adsorption in Porous Solids. Boca Raton, Fl.: CRC Press, 2017.)
- 23. *Товбин Ю.К., Рабинович А.Б.* // Изв. Акад. наук. Сер. химич. 2009. № 11. С. 2127.
- Товбин Ю.К., Рабинович А.Б., Гвоздева Е.Е. // ЖФХ. 2014. Т. 88. № 10. С. 1624.
- 25. Товбин Ю.К., Рабинович А.Б., Гвоздева Е.Е. // Физикохимия поверхности и защита материалов. 2015. Т. 51. № 1. С. 8.
- Товбин Ю.К. Зайцева Е.С., Рабинович А.Б. // ЖФХ. 2016. Т. 90. № 1. С. 138.
- 27. Ландау Л.Д., Лившиц Е.М. Теоретическая физика. Т. 5. Статистическая физика. М.: Наука, 1964. 568 с.
- Товбин Ю.К., Еремич Д.В., Комаров В.Н., Гвоздева Е.Е. // Химическая физика. 2007. Т. 26. № 9. С. 98.
- 29. Товбин Ю.К., Зайцева Е.С., Рабинович А.Б. // ЖФХ. 2016. Т. 90. № 6. С. 917.