_ НАНОРАЗМЕРНЫЕ И НАНОСТРУКТУРИРОВАННЫЕ ____ МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 541.68;544.54.77;691.175.2

ДИССИПАТИВНЫЕ ПРОЦЕССЫ В ОБЛУЧЕННЫХ КОМПОЗИЦИОННЫХ ПОЛИМЕРАХ

© 2020 г. Т. Р. Асламазова^{1, *}, В. И. Золотаревский¹, Н. Ю. Ломовская¹, В. А. Ломовской¹, В. А. Котенев¹, А. Ю. Цивадзе¹

¹Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр., 31, Москва, 119071 Россия *e-mail: t.aslamazova@yandex.ru Поступила в редакцию 05.07.2019 г. После доработки 06.08.2019 г.

Принята к публикации 13.08.2019 г.

Методом динамической механической релаксационной спектроскопии исследован эффект ионизационного облучения на диссипативные процессы α -, β - и μ -релаксации в полимере, не наполненном и наполненном высокодисперсным порошком железа, с учетом структуры полимера. Анализ структуры полимера проведен на основе данных по топографии поверхности, полученных с применением атомно-силовой микроскопии. Показана корреляция эффекта облучения на температурное положение максимумов и интенсивность диссипативных процессов на спектрах внутреннего трения, а также на температурно-частотную зависимость со структурными изменениями, проявляющимися в сшивании и уплотнении полимера.

Ключевые слова: излучение, релаксация, полимер, температура стеклования, локальные диссипативные процессы, упругие свойства, высокодисперсный порошок железа

DOI: 10.31857/S0044185620010039

ВВЕДЕНИЕ

Создание композиционных материалов на основе матричных композитов с участием полимерных связующих и металлических наполнителей перспективно, так как последние могут эффективно противодействовать воздействию окружающей среды на конструкционные материалы и обеспечить снижение экологической нагрузки на окружающую среду [1–4]. Использование металлических наполнителей может также способствовать увеличению прочности, твердости и модуля упругости композиционного полимера.

Полимерное связующее в составе матричного композита должен отвечать ряду эксплуатационных механических и прочностных характеристик, обеспечивающих требуемое качество композиционного покрытия. Помимо традиционных химических методов получения полимерного материала с необходимыми свойствами, представляют интерес радиационно-химические методы, так как для достижения тех или иных свойств полимерного связующего можно использовать способность ионизирующего излучения даже при сравнительно небольших дозах облучения вызывать существенное изменение структуры и свойств полимера [5–10].

Хорошо известно об использовании ионизационного облучения для модифицирования поверхностных покрытий, в частности, для отверждения лакокрасочных, декоративных, магнитных, токопроводящих покрытий, печатных красок и т.п. на различных поверхностях [5–10].

В качестве связующего в таких композиционных покрытиях широко используются высокоэластичные полимерные материалы.

В работе [11, 12] показана возможность анализа эффекта ионизационного облучения на физико-механические и физико-химические свойства полимеров с привлечением метода динамической механической релаксационной спектроскопии [13–18] на основе исследования диссипативных процессов α -, β - и μ -релаксации, протекающих в латексных акриловых полимерах до и после облучения в широком интервале температур. Обнаружено изменение температуры стеклования, а также упругих свойств полимерных акриловых материалов под воздействием ионизирующего излучения в зависимости от высокоэластичности и наличия функциональных групп в составе полимера.

В данной работе предпринята попытка сопоставить проявление эффекта ионизированного облучения на физико-механические свойства высокоэластичного акрилового полимера с учетом их релаксационной структуры в отсутствии и присутствии высокодисперсного порошка железа. лат Свойства исследованы с привлечением метода пр динамической механической релаксационной ни спектроскопии [13–18]. Исследование основано в к на анализе диссипативных процессов α-, β- и ли µ-релаксации, протекающих в ненаполненном и наполненном полимерах до и после облучения в широком интервале температур. Проанализирова-

но изменение температуры стеклования, а также упругих свойств полимерных акриловых материалов под воздействием ионизирующего излучения в зависимости от наполнения системы металлическим наполнителем.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для проведения исследования были привлечены высокоэластичные акрилатные полимеры с температурой стеклования (T_{ct}) 5 и 15°С.

Пленки готовили отливом латексных пленок на тефлоновой подложке с последующим высушиванием на воздухе, а затем в вакуумном шкафу — до постоянного веса. Из полученных пленок вырезались образцы прямоугольного сечения размером $60 \times 5 \times 0.5$ мм.

Образцы наполненных полимерных пленок готовили введением в состав латексного полимера 1 мас. % высокодисперсного порошка железа.

Микрофотографии поверхности пленок полимера с T_{cr} 15°С получены с привлечением атомносилового микроскопа Enviroscope (Bruker). Индентором служил кантилевер NSG-0301, имеющий согласно паспортным данным жесткость 1.5–15 Н/м, резонансную частоту 90 кГц, высоту зонда 16 мкм, соотношение высоты к диаметру основания 4 : 1, радиус кончика 10 нм.

Для выяснения природы релаксационных диссипативных процессов в латексном полимере с $T_{\rm cr}$ 5°С снимались температурные зависимости спектров внутреннего трения λ и температурночастотные зависимости в широком интервале температур от -150 до +100°С в режиме свободных затухающих крутильных колебаний при частоте v ~ 1 Гц на горизонтальном крутильном маятнике [13-18].

Облучение полимерных систем проводилось ускоренными электронами с дозой порядка 5 × 10⁵ Гр.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлены данные по топографии и профиль поверхности полимерных пленок, полученные с привлечением атомно-силовой микроскопии латексных полимеров, наполненных порошком железа, до и после облучения. На топографическом рис. 1 необлученной ненаполненной пленки (а) хорошо просматриваются латексные частицы, достаточно равномерно распределенные по ее поверхности. После наполнения полимера (рис. 1в) обнаруживаются участки, в которых латексные частицы скорее всего локализуются вокруг частиц высокодисперного порошка железа, что снижает равномерность поверхности. Это подтверждает изменение профиля поверхности после наполнения, о чем свидетельствует его рост от ± 50 до ± 80 мкм.

После облучения ненаполненного полимера топография поверхности изменяется (рис. 1б), что проявляется в коалесценции латексных частиц, и следовательно, уплотнении всего объема полимера. Это сопровождается повышением равномерности поверхности и снижением ее профиля от ± 50 до ± 10 мкм.

Равномерность облученной наполненной пленки (рис. 1г) нарушается при введении наполнителя и снижается в сопоставлении с облученной ненаполненной пленкой (рис. 16). Профиль поверхности изменяется от ± 30 до ± 10 мкм соответственно.

В то же время равномерность поверхности облученной наполненной пленки выше, чем необлученной наполненной пленкой (рис. 1в) в результате коалесценции латексных частиц под воздействием ионизационного облучения. В этом случае профиль поверхности изменяется от ± 30 до ± 80 мкм соответственно.

С учетом изменения топографии и профиля поверхности полимерных пленок после облучения и наполнения можно было ожидать различия в проявлении диссипативных процессов α -, β - и μ -релаксации в необлученных и облученных полимерах до и после введения порошка железа при различных температурах. Эффект ионизационного облучения на эти процессы изучен на основе анализа релаксационного поведения ненаполненного и наполненного латексного полимера с $T_{\rm cr}$ 5°С до и после его воздействия.

На рис. 2 представлен спектр внутреннего трения и температурная зависимость колебательного процесса для **необлученного** полимера до и после наполнения высокодисперсным порошком железа.

На спектре внутреннего трения видно наличие всех трех типов диссипативных процессов α -, β - и μ -релаксации, протекающих в ненаполненном и наполненном полимере. Основываясь на результатах, представленных на рис. 2, ниже приводится описание эффекта высокодисперсного наполнителя на релаксационные процессы, протекающие в системе.

Введение железа в полимерную матрицу существенно преобразует спектр внутреннего трения $\lambda = f(T, °C)$ и температурную зависимость часто-

Рис. 1. Топография и профиль поверхности пленок латексного полимера (T_{cT} 15°C) до (а, в) и после облучения (б, г): (а, б) – без наполнителя; (в, г) – в присутствии наполнителя.

ты колебательного процесса $v = f(T, {}^{\circ}C)$, возбужденного в исследуемой системе:

1) для наполненного полимера обнаруживается рост подвижности макроцепей при температурах от -140 до -60° С, что может быть объяснено разрушением структуры в присутствии металлических частиц и, в связи с этим, упрощением вымораживания следов воды. Температурно-частотные зависимости, полученные для наполненного

полимера, подтверждают рост активности полимерных цепей при отрицательных температурах. Кроме того, надо принять возможность интенсификации преобразования кубической структуры и аморфной молекулярной воды в гексагональную модификацию в области температур от -150 до -75°C [12];

2) в температурной области вблизи T_{cr} спектра внутреннего трения при свободных затухающих

Рис. 2. Спектр внутреннего трения (а) и температурная зависимость колебательного процесса (б) для необлученного полимера до (*I*) и после (*2*) наполнения порошком железа.

колебаниях наблюдается пик потерь α -релаксации, интенсивность которого снижается с введением наполнителя. Снижение интенсивности пика диссипативных потерь свидетельствует о возможности нарушения сплошности элементов релаксационной структуры при переходе от ненаполненного полимера к наполненной системе. Для наполненного полимера наблюдается ощутимое снижение интенсивности максимума α -релаксации, ответственного за подвижность макроцепей полимера, при незначительном снижении температуры стеклования от 6 до 4°С;

3) диссипативный процесс внутреннего трения в ненаполненном и наполненном латексном полимере имеет релаксационный механизм, на что указывает резкое падение модуля сдвига G для исследуемых систем (рис. 26);

4) так как модуль сдвига системы $G = \rho v^2 (\rho -$ плотность полимерной системы), можно сопоставить (рис. 26) величину модуля для ненаполненной (кривая *I*) и наполненной системы (кривая *2*) при температуре –100°С: она пропорциональна ~2.10 и ~1.76, соответственно. С повышением температуры вплоть до температуры стеклования, соответствующей процессу α -релаксации, имеет место резкое снижение модуля сдвига, указывающее на разрушение сшивки релаксационной структуры и существенное изменение дефекта модуля ΔG , который оценивается по отрезку, отсекаемому касательными к кривой температурной зависимости частоты колебательного процесса;

5) наличие дефекта модуля ΔG проявляется в виде резкого скачкообразного снижения модуля сдвига при повышении температуры исследуемой латексной системы. Величина дефекта модуля Gпозволяет характеризовать упругие свойства системы. При меньших значениях ΔG полимерная система характеризуется более высокими упругими свойствами. Как следует из рис. 26, дефект модуля наполненного полимера (кривая 2) несколько ниже, чем ненаполненного полимера (кривая 1). Рост температуры свыше $+50^{\circ}$ С приводит к одинаковому значению модуля сдвига;

6) характер температурной зависимости спектра внутреннего трения в наполненном полимере позволяет высказать предположение о формировании высокодисперсным порошком железа структуры в объеме и приповерхностном слое. Это подтверждается характером температурночастотной зависимости, проявляющимся в наличии двух областей спада модуля сдвига: при -100 и -10° С. Последняя область проявляется на температурночастотной зависимости, соответствующей ненаполненному полимеру;

7) интенсивность максимума β -релаксации, ответственного за подвижность звеньев макроцепей полимера, не изменяется, а его положение сдвигается от -19 до -14° С. Введение железа значительно снижает проявление процесса β -релаксации в области от -23 до -7° С, ответственного за подвижность звеньев макроцепей, сужая эту область до интервала температур от -11 до -3° С.

На температурно-частотной зависимости v = f(T, °C) в области температур проявления процесса изменился знак дефекта модуля на отрицательный. Это свидетельствует об изменении механизма диссипативных потерь с релаксационного на фазовый, связанный с образованием какихлибо нанокристаллических структур, т.е. в наполненном образце на спектре $\lambda = f(T, °C)$ имеется $C_{\rm кp}$ -процесс протяженностью от -45 до 0°C;

Рис. 3. Спектр внутреннего трения (a, в) и температурная зависимость колебательного процесса (б, г) для ненаполненного (a, б) и наполненного (b, г) полимера до (кривые I) и после облучения (кривые 2).

8) наблюдаемые эффекты α- и β-релаксации связываются с взаимодействием поверхностных групп частиц железа и активных функциональных групп полимера;

9) фон диссипативных потерь не изменился.

Представляло интерес выяснить, как изменяется релаксационная структура полимера под воздействием ионизационного облучения после его наполнения порошком железа, и как последнее влияет на физико-механические свойства.

Здесь уместно упомянуть, что радиационная стойкость акриловых эластомеров, полистирола и полиметилметакрилата составляет ($10^4-7 \times 10^5$), ($5 \times 10^6-5 \times 10^7$) ($5 \times 10^3-10^5$ Гр), соответственно [5–10]. Принимая это во внимание, эффект иони-

зационного облучения изучали при суммарной дозе 5×10^7 кГр, которая позволяет уловить изменение релаксационной структуры полимера под действием излучения.

На рис. 3 представлены спектры внутреннего трения (рис. 3а, 3в) и температурная зависимость колебательного процесса (рис. 3б, 3г) для ненаполненного и наполненного полимера до и после облучения.

Из рис. 3 следует принципиальное различие в проявлении эффекта облучения на физико-механические свойства ненаполненного и наполненного полимеров.

При облучении ненаполненной полимерной матрицы (рис. 3а, 3б) обнаруживается существенное

изменение спектра внутреннего трения и температурно-частотной зависимости:

 имеет место ощутимый сдвиг максимума диссипативного процесса α-релаксации от 6 до 19°С, что можно связать со сшиванием полимерных макроцепей, а незначительный рост интенсивности пика диссипативных потерь — с увеличением энергии на диссипацию фрагментов системы, возникших в результате структурирования системы при облучении;

2) рост сшивки полимера соответствует увеличению дефекта модуля полимерной системы на зависимости v = f(T, °C), коррелирующей со снижением ее упругости и характеризуемого величиной снижения частоты колебательного процесса на аномальном участке зависимости [11, 12, 19, 20];

3) процесс β -релаксации полностью угнетен α -процессом релаксации $\nu = f(T, {}^{\circ}C)$. При этом интенсивность максимума пика β -релаксации не изменяется, но обнаруживается его сдвиг от -16 до 0°C;

4) отчетливо прослеживается значительный рост максимумов μ -релаксации при отрицательных температурах, указывающий на увеличение эффекта вымораживания следов воды под воздействием ионизирующего облучения, с одной стороны, и с другой, ослаблением перестроек, связанных с кристаллическими модификациями молекулярной воды [12]. Эффект облучения при отрицательных температурах подтверждается кривыми температурно-частотной зависимости $\nu = f(T, °C)$ (рис. 36);

5) фон диссипативных потерь возрос незначительно.

При облучении наполненной полимерной матрицы (рис. 3в, 3г) обнаруживается существенное изменение спектра внутреннего трения и температурно-частотной зависимости по сравнению с облученной ненаполненной полимерной матрицей (рис. 3а, 3б):

 при облучении имеет место сдвиг максимума диссипативного процесса α-релаксации от 4 до 13°С, что также связывается со сшиванием полимерных макроцепей, а более выраженный рост пика интенсивности – с увеличением энергии на диссипацию фрагментов системы, возникших в результате структурирования системы с участием частиц высокодисперсного железа;

 в отличие от ненаполненного полимера максимум диссипативных потерь процесса β-релаксации после облучения не проявляется, указывая на разрушение межзвеньевых связей макромолекул в присутствии наполнителя;

 после облучения более четко выражены максимумы потерь процесса µ-релаксации при отрицательных температурах, что подтверждает эффект вымораживания следов воды, усиливающийся в присутствии наполнителя и под воздействием ионизирующего облучения [12];

4) фон диссипативных потерь не изменился.

ЗАКЛЮЧЕНИЕ

Из полученных результатов следует, что наполнение полимерной матрицы высокодисперсным порошком железа вызывает изменение в проявлении эффекта ионизационного облучения на диссипативные процессы, протекающие в композиционном полимере.

Обнаруживается рост температуры стеклования, свидетельствующий о структурировании полимерной матрицы с участием наполнителя, что сопровождается одновременным увеличением интенсивности максимумов диссипативных потерь α -релаксации, и следовательно ростом энергии, необходимой для проявления подвижности структурированных фрагментов системы.

При облучении композиционного полимера происходит разрушение межзвеньевых взаимодействий макроцепей, ответственных за проявление процесса β-релаксации.

В облученном композиционном полимере обнаруживается значительный рост диссипативных процессов µ-релаксации при отрицательных температурах, указывающий на увеличение эффекта вымораживания следов воды под воздействием ионизирующего облучения, с одной стороны, и с другой, ослаблением перестроек, связанных с кристаллическими модификациями молекулярной воды.

Авторы выражают благодарность научному сотруднику Института Е.И. Саунину за проведение работы по облучению полимерных образцов.

Исследование физико-химических свойств и структуры латексных полимеров выполнялась при финансовой поддержке программы ПРАН "Физико-химических основы высокоэффективных методов получения многослойных наночастиц и пленочных нанокомпозитов с выраженными функциональными свойствами (в т.ч. защитными, механическими и т.д.)".

Исследование эффекта ионизационного излучения на релаксационную структуру и упругие свойства полиакрилатов проведено в рамках госзадания по теме "Релаксационные, деформационно-прочностные свойства бинарных или многокомпонентных полимерных систем и влияние на их структурные и физико-химические характеристики электромагнитного излучения, включая УФ, СВЧ, гамма, нейтронное и космическое излучение".

Исследование морфологии поверхности наполненных и ненаполненных наночастицами полимерных матриц выполнено в рамках госзадания по теме госзадания "Физикохимия функциональных материалов на основе архитектурных ансамблей металл-оксидных наноструктур, многослойных наночастиц и пленочных нанокомпозитов". Регистрационный номер НИОКТР АААА-А19-119031490082-6.

СПИСОК ЛИТЕРАТУРЫ

- 1. Берлин А.А., Пахомова Л.К. // Высокомолек. соед. А. 1990. Т. 32. № 7. С. 1154.
- Кербер М.Л. Полимерные композиционные материалы. Структура. Свойства. Технологии. СПб: Профессия, 2008.
- 3. *Яковлев А.Д.* Химия и технология лакокрасочных покрытий. Л., 1981.
- Асламазова Т.Р., Высоцкий В.В., Золотаревский В.И., Котенев В.А., Ломовской В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 6. С. 620.
- 5. *Пикаев А.К.* // Химия высоких энергий. 2001. Т. 35. С. 403.
- Ершов Б.Г. // Вестник Российской академии наук. 2013. Т. 83. № 10. С. 885.
- 7. Пономарев А.В., Ершов Б.Г. // Физикохимия поверхности и защита материалов. 2018. Т. 54. № 6. С. 566.
- 8. *Каримов С.Н.* Прочность и разрушение полимеров, подвергнутых радиационному воздействию. Докт. дис. хим. наук. 1984. 426 с.
- 9. Ершов Б.Г. // Успехи химии. 1998. Т. 67. № 4. С. 353.

- 10. *Ершов Б.Г., Пономарёв А.В.* // Вестник РАН. Т. 81. № 11. С. 994.
- 11. Асламазова Т.Р., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Теоретические основы химической технологии. 2019. Т. 53. № 3. С. 256.
- 12. Асламазова Т.Р., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Химия высоких энергий. 2019. Т. 53. № 5. С. 369.
- 13. Бартенев Г.М. Структура и релаксационные свойства эластомеров. М.: Химия, 1979. 382 с.
- 14. *Тагер А.А.* Физикохимия полимеров. М.: Научн. мир, 2007. 545 с.
- 15. Ломовской В.А., Абатурова Н.А., Ломовская Н.Ю., Хлебникова О.В., Галушко Т.Б. // Материаловедение. 2010. № 1. С. 29.
- 16. Валишин А.А., Горшков А.А., Ломовской В.А. // Известия РАН. Механика твердого тела. 2011. № 2. С. 169.
- 17. Асламазова Т.Р., Ломовской В.А., Котенев В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 1. С. 65.
- Асламазова Т.Р., Золотаревский В.И., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2018. Т. 54. № 6. С. 590.
- 19. Константинов Н.Ю., Ломовская Н.Ю., Абатурова Н.А., Саков Д.М., Ломовской В.А. // Материаловедение. 2017. № 2. С. 15.
- 20. Ломовской В.А., Абатурова Н.А., Ломовская Н.Ю., Хлебникова О.А. // Механика композиционных материалов. 2019. Т. 54. № 6. С. 815.