____ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ _____ НА МЕЖФАЗНЫХ ГРАНИЦАХ _____

УДК 66.081.6

ИССЛЕДОВАНИЕ СТРУКТУРНОЙ ОРГАНИЗАЦИИ ПОВЕРХНОСТНОГО СЛОЯ И СОСТОЯНИЯ ВОДЫ В УЛЬТРАФИЛЬТРАЦИОННЫХ КОМПОЗИЦИОННЫХ МЕМБРАНАХ

© 2020 г. С. И. Лазарев^{1, *}, Ю. М. Головин¹, И. В. Хорохорина¹, П. А. Хохлов¹

¹Федеральное государственное бюджетное образовательное учреждение высшего образования Тамбовский государственный технический университет, ул. Советская, 106, Тамбов, 392000 Россия

*e-mail: geometry@mail.nnn.tstu.ru Поступила в редакцию 05.12.2018 г. После доработки 16.01.2019 г. Принята к публикации 12.02.2019 г.

Исследованы структурная организация поверхностного (активного) слоя и состояние воды в ультрафильтрационных композиционных мембранах методами колебательной ИК-спектроскопии и дифференциально-сканирующей калориметрии (ДСК). Анализ формы полосы поглощения валентных колебаний гидроксильных групп при v = 3366.2 см⁻¹ с коэффициентом ассимметричности ~1 и активности колебаний метильных групп с v = 2884.02 и 2942.35 см⁻¹, показал, что объемная надмолекулярная структура ацетат целлюлозного слоя сухого образца образована двумя типами водородных связей и дипольдипольными взаимодействиями карбонильных групп. Взаимодействие макромолекул в экваториальной плоскости формируется сеткой водородных связей типа (ОН...О) с участием единственной гидроксильной группы пиранозного кольца в ацетатах целлюлозы. В аксиальном направлении надмолекулярная структура организована за счет водородных связей между метинными и карбонильными группами типа (СН...О=С) и дипольными взаимодействиями компланарно упорядоченных диполей (С=О) групп. Уменьшение интенсивности и коэффициента ассимметричности до 0.81 полосы поглощения гидроксильных групп и полосы поглощения метильных групп с частотами v = 2884.02 - 2942.35 см⁻¹ в 2.56 и 3.3 раза в водонасыщенных образцах происходит из-за разрушения надмолекулярной структуры и реорганизации водородных связей активных групп ацетата целлюлозы и молекул воды, которые блокируют межмолекулярные взаимодействия макромолекул. Проявление на полосе поглощения гидрок-сильных групп частот 3302.7 "пл" см⁻¹, v = 33105 "пл" см⁻¹ и v = 3600.6 "пл." см⁻¹ v = 3598.8 "пл." см⁻¹ свидетельствует о взаимодействии ассоциированных молекул воды связанной и капиллярной формы. Отсутствие полосы поглощения с v = 873.53 см⁻¹ в воднонасыщенном образце объясняется как эмпирический показатель конформационного перехода макромолекул в линейную форму. Деконволюция эндотермического пика на кривой ДСК в интервале температур от 50 до 110°С на пять гауссианов доказывает многоуровневую структурную организацию молекул воды, сорбированной в порах и между макромолекулами аморфной фазы.

Ключевые слова: мембрана, активный ацетат, целлюлозный слой, структура, водородные связи, мезо- поры, ИК-Фурье спектр, ДСК деконволюция

DOI: 10.31857/S0044185620020151

введение

Мембранные методы разделения растворов привлекают внимание исследователей благодаря низкому потреблению энергии и экологичности, так. как затраты энергии используются только на разрыв межмолекулярных связей без фазовых превращений. При ультрафильтрационном получении ультрачистой воды, промышленной очистке сточных вод и концентрации биологических агентов, процессы отделения растворенного вещества от растворителя происходят в поверхностном (активном) слое. Однако при этом происходит осаждение и адсорбция макромолекулы на ультрафильтрационных мембранах, что вызывает загрязнение активного слоя мембраны, сокращая их срок службы [1-3]. Для этого мембранные материалы подвергают модификациям с последующим исследованием структурно-кинетических характеристик активного слоя. Например, авторы работ [4–6] применяют такие методы, как плазменная обработка, метод радикальной полимеризации с переносом атомов, синтез сшитых полимеров. Так, в работе [7] методом растровой электронной микроскопии проведен сравнительный анализ влияния структурных изменений мембран МА-40 и МА-41 на их физико-химические свойства в результате температурного воздействия в водной, щелочной и кислотной средах. Авторы работы [8] методами гидродинамики, электрооптики и компьютерного моделирования показали, что пленкообразующие аддитивный кремний, замещенный полинорборнен и кремний, замещенный полиацетилен, близкие по показателям газопроницаемости, обладают сходными конформационными свойствами цепей.

В работе [9] исследовали воздействие паров мезофазогенных растворителей на структуру и свойства порошкообразного полимера, где установлено, что модификация полимеров парами мезофазогенных растворителей позволяет управлять структурой и эксплутационными характеристиками ультрафильтрационных мембран. Так, в работе [10] установлены значения модуля упругости эритроцитов в зависимости от локализации области индентирования и времени воздействия зондом на поверхность мембраны. Показана существенная зависимость результатов оценки модуля упругости от скорости воздействия индентором на клеточную мембрану.

Проведенный анализ работ [1–10] позволил оценить значимость поверхностного слоя в процессах ультрафильтрационного разления растворов и его зависимость от стркутурных характеристик и состояния воды в нем. Поэтому целью данной работы явились исследования структурной организации активного слоя и состояния воды в ультрафильтрационных мембранах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Композитные мембраны, изготовленные отливом раствора на подложку, представляют собой полимер, армированный каркасом из ткани. Образцы для съемки ИК-спектров поглощения готовили из коммерческих мембранах на тканевой подложке, полученной плетением (УАМ-50) и подложке — валяльным способом (УАМ-100). Затем высушенные образцы помещались в эксикатор. Перед регистрацией ИК-спектра поглощения в воднонасыщенном образце его помещали в дистиллированную воду на 5 мин, а затем поверхностная влага удалялась фильтровальной бумагой. Образцы помещали в ИК-Фурье спектрометр FT/IR-6200 (Jasco, Япония) с приставкой для неполного внутреннего отражения. Сканирование проводили в диапазоне волновых чисел от 600 до 4000 см⁻¹. Время накопления сигнала – 3 мин. Теплофизические характеристики образцов УАМ-50 и УАМ-100 измерялись на дифференциальном сканирующем калориметре ДСК-2 со скоростью 10°С/мин и интервале температур от 45 до 300°С. Масса водонасыщенных образцов составляла 5.6 и 4.6 мг. Обработка спектральной информации и теплофизических характеристик проводилась с использованием пакета программы Origin 7.5 для визуализации и построения графиков.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

ИК-спектры сухого и водонасыщенного образцов ультрафильтрационных пленок УАМ-50 и УАМ-100 представлены на рис. 1—4 в интервалах частот от 600—2000 и 2750—4000 см⁻¹ в разных масштабах для наглядности. Интервал от 2000 до 2750 см⁻¹ не представляет интерес из-за отсутствия характерных полос поглощения. Положение и высокая интенсивность полос поглощения при 1740, 1430, 1341, 1234, 1022 см⁻¹, согласно литературным данным, присущи ацетату целлюлозы [11, 12].

Характер спектра в этом интервале частот практически не изменяет свой неповторимый набор полос. Область частот от 2850 до 2950 см⁻¹ соответствует суперпозиции валентных колебаний СН–, СН₂–, СН₃– групп, а 3050–3750 см⁻¹ – валентным колебаниям гидроксильных групп, включенных в водородные связи. Значения частот и приведенная оптическая плотность полос валентных колебаний С=O, С–O и С–С–O групп представлены в табл. 1. Расчет оптической плотности проводили методом базовой линии по отношению к оптической плотности полосы деформационных колебаний СН₂– групп при 1430 см⁻¹.

Оценочную информацию распределения водородных связей внутри цепочки и между ними можно получить по индексу асимметрии полосы поглощения гидроксильных (–ОН) групп [13, 14].

Индексы асимметрии рассчитывались, как отношение ширины правой (а) (высокочастотной) и левой (б) (низкочастотной) части максимума полосы поглощения (–ОН) групп на полувысоте пика. Для характеристики параметров водородной связи применялось уравнение, по которому можно рассчитать ее энергию [15]:

$$E_{\rm OH} = \frac{1}{K} \frac{\mathbf{v}_0 - \mathbf{v}}{\mathbf{v}_0},$$

где v_0 — частота поглощения свободной гидроксильной группой ($v_0 = 3650 \text{ см}^{-1}$); v — наблюдаемая частота поглощения гидроксильной группой, включен-

ной в водородную связь; $\frac{1}{K} = 2.625 \times 10^2 \frac{\text{кДж}}{\text{моль}}.$

Результаты расчетов сведены в табл. 2.

Известно, что если в ацетатцеллюлозе менее 55% связанной уксусной кислоты, то на пиранозное кольцо приходится одна свободная гидроксильная группа, которая участвует в образовании внутри- и межмолекулярных водородных связей типа –(ОН...О). Из таблицы видно, что для сухих образцов индекс асимметрии полосы поглощения для УАМ-50 равен 0.98, а для УАМ-100 равен 1.02. Это свидетельствует практически о равномерном распределении внутри- и межмолекулярных водородных связей. Следует отметить, что, согласно литературным данным [16], водородные связи между молекулами лежат в экваториальной плоскости. С другой стороны, образование связей можно объяснить взаимодействием макромолекул ацетата целлюлозы и в аксиальном направлении (т.е. в перпендикулярном к молекуле).

Рис. 1. ИК-спектры в области низких частот для мембраны УАМ-50: (a) сухой; (δ) водонасыщенный.

Метинные группы (C–H) ориентированы к плоскости кольца аксиально, следовательно, с большой вероятностью, могут быть включены в слабые водородные связи с кислородом карбонильной группы типа (C–H...O=C).

Правомерность такого суждения подтверждает анализ полосы поглощения v = 2884.02 и 2942.35 см⁻¹, в которой доминируют колебания атомов CH₃– групп. Метильная группа не участвует в водородных связях, но является донором электронов на сопряженные связи из-за индукционного эффекта карбонильной группы [17, 18]. То есть образование (C–H...O=C) связи изменяет полярность метильной группы, что приводит к повышению интенсивности полосы поглощения при v = 2884.02 и 2942.35 см⁻¹ (рис. 1, 2). Учитывая, что CH₃ группа имеет симметрию (C_{3v}), а правилами отбора в ИК-спектре поглощения раз-

Рис. 2. ИК-спектры в области высоких частот для мембраны УАМ-50: (*a*) сухой; (*б*) водонасыщенный.

решено два типа валентных колебаний, то полоса при $v = 2884.02 \text{ см}^{-1}$ идентифицируется, как валентное колебание A₁ типа, а более широкая – v == 2942.35 см⁻¹ – Е-типа. Отсутствие расщепления полосы поглощения $v = 2942.35 \text{ см}^{-1}$ (Е-типа) свидетельствует о высокой локальной симметрии электростатического поля, образованного диполями карбонильных групп.

Таким образом, организация надмолекулярной структуры ацетатцеллюлозного активного слоя мембран УАМ-50 и УАМ-100 обусловлена двумя типами водородных связей – (OH...O), (CH...O=C) и диполь-дипольным взаимодействием карбонильных групп.

В спектрах водно-насыщенных образцов наблюдается ряд изменений в области валентных колебаний атомов гидроксильных и ацетатных групп — 3000—3700 и 2884.02—2942.35 см⁻¹.

Таблица 1. Отнесение, приведенная оптическая плотность полос поглощения, значения частот мембран УАМ-50 и УАМ-100

№ п/п	Мембрана УАМ-50				Мембрана УАМ-100				
	сухой образец		влажный образец		сухой образец		влажный образец		Отнесение
	ν, см ^{−1}	$D_v/D_\delta CH_2$	v, см ⁻¹	$D_v/D_\delta CH_2$	ν, см ⁻¹	$D_{\nu}/D_{\delta}CH_{2}$	v, см ⁻¹	$D_{\nu}/D_{\delta}CH_{2}$	
1	3366.21		3302.7 "пл" 3452.82 3600.6"пл"		3339.14		3310.5 "пл" 3474.2 3598.8 "пл"		Валентные колебания ОН–групп
2									Вк CH, CH_2 , CH_3
3	1741.4	0.65	1734.65	0.74	1738.1	0.6	1734.65	0.82	Вк С=О
4	1432.36	1.0	1431.4	1.0	1431.4	1.0	1431.4	1.0	Деформационные колебания CH ₂
5	1369.21		1368.25		1367.71		1368.2		Деформационные колебания CH ₃
6	1225.54	0.74	1220.71	0.88	1225.57	0.72	1221.05	0.91	Вк СО
7	1033.65	0.81	1034.14	0.9	1032.4	0.79	1033.65	0.9	C-C-O
8	904.93		902.52		904.93		903.0		Деформация кольца
9	873.59				870.7				Колебания концевого
									кольца вокруг $\beta(C_1-C_4)$

	Состояние образца	Индекс асимметри <i>а/в</i>	v_{max} (cm ⁻¹)	Е _{ОН} , кДж/моль
Мембрана	Сухой	0.98	3366.2	20.38
УАМ-50	Влажный	0.81	3302.7 "пл" 3452.82 3600.6 "пл"	24.98 14.17 3.55
Мембрана VAM 100	Сухой	1.02	3339.14 3310 5 "mm"	22.37
<i>J F</i> 101 ⁻ 100	Влажный	0.82	3310.5 ПЛ 3474.2 3598.8 "пл"	12.65 3.68

Таблица 2. Индекс асимметрии полосы поглощения гидроксильных групп, значения энергий водородных связей мембран УАМ-50 и УАМ-100

Прежде всего снижается интенсивность и изменяется форма полос поглошения (рис. 1 и 2). Индекс асимметрии полос поглошения гидроксильных групп уменьшается до 0.81 для УАМ-50, а для УАМ-100 до 0.82. Максимумы пиков смещаются в высокочастотную область спектра на 86.24 и 134.92 см⁻¹ соответственно. Кроме этого, на полосах поглощения проявляются два "плеча" - одно при 3302.7 см⁻¹, второе при 3600.6 см⁻¹, для УАМ-50 а для УАМ-100 при 3310.5 и 3598.8 см⁻¹. Данный факт может свидетельствовать, прежде всего, об уменьшении содержания гидроксильных групп. вовлеченных в межмолекулярные Н-связи. (уменьшается интенсивность), и о перераспределении водородных связей между ацетатом целлюлозы и молекулами воды с преобладанием слабых водородных связей.

Для уточнения, какой из фрагментов ацетатцеллюлозы вступает во взаимодействие с молекулами воды, была проведена оценка изменения приведенных оптических плотностей полос поглощения валентных колебаний атомов ацетильной группы — 1734.65, 1220.71, 1034.14 см⁻¹ (табл. 1). Из данных таблицы следует, что в водно-насыщенных образцах частоты карбонильной (С=О) и эфирной (С-О) групп сдвигаются в низкочастотную область спектра на ($\Delta v = 6.7 \text{ см}^{-1}$) и увеличивается оптическая плотность полос поглощения. На этом основании можно утверждать, что происходит разрыв слабых межмолекулярных связей (СН...О) и образование конкурирующих Н- связей карбоксильных групп с окружающими молекулами воды. Образование новых связей (H₂O...CO) приводит к частичному переносу заряда на сопряженные связи карбоксильных и метильных групп. Наиболее яркое проявление перераспределения электронной плотности на сопряженных связях наблюдается в уменьшении интегральных интенсивностей полос поглощения CH_3 - групп с частотами – v = 2884.02 и 2942.35 см⁻¹ для УАМ-50 в 2.56 раза, а для УАМ-100 в 3.3 раза, по отношению к сухому образцу (рис. 1-4).

Таким образом, в водно-насыщенных образцах, прежде всего, происходит разрыв водородных связей типа (С-Н...О) и образование новых Н-связей между молекулами волы и кислородом карбоксильных групп. Вследствие этого, увеличивается подвижность звеньев, а макромолекулы распрямляются, принимая линейную форму. В результате этого происходит пространственное упорядочение вытянутых макромолекул, между которыми образуются дополнительные, щелевидной формы микро- и мезо-поры. Подобные морфологические изменения молекулы ацетатцеллюлозы испытывают под влиянием низкомолекулярных жилкостей и. по мнению авторов. могут переходить в жидкокристаллическое состояние [19]. При этом полярные группы экранируются водородными связями с молекулами воды. образуя полимолекулярный слой связанной воды. Смещения частот колебаний С=О и С-О групп на $\Delta v = 6.7 \text{ см}^{-1}$ в низкочастотную область спектра, вероятнее всего, вызваны образованием Н-связей между молекулами воды и карбоксильными группами анетата неллюлозы. из-за значительной полярности их молекул (дипольные моменты их равны P = 1.84, D H₂O и P = 2.4, D C=O) [20].

В ИК-спектре, на полосе поглощения водородных связей ацетатцеллюлозы, они проявляются в виде плеча с частотами v = 3302.7 "пл" см⁻¹, v = 3310.5 "пл" см⁻¹ для УАМ-50 и УАМ-100 соответственно, а величины энергий водородных связей равны $E_{\rm OH} = 24.98$ кДж/моль, $E_{\rm OH} = 24.42$ кДж/моль (табл. 2).

Полосы поглощения с максимумами v = 3452.82 см^{-1} и v = 3474.06 см^{-1} являются комплексными, они включают внутримолекулярные и вновь образованные между молекулами воды и свободными активными группами ацетатцеллюлозы водородные связи, причем различной прочности с энергиями $E_{OH} = 14.17 \text{ кДж/моль и } E_{OH} = 12.65 \text{ кДж/моль для УАМ-50 и УАМ-100 соответственно. Что касается высокочастотной части полосы поглощения с v = <math>3600.6 \text{ "пл" см}^{-1} \text{ v} = 3598.8 \text{ "пл" см}^{-1}$, то они свидетельствуют о проявлении слабых водородных связей (OH...OH), образованных между молекулами кластеров в капиллярной воде с энергиями равными $E_{OH} =$

Рис. 3. ИК-спектры в области низких частот для мембраны УАМ-100: (*a*) сухой; (*б*) водонасыщенный.

= 3.55 кДж/моль и *E*_{OH} = 3.68 кДж/моль. Становится понятным отсутствие полосы поглощения v = 873.53 см⁻¹ в водно-насыщенном образце. Данная частота обусловлена колебаниями концевых пиранозных колец, свободных от водородных связей, вокруг гликозидной связи ($C_1 - C_4$) – типа колебания пластины, жестко закрепленной одним концом. Как отмечено выше, при сорбнии воды разрушается жесткая надмолекулярная структура ацетата целлюлозы, макромолекулы принимают линейную форму, колебания которых, как правило, лежат в интервале более низких частот [19, 21]. Подобный эффект, очевидно, может быть использован как эмпирический показатель изменения конформации и перехода макромолекул в упорядоченную линейную форму. Подводя итог выше сказанному можно отметить, что вода нарушает структурную организацию ацетатцеллюлозного активного слоя на надмолекулярном уровне в результате разрыва межмолекулярных водородных связей. Во-вторых, активные группы ацетатцеллюлозы образуют новые водородные связи с молекулами воды, которые блокируют межмолекулярные взаимодействия выпрямленных макромолекул. В третьих, в структуре образуются дополнительные микро- и мезо- поры.

Состояние воды можно количественно оценить при проведении термических исследований водно-насыщенных образцов. На кривых ДСК выделялся фрагмент в интервале температур 50– 110°С, соответствующий эндотермическому пику испарения воды (рис. 3), затем проводили процедуру разложения на Гауссовы функции. Число

Рис. 4. ИК-спектры в области высоких частот для мембраны УАМ-100: (*a*) сухой; (*б*) водонасыщенный.

элементарных гауссианов определялось из соображения максимального коэффициэнта регистрации. Видно, что экспериментальные кривые хорошо описываются суммарной кривой из пяти гауссовых компонент, при коэффициенте регрессии $R^2 = 0.998$. Термические параметры результатов деконволюции эндотермических пиков сведены в табл. 3.

Из табл. 4 следует, что значения температур испарения воды и относительной плотности энергии гауссианов позволяют соотнести состояние воды в образцах с частотами, проявляемыми на полосе поглощения гидроксильных групп в ИК-спектре. Молекулы воды, удаляемые из образца при 98.82°С (97.1°С) (гауссиан-5), образуют мономолекулярный слой на свободных гидроксильных и карбонильных группах ацетата целлюлозы с энергией $E_{\rm HO} = 24.98$ кДж/моль ($E_{\rm HO} = 24.42$ кДж/моль).

Вода, которая испаряется при температурах 74.33, 87.14, 95.06°С (гауссианы-2,3,4), образует полимолекулярный слой связанный с активными группами ацетатцеллюлозы и ассоциированными молекулами капиллярной воды. В ИК-спектре она проявляется колебаниями атомов гидроксильных групп с частотой поглощения v = 3452.82 см⁻¹ (v = 3474.06 см⁻¹) и средними энергиями $E_{\rm HO}$ = = 14.17 кДж/моль ($E_{\rm HO}$ = 12.65 кДж/моль). Молекулы воды удаляемые при температуре 62.38°С (гауссиан-1) – это вода со слабыми водородными связями и малыми энергиями $E_{\rm HO}$ = 3.55 кДж/моль ($E_{\rm HO}$ = 3.65 кДж/моль) или поверхностная вода.

Таблица 3. Параметры деконволюции кривых ДСК в интервале температур 50-110°С

	Мембраны								
N⁰		УАМ-50		YAM-100					
	<i>Т</i> _{конв.}	<i>W</i> , кДж/кг	% отн.	$T_{ m kohb}$	<i>W</i> , кДж/кг	% отн.			
1	62.38	10.42	5	60.38	12.23	5			
2	74.33	68.33	34	73.85	85.14	37			
3	87.14	83.06	42	85.38	82.59	36			
4	95.06	25.6	13	92.92	36.84	16			
5	98.82	11.46	6	97.1	13.8	6			

Рис. 5. Фрагменты эндотермических пиков на кривых ДСК и их деконволюция на гауссовы контуры (*1, 2, 3, 4, 5*): (а) мембрана УАМ-50, (б) мембрана УАМ-100. Жирная линия – эксперимент. Сплошная линия – суперпозиция гауссовых кривых.

ЗАКЛЮЧЕНИЕ

В результате выполненных экспериментальных и теоретических исследований по колебательной спектроскопии и дифференциально-сканирующей калориметрии воздушно-сухого и водонасыщенного образцов композиционных ультрафильтрационных ацетатцеллюлозных мембран можно сделать следующие выводы:

1. Организация надмолекулярной структуры ацетатцеллюлозного активного слоя мембран УАМ-50 и УАМ-100 обусловлена двумя типами водородных связей – (ОН...О), (СН...О=С) и дипольдипольным взаимодействием карбонильных групп. Вода нарушает структурную организацию ацетата целлюлозного активного слоя на надмолекулярном уровне в результате разрыва межмолекулярных водородных связей и образования новых водородных связей активных групп ацетатцеллюлозы с молекулами воды. Отсутствие полосы поглощения v = 873.53 см⁻¹ в водно-насыщенном образце свидетельствует о конформационном переходе макромолекул в линейную форму с образованием узких мезопор между макромолекулами.

2. Термические исследования хорошо описываются пятью гауссианами, которые характеризуют физическое состояние молекул воды, традиционно разделяемую на связанную и капиллярную. Максимальная температура 98.82°С (97.1°С) соответствует образованию мономолекулярного слоя молекул воды на свободной гидроксильной и карбонильной группах с энергией $E_{\rm HO} = 24.98$ кДж/кг ($E_{\rm HO} = 24.42$ кДж/кг) образует полимолекулярный слой, связанный с активными группами ацетатцеллюлозы и ассоциированными молекулами в капиллярной воде.

СПИСОК ЛИТЕРАТУРЫ

- 1. Мулдер М. Введение в мембранную технологию. М.: Мир, 1999. 514 с.
- 2. Рейдерман И.Б., Константинов В.А., Флисюк О.М. // Экология и промышленность России. 2010. № 11. С. 29.
- Lie Jon Arvid, Hagg May-Britt. // J. Membr. Sci. 2006. V. 284. № 1–2. P. 79.
- 4. Ndmethy G., Scheraga H.A. // J. Phys. Chem. 1962. V. 36. P. 3401.
- 5. *Gabrus E., Szaniawska D.* // Przemysł Chemiczny. 2008. V. 87. № 5. P. 444–446.
- 6. Parna M., Jones Kimberly L., Abitoye Joshua O. // J. Membr. Sci. 2005. V. 254. № 1–2. P. 306.
- Акберова Э.М., Малыхин М.Д. // Сорбционные и хроматографические процессы. 2014. Т. 14. Вып. 2. С. 232–239.
- Евлампиева Н.П., Грингольц М.Л., Зайцева И.И., Рюмцев Е.И. // Высокомолекулярные соединения. Серия С. 2010. Т. 52. № 7. С. 1318–1328.
- 9. Потехина Л.Н., Седелкин В.М. // Вестник Саратовского государственного технического университета. 2011. Т. 1. № 1(52). С. 110–116.
- Дрозд Е.С., Чижик С.А., Константинова Е.Э. // Российский журнал биомеханики. 2009. № 4. С. 22–30.
- Хаслам Дж., Виллис Г.И. Идентификация и анализ полимеров. М.: Химия, 1971. / Перевод с английского, под ред. Алешиной Л.А., Гуртова В.А., Мелех Н.В. Петрозаводск : Изд-во ПетрГУ, 2014. 240 с.
- 12. *Воротынцев И.В.* Автореферат дис. ... докт. тех. наук. Нижний Новгород, 2011.
- Жбанков Р.Г. Физика целлюлозы и ее производных. Минск: Наука и техника, 1983. 233 с.
- Базарнова Н.Г., Карпова Е.В., Катраков И.Б. и др. Методы исследования древесины и ее производных: Учебное пособие. Издательство Алт. гос. ун-та. 2002. 160 с.
- Popescu C.M., Singurel G., Popescu M.C. et al. // Carbohydr. Polym. 2009. V. 77. P. 851.
- Renneckar Q., Li. S. // Biomacromolecules. 2011. V. 12. № 3. P. 650–659.
- Беллами Л. Инфракрасные спектры сложных молекул. М.: Изд-во иностр. лит. 1963. 590 с.
- Накасини К. Инфракрасные спектры и строение органических соединений. Практическое руководство / перевод с английского Куплетской Н.Б. и Эпштейн Л.М. / под ред. Мальцева А.А. М.: Мир, 1965. 220 с.
- 19. Папков С.П. Жидкокристаллическое состояние полимеров. М.: Химия, 1977. 240 с.
- Осипов О.А. Справочник по дипольным моментам. М.: Высшая школа, 1971. 378 с.
- Гилсон Т., Хендра П. Лазерная спектроскопия КР в химии / Перевод с английского / под ред. д.х.н. Алексаняна В.Т. М.: Мир. 1973. 306 с.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 56 № 2 2020