НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 621.35

ОКСИДИРОВАНИЕ СТАЛИ AISI 304 В Al-, Ті-СОДЕРЖАЩИХ РАСТВОРАХ

© 2020 г. В. В. Штефан^{1, *}, Н. А. Канунникова^{1, **}

¹Национальный технический университет "Харьковский политехнический институт" МОН Украины, ул. Кирпичева, 2, Харьков-2, 61002 Украина *e-mail: vvshtefan@ukr.net **e-mail: nadiia.ka13@gmail.com Поступила в редакцию 11.02.2019 г.

После доработки 12.09.2019 г. Принята к публикации 19.09.2019 г.

Исследование посвящено изучению влияния состава электролита на анодное поведение нержавеющей стали. Изучена морфология и рентгенофазовый состав оксидных покрытий, полученных в Al-, Ti-содержащих электролитах. Электрическая проводимость и дефектность покрытий изучена методом импедансной спектроскопии. Установлено, что введение в состав покрытий оксидов алюминия или титана снижает скорости коррозии стали в хлоридных средах.

Ключевые слова: сталь AISI 304, поляризация, импеданс, рентгенофазовый анализ **DOI:** 10.31857/S0044185620020230

введение

В настоящее время в химической промышленности и атомной энергетике активно применяется оборудование и трубопроводы из высоколегированных сталей аустенитного класса AISI 304 [1–3]. Их применение обусловлено наличием хорошей коррозионной стойкости в широком диапазоне условий, поскольку при взаимодействии с водными растворами на поверхности нержавеющих сталей образуются пассивные пленки, представляющие собой смесь оксидов железа и хрома. Эти пленки невидимы, стабильны, тонкие и самовосстанавливающиеся. Однако устойчивость пассивных пленок определяется условиями окружающей среды [4, 5].

При эксплуатации оборудования и трубопроводов из нержавеющей стали наблюдались узкие и локализованные повреждения в виде питтингов [6-8]. Выводя из строя приборы и аппараты, стоимость которых превышает часто в сотни и тысячи раз стоимость самих металлов, из которых они изготовлены, влечет за собой нарушения технологических процессов, остановку работы оборудования, сбой функционирования сооружений и. как следствие, техногенные аварии [9, 10]. Интерес к этому опасному и не поддающемуся непрерывному наблюдению виду коррозии отражается в расширяющемся за последнее 10-20 лет объему литературы, посвященной ее механизму, методам защиты и ускоренным испытаниям на стойкость против нее [4, 7–9].

Одним из распространенных и доступных методов защиты от коррозии нержавеющей стали является метод электрохимического оксидирования, позволяющий сформировать оксидные покрытия на металлах или сплавах. Преимущества этого метода состоит в том, что анодирование сталей не вызывает водородного охрупчивания и при этом размеры деталей существенно не изменяются [11–14]. Согласно литературным данным [15-18] оксидные пленки на стали AISI 304, полученные в 5 М H_2SO_4 при 50°С, в своей структуре преимущественно содержат FeO и имеют недостатки, если их сравнивать с пленками на титане, цирконии, тантале и других "вентильных" металлах. Они пористые, что ограничивает их использование как защитных покрытий [18]. Модифицирование оксидных покрытий соединениями металлов и неметаллов давно используется и приводит к улучшению заданных свойств композиционных материалов [19-22]. Введение соединений алюминия и титана в состав пленок позволит изменить структуру оксидов, что отразится на морфологии и защитных свойствах покрытий.

Целью данной работы является исследование анодного поведения стали AISI 304 в растворах H_2SO_4 и NaCl с добавками $Al_2(SO_4)_3 \cdot 18H_2O$, TiOSO₄; изучение морфологии, фазового состава, а также дефектности, электрической проводимости, противокоррозионных свойств полученных оксидных покрытий методами импедансной спектроскопии и линейной вольтамперометрии.

ОКСИДИРОВАНИЕ СТАЛИ AISI 304

№ п/п	Состав электролита с, г/л		Плотность тока коррозии					
		<i>Е_{j = 0}</i> , мВ	<i>Е_р</i> , мВ	$j_p,$ мА см $^{-2}$	<i>Е_{рр}</i> , мВ	<i>j_{pp}</i> , мА см ⁻²	Е _{О2} , мВ	<i>j</i> _к , мкА/см ²
1	300H ₂ SO ₄ , 50NaCl	-540	-490	52	-228	0.5	825	2.5×10^{-3}
2	300H ₂ SO ₄ , 50NaCl, 10Al ₂ (SO ₄) ₃ · 18H ₂ O	-473	-414	168	-177	0.2	885	6.5×10^{-6}
3	300H ₂ SO ₄ , 50NaCl, 10TiOSO ₄	-407	-323	187	-130	35	936	3.2×10^{-4}

Таблица 1. Результаты поляризационных исследований стали AISI 304 в кислых растворах

МЕТОДИКА ЭКСПЕРИМЕНТА

Синтез покрытий

В качестве образцов использовали пластины из стали AISI 304 (0.08% C, 17–19% Cr, 69% Fe, 9–11% Ni, ≤ 0.8 Si%, $\leq 0.2\%$ Mn) с площадью поверхности 4 см².

Формирование оксидных покрытий осуществляли в гальваностатическом режиме при плотности тока 8 А/дм² в течении 25 мин в электролитах, приведенных в табл. 1. В качестве катода использовали платиновую нить. Анод – сталь AISI 304. Процесс проводили в ячейке с рабочим объемом 200 мл при непрерывном перемешивании. Температура электролита 50–55°С.

Электрохимические методы исследования

Анодные поляризационные зависимости получали с помощью потенциостата IPC-рго со скоростью развертки потенциала 2 мВ/с. В качестве рабочего электрода использовалась сталь AISI 304. Вспомогательным электродом служила платиновая нить. Контроль потенциала осуществляли по хлорсеребряному электроду.

Рис. 1. Хронопотенциограмма стали AISI 304 в растворах: $I - N_{2}$ 1, $2 - N_{2}$ 2, $3 - N_{2}$ 3.

Исследования электрохимического импеданса и коррозионные испытания проводили на полученных оксидных покрытиях стали AISI 304 в 3% растворе NaCl. Измерения электрохимического импеданса выполнили с помощью потенциостата IPC-рго и частотного анализатора FRA. Диапазон частот составлял от 0.03 Гц до 50 кГц по последовательной схеме замещения [19, 22]. Для коррозионных испытаний поляризацию рабочего электрода осуществляли в области ±100 мВ от стационарного потенциала, выдержанного в течение 1 ч в растворе.

Физико-химические методы исследования

Исследования морфологии полученных покрытий осуществляли с помощью металлографического микроскопа ZEISSAxio с цифровой видеокамерой AxioCamMRc 5, обеспечивающего увеличение в 50–1000 раз. Исследования фазового состава полученных покрытий проводили на рентгеновском дифрактометре ДРОН-3.0 (СиКαизлучение).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Поляризационные исследования

Характер зависимости электродного потенциала от времени экспозиции нержавеющей стали и от состава раствора предоставляют целый ряд важных сведений об анодном поведении металлов и сплавов. Хронопотенциограммы стали AISI 304 в кислых растворах при добавлении Al₂(SO₄)₃ · 18H₂O, TiOSO₄ в электролит № 1 (табл. 1) демонстрирует, что потенциал ($E_{j=0}$) смещается в электроположительную сторону (рис. 1). Дальнейшее увеличение продолжительности времени экспозиции стали в растворах не влияет на величину стационарного потенциала.

Процесс формирования оксидных покрытий в Al-, Тi-содержащих растворах исследован с помощью метода линейной вольтамперометрии (ЛВА). Анодные поляризационные зависимости стали

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 56 № 2 2020

Рис. 2. Анодные поляризационные зависимости стали AISI 304 в растворах: I - № 1, 2 - № 2, 3 - № 3.

AISI 304 имеют классический вид для металлов и сплавов склонных к пассивности (рис. 2). Характер и устойчивость пассивного состояния в зависимости от состава электролита весьма различны. Это иллюстрируется анализом реальных анодных поляризационных зависимостей [23].

При анодной поляризации начинается процесс растворения стали, которому отвечает резкий подъем плотности тока. Растворение железа и хрома описываются уравнениями:

$$Fe \rightarrow Fe^{2+} + 2e$$
,
 $Cr \rightarrow Cr^{2+} + 2e$.

Вследствие чего приэлектродный слой обогащается катионами Fe²⁺, Cr²⁺. Поскольку катионы железа, хрома нестабильны, то они быстро окисляются до Fe³⁺ и Cr³⁺. Так как, стандартные потенциалы для системы Fe²⁺/Fe, Cr²⁺/Cr, Cr²⁺/Cr³⁺ имеют более электроотрицательные значения, нежели водородный и кислородный электроды, что создает условия для образования ди- и триоксидов металлов.

В растворах № 2, 3 плотность тока пассивации (j_p) намного выше, чем в растворе № 1 (табл. 1), что указывает на влияние соединений алюминия и титана на процесс образования кислородсодер-жащих поверхностных пленок.

При дальнейшем смещении потенциала в анодную область ток резко падает, и поверхность нержавеющей стали переходит в пассивное состояние ($E_{pp} - E_{O_2}$). В этой области происходит перестроение структуры поверхностных слоев и электрохимическое образование пассивной оксидной пленки. Значения плотности токов полной пассивации (j_{pp}) указывает, что наличие в составе пассивной пленки оксида титана увеличивает ее проводимость, а оксида алюминия незначительно снижает.

Рис. 3. Поляризационные зависимости в 3% NaCl стали AISI 304 с оксидными покрытиями, полученными в растворах: 1 - 6ез покрытия, 2 - № 1, 3 - № 2, 4 - № 3.

При достижении E_{O_2} происходит резкое увеличение силы тока, что отвечает началу выделения кислорода. На зависимостях (2) и (3) E_{O_2} наступает позже, что доказывает влияние состава электролита на протяжность области пассивности стали.

Поляризационные зависимости стали AISI 304 с оксидными покрытиями (рис. 3), полученные в 3% NaCl, указывают, что введение в состав покрытий алюминий-, титансодержащих соединений смещает потенциал коррозии в электроположительную сторону.

Экспериментальное определение плотности тока коррозии (j_k) из тафелевских координат *E*-lg*j* в точке пересечения линейных участков анодных и катодных поляризационных зависимостей при потенциале коррозии, показало увеличение защитных свойств (табл. 1) для покрытий, полученных в электролитах № 2, 3. Низкая скорость коррозии наблюдается для алюминийсодержащих оксидных покрытий, что полностью согласуется с результатами ЛВА.

Импедансная спектроскопия

Согласно научным работам авторов [24], импедансный спектр системы "металл—оксид электролит" на примере тантала в кислых растворах описывается уравнением:

$$Z = r - \frac{1}{\omega C_0} \frac{1}{1 + \left(\frac{1}{\omega C_0 R_y} + \mathrm{tg}\delta_0\right)^2} \times$$

$$\times \left(\frac{1}{\omega C_0 R_y} + \mathrm{tg}\delta_0 + j\right),$$
(1)

где Z – эквивалентное последовательное сопротивление, ω – частота, C_0 – емкость сплошного оксидного слоя, R_v – сопротивление утечки по де-

Рис. 4. Зависимость tg δ от частоты для оксидных покрытий, полученных в растворах: *1* − без покрытия, $2 - N \circ 1, 3 - N \circ 2, 4 - N \circ 3.$

фектам и проводящим включениям оксидного слоя, r – сопротивление слоя электролита, tg δ_0 – тангенс угла диэлектрических потерь.

Для последовательных эквивалентных емкости C_s и сопротивления R_s систем "металл—оксид—электролит" зависимости $1/C_s \sim \lg f$ и $R_s \sim 1/f$ линейны. Отсюда следует, что тангенс угла диэлектрических потерь $\lg \delta = \omega R_s C_s$, должен очень слабо изменяться с изменением частоты, т.е. $\lg \delta =$ $= \omega R_s C_s \approx$ const, что подтверждается экспериментально для тантала и алюминия, титана [14, 24].

В данной работе были определены параметры импеданса из экспериментальной графика зависимости tg δ от частоты (рис. 4) и R_s по формулам, приведенным в [24]:

$$tg\delta = \frac{1}{\omega C_0 R_v} + tg\delta_0, \qquad (2)$$

где tg δ – тангенс угла активных потерь.

Эквивалентное последовательное сопротивление для покрытий с малым числом дефектов

$$R_{s} = r + \frac{1}{\omega C_{0}} \mathrm{tg}\delta_{0}, \qquad (3)$$

Таблица 2. Зависимость параметров системы "металл-оксид-электролит" от состава электролита

N⁰	<i>r</i> , Ом	<i>R_y</i> , кОм	С ₀ , мкФ	$f_{\min},$ Гц	$tg\delta_0$
Без покрытия	9.9	3.01	39.8	140	0.636
1	13.25	14.72	26.4	130	1.035
2	8.7	975.55	58.03	125	0.672
3	9.46	55.84	53.9	120	0.33

Рис. 5. Зависимость эквивалентного последовательного сопротивления $R_{\rm s}$ от частоты для оксидных покрытий, полученных в растворах: 1 - 6ез покрытия, $2 - N_{\rm o}$ 1, $3 - N_{\rm o}$ 2, $4 - N_{\rm o}$ 3.

где *r* — сопротивление слоя электролита между электродами.

На графике и в таблице вместо круговой частоты ω стоят частоты *f* в Гц.

График зависимости tgδ от частоты представленный на рис. 3 полностью соответствует уравнению (1).

Значения tg δ_0 найденные экстраполяцией линейной части зависимости tg $\delta \sim f \kappa$ нулю (рис. 4) и по наклону прямых $R_s \sim 1/f$ (рис. 5) близки по значению, что есть доказательством точности полученных расчетов. Так, например, для покрытия, полученного из электролита № 2, значение tg δ_0 , рассчитанное экстраполяцией правой ветви зависимости tg $\delta \sim f \kappa$ нулю, равно 0.672, а значение tg δ_0 , рассчитанное по наклону прямых $R_s \sim 1/f$, равно 0.677.

Покрытие, полученное из электролита № 1 обладает большим количеством дефектов, об этом свидетельствует повышенное значение $tg\delta_0$. Введение в состав покрытий Ті-содержащих соединений приводит к увеличению значения R_y , а Al-содержащих — к резкому увеличению сопротивления R_y (табл. 2). Это указывает на уменьшение дефектности алюминий-, титансодержащих оксидных покрытий по сравнению с покрытием, полученного из электролита № 1.

Незначительный рост $tg\delta_0$ наблюдается, при исследовании полученного покрытия из алюминийсодержащего раствора, что объясняется наличием дефектов в оксидной пленке, но их малое количество не определяет общие сопротивление R_y . Значения $tg\delta_0$ и R_y указывают на формирование оксидных покрытий более совершенной структуры. Полученные данные полностью подтверждают результаты коррозионных испытаний.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 56 № 2 2020

ШТЕФАН, КАНУННИКОВА

Рис. 6. Микрофотографии поверхности полученных оксидных покрытий в растворах: (а) № 1, (б) № 2, (в) № 3. Плотность тока 8 А/дм².

Морфология полученных покрытий

На рис. 6 представлены микрофотографии поверхности образцов стали AISI 304 с оксидными покрытиями, полученные методом электрохимического оксидирования (увеличение в 500 раз). При введении Al₂(SO₄)₃ · 18H₂O, TiOSO₄ к электролиту № 1 на микрофотографии наблюдается более мелкая глобулярная морфология покрытий, а размеры глобул составили 1–3 мкм, что отражается на плохой электрической проводимости оксидного слоя.

РΦА

Как показал рентгенофазовый анализ, покрытия состоят в основном из оксидов железа, а также были обнаружены фазы $FeAl_2O_4$, Al_2O_3 , $Ni_2Al_{18}O_{29}$ (рис. 7); $CrTiO_5$, $CrTiO_3$, TiO_2 , Ni_2TiO_4 (рис. 8). Образование оксидов алюминия и титана различных степеней окисления уменьшает дефектность, электрическую проводимость оксидных покрытий, что подтверждают результаты импедансной спектроскопии и коррозионных испытаний. Структура покрытий кристаллическая.

Рис. 7. Рентгенограмма оксидного слоя, сформированного в электролите № 2.

ЗАКЛЮЧЕНИЕ

Методом линейной вольтамперометрии исследовано анодное поведение стали AISI 304 в кислых растворах, содержащих соединения алюминия и титана.

Сформированы оксидные покрытия из кислых электролитов методом электрохимического оксидирования с последующим изучением морфологии и фазового состава. Установлено, что введение $Al_2(SO_4)_3 \cdot 18H_2O$, TiOSO₄ в состав покрытий существенно влияет на морфологию поверхности формируемых покрытий.

Согласно полученным результатам РФА, в составе оксидных покрытий преобладают оксиды железа, однако, в покрытиях, сформированных в Al-, Тi-содержащих растворах присутствуют оксиды алюминия и титана.

Для исследования свойств оксидных покрытий применен метод импедансной спектроскопии и проведены коррозионные испытания. Установлено, что введение в состав покрытий оксидов алюминия и титана уменьшает дефектность, электрическую проводимость оксидных пленок, а также существенно снижает скорости коррозии в хлоридных средах.

Рис. 8. Рентгенограмма оксидного слоя, сформированного в электролите № 3.

Результаты всех проведенных исследований показывают целесообразность введения в состав покрытий Al- и Ti-содержащих соединений для повышения защитных свойств стали AISI 304.

СПИСОК ЛИТЕРАТУРЫ

- Taveira L.V. et al. // Corrosion Science. 2010. V. 52. P. 2813–2818.
- 2. Зубченко А.С. // Автоматическая сварка. 2008. № 11. С. 208-213.
- 3. Ajeel S.A. et al. // Mechanical Engineering and Technology (IJMET). 2013. V. 4. № 3. P. 63–74.
- 4. *Zhan-wen Wu et al.* // Transactions of Nonferrous Metals Society of China. 2014. V. 24. P. 1989–1994.
- 5. *Krouse D. et al.* // Corrosion engineering science and technology. 2014. V. 49. P. 521.
- 6. *Наривский А.Э., Солидор Н.А.* // Вісник ПДТУ. 2011. Т. 23. № 2. С. 87–97.
- Cavanaugh M.K. et al. // Corrosion Science. 2010. V. 52. P. 3070.
- Chen Y.Y. et al. // Materials Chemistry and Physics. 2006. V. 96. P. 37–49.
- 9. *Белоус В.Я., Гурвич Л.Я., Ерофеева В.Л. и др.* // Защита металлов. 1995. Т. 31. № 2. С. 184–190.
- 10. Варченко Е.А., Курс М.Г. // Труды ВИАМ. 2018. Т. 67. № 7. С. 96-105.
- 11. Nishimura R. // Corrosion Science. 2007. V. 49. P. 81-91.

- Saifu D. et al. // International J. Electrochemical Science. 2017. V. 12. P. 1106–1117.
- Aydogbu G.H. et al. // Corrosion Science. 2006. V. 48. P. 3565–3583.
- Bellezze T. et al. // Materials and Corrosion. 2008. V. 59. № 9. P. 727–731.
- Vasconcelos K.O. et al. // J. Brazilian Chemical Society. 2010. V. 21.3. P. 469–475.
- 16. *Shtefan V.V., Smyrnov O.O., Bezhenko A.O. et al.* // Materials Science. 2019. V. 54. № 4. P. 512–518.
- Пат. Украина 119022 (опубл. 2019). Способ электрохимического оксидирования нержавеющей стали.
- Мирзоев Р.А., Давыдов А.Д. Анодные процессы электрохимической и химической обработки металлов. СПб.: Изд-во Политехн. ун-та, 2013. С. 382.
- 19. *Shtefan V.V., Smirnova A.Y.* // Russian J. Electrochemistry. 2015. V. 51. № 12. P. 1168–1175.
- 20. Смирнова А.Ю., Штефан В.В. // Коррозия: материалы, защита. 2014. № 8. С. 14–19.
- 21. Shtefan V.V., Bairachnyi B.I., Lisachuk G.V. et al. // Materials Science. 2016. V. 51. № 5. P. 711–718.
- 22. *Shtefan V.V., Smirnova A.Y.* // Protection of Metals and Physical Chemistry of Surfaces. 2017. V. 53. № 2. P. 322–328.
- 23. Shtefan V., Kanunnikova N., Pilipenko A. et al. // Materials Today: Proceedings. 2019. V. 6. № P2. P. 149–156.
- 24. Одынец Л.Л., Прохорова Л.А., Чекмасова С.С. // Электрохимия. 1974. Т. 10. № 8. С. 1225–1228.