НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 544.654.2

ЭЛЕКТРООСАЖДЕНИЕ ЦИНК-НИКЕЛЕВЫХ ПОКРЫТИЙ ИЗ ГЛИЦИН-СОДЕРЖАЩЕГО АММИАЧНО-ХЛОРИДНОГО ЭЛЕКТРОЛИТА

© 2020 г. Д. В. Бурляев¹, А. Е. Тинаева¹, К. Е. Тинаева¹, О. А. Козадеров^{1, *}

¹Воронежский государственный университет, Университетская пл., 1, Воронеж, 394018 Россия

*e-mail: ok@chem.vsu.ru Поступила в редакцию 02.05.2019 г. После доработки 10.10.2019 г. Принята к публикации 17.10.2019 г.

Изучены кинетические закономерности процесса электроосаждения сплавных цинк-никелевых покрытий из аммиачно-хлоридного раствора электролита. Установлено влияние добавки аминоуксусной кислоты на механизм процесса электроосаждения, выход по току, морфологию поверхности, химический и фазовый состав синтезируемых покрытий. Процесс электрохимического осаждения сплавов системы Zn-Ni из аммиачно-хлоридного электролита осложнен диффузионным транспортом ионов в жидкой фазе раствора электролита, при этом кинетическая стадия переноса заряда протекает необратимо. Добавка аминоуксусной кислоты не меняет механизма процесса электроосаждения, однако приблизительно на 6% увеличивает выход по току целевого процесса, предположительно, за счет снижения вклада реакции выделения водорода в общую скорость катодного процесса. Добавка глицина улучшает морфологию поверхности синтезируемых покрытий за счет снижения шероховатости и более плотной упаковки зародышей растущей фазы, а также увеличивает содержание никеля в сплаве в среднем на 4 ат. %, но не влияет на фазовый состав покрытий, которые остаются гетерогенными и состоят из γ-фазы Ni₂Zn₁₁ и Zn. Проведена количественная оценка противокоррозионной эффективности электроосажденных цинк-никелевых сплавов в зависимости от наличия аминоуксусной кислоты в растворе электролита. Обнаружено, что введение глицина в аммиачно-хлоридный электролит осаждения приводит к облагораживанию коррозионного потенциала и заметному снижению плотности тока коррозии Zn, Ni-сплавного покрытия в водном растворе 3.5% NaCl. Это свидетельствует о повышении устойчивости электрохимически синтезируемого защитного пленочного материала к коррозионному разрушению. Подобраны оптимальные условия электрохимического синтеза морфологически однородных противокоррозионных цинк-никелевых покрытий.

Ключевые слова: электроосаждение, цинк-никелевые сплавы, покрытия, аммиачно-хлоридный электролит, глицин, выход по току, коррозия, хроноамперометрия, вольтамперометрия **DOI:** 10.31857/S0044185620030079

введение

При разработке современных материалов и технологий одним из перспективных направлений являются работы в области электроосаждения сплавов как метода получения покрытий с зашитными и специальными свойствами. Особое внимание уделяется электрохимическому синтезу пленочных материалов, построенных на основе цинка. Возрастание требований к функциональным свойствам шинковых покрытий вызвало необходимость разработки процессов получения гальванических систем, в основу которых положены сплавы цинка. На практике они особенно эффективны для защиты от коррозии материалов, подвергающихся агрессивному разрушительному воздействию окружающей среды, например, днищ кораблей, аппаратуры и сооружений, работающих в морских условиях солевого тумана. Так, в связи с разработкой ряда новых нефтяных месторождений актуальной становится использование Zn-содержащих материалов для защиты нефтепромыслового оборудования от солевой коррозии [1].

Перспективной является модификация цинкового покрытия с целью увеличения коррозионной и термической стойкости, механической прочности покрытия при уменьшении его толщины. Повышение коррозионной стойкости покрытий на основе цинка с одновременным сохранением его электроотрицательности по отношению к защищаемому материалу (в основном, стали) может быть достигнуто легированием цинка на катоде металлами, образующими с Zn интерметаллические соединения [2]. Это позволяет полностью исключить нежелательное по экологическим причинам применение покрытий на основе токсичного кадмия [3].

Лействительно, сплавы системы "пинк-никель" постепенно вытесняют Cd-содержащие системы, используемые в промышленности для защиты металлических материалов от коррозионного разрушения. При этом гомогенный сплав с атомной долей никеля 12-15 ат. %, представляющий γ-фазу состава Ni₂Zn₁₁, характеризуется наилучшими противокоррозионными свойствами среди сплавов данной группы, существенно превосходящими покрытия из чистого цинка [4-6]. Более того, большинство функциональных свойств гальванических покрытий определяется структурой, фазовым и химическим составом сплава, наличием инородных включений. Как правило, оптимальными свойствами обладают твердые растворы и интерметаллические фазы, например, пирометаллургические сплавы Zn-Ni (у-фаза) при содержании 14–20 мас. % Ni. Однако в случае гальванических осадков Zn-Ni, полученных из различных электролитов, одинаковому химическому составу сплава может отвечать различный фазовый состав [1, 6]. Тем не менее, коррозионно-стойкие интерметаллиды на основе никеля (например, Ni₅Zn₂₁ (γ -фаза)) обнаруживаются и в электроосажденных сплавах [1, 3, 5]. При этом гальванопокрытия часто превосходят литые сплавы по чистоте осадка, равномерности, мелкокристалличности и ряду других функциональных свойств [1, 6]. Помимо механической и коррозионной защиты гальванопокрытия на основе цинк-никелевых сплавов могут быть использованы как исходные системы для получения пористого (в том числе и нанопористого) никеля путем селективного растворения шинка. Синтезируемый таким образом материал характеризуется большой площадью электрохимически активной поверхности, а потому является перспективным электрокатализатором, например, в реакциях анодного окислении метанола в твердополимерных топливных элементах, получения водорода, гидрирования органических соединений [7, 8]. В этой связи актуальными задачами являются электрохимическое получение цинк-никелевых покрытий, содержащих гомогенные интерметаллические фазы, изучение закономерностей их синтеза, а также оценка коррозионной устойчивости.

Основным методом получения цинк-никелевых сплавных покрытий является катодное электроосаждение [9–11], кинетические закономерности которого, а также свойства синтезируемого материала зависят от наличия в электролите осаждения органических добавок, выступающих в качестве комплексообразователей [12–16]. В качестве такой добавки в настоящей работе используется аминоуксусная кислота (глицин), роль которой в кинетике электроосаждения сплавов системы Zn—Ni, их составе, морфологии и устойчивости к коррозии впервые изучается на основе комплексного подхода.

Цель работы — установление влияния добавки глицина на кинетические закономерности процесса электроосаждения цинк-никелевых сплавных покрытий из аммиачно-хлоридного электролита, состав пленочных сплавов, морфологию поверхности, выход по току целевого процесса, а также оценка противокоррозионной эффективности синтезированных покрытий.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Шинк-никелевые покрытия осаждали в потенциостатических или потенциодинамических условиях поляризации на медную или золотую подложку из аммиачно-хлоридного раствора без добавок состава 0.15 M ZnCl₂ + 0.30 M NiCl₂ + 3.00 M NH₄Cl (рН 3.6), а также из раствора электролита с добавкой глицина состава 0.15 М ZnCl₂ + 0.30 М NiCl₂ + $+ 3.00 \text{ M NH}_4\text{Cl} + 0.30 \text{ M NH}_2\text{CH}_2\text{COOH} (\text{pH} 3.2)$ в условиях естественной аэрации. Для проведения коррозионных испытаний синтезированных цинк-никелевых покрытий использовали 3.5% водный аэрированный раствор NaCl (pH 7.4). Растворы приготовлены на дважды дистиллированной воде (бидистиллятор УПВА-5) из ч. д. а. и х. ч. реактивов. Электрохимические измерения проводили при комнатной температуре 293 ± 2°C в трехэлектродной ячейке без разделения катодного и анодного пространств. Потенциодинамический и потенциостатический режимы электролиза реализованы при помощи компьютеризированного потенциостата/гальваностата IPC-Pro L. Рабочим электродом служила медная пластина (геометрическая площадь $S_{\text{geom}} = 1 \text{ см}^2$) или золотой электрод ($S_{\text{geom}} = 0.14 \text{ см}^2$) — в экспериментах по электроосаждению, а также цинковый электрод ($S_{\text{geom}} = 0.17 \text{ см}^2$) — в коррозионных испытаниях. Подготовка электродов включала зачистку на шлифовальной бумаге, полировку до зеркального блеска на замше с водной суспензией MgO, обезжиривание этанолом, промывание бидистиллированной водой и сушку в токе аргона. Вспомогательный электрод – платиновая пластина, электрод сравнения – хлоридсеребряный электрод. Потенциалы Е в работе приведены по шкале стандартного водородного электрода (ст. в. э.). Плотность тока і рассчитана на единицу геометрической площади электродов.

Морфологию поверхности синтезируемых покрытий исследовали методами металлографической и растровой электронной микроскопии (РЭМ) (микроскопы Altami MET 1T и JSM-6380LV соответственно). Для определения химического состава покрытий использовали метод рентгеноспектрального микроанализа (РСМА) (система микроанализа INCA 250), фазового — метод рентгеновской дифракции (дифрактометр ARL X'TRA Thermo Scientific).

Результаты РЭМ-, РСМА- и дифрактометрических исследований получены на оборудовании ЦКПНО ВГУ.

Циклические вольтамперограммы регистрировали, сканируя потенциал со скоростью V от бестокового стационарного значения вначале в катодную область до E = -1200 мВ, затем в обратном направлении до +400 мВ. Параметр V варьировали от 5 до 200 мВ/с. Электроосаждение цинк-никелевых покрытий толщиной ~5 мкм осуществляли в потенциостатическом режиме поляризации в интервале катодных потенциалов от -860 до -1000 мВ. Выход по току определяли гравиметрическим методом.

Измерение транзиента коррозионного потенциала и снятие поляризационных кривых с дальнейшим определением потенциала и тока коррозии методом экстраполяции Тафеля являются одними из основных способов оценки противокоррозионной эффективности материалов [17–19]. Коррозионные испытания проводили, погружая образец покрытия в ячейку, заполненную 3.5% водным раствором NaCl и регистрируя изменение стационарного потенциала $E_{\rm corr}$ во времени в течение не менее двух часов. После установления постоянного значения Есогг регистрировали вольтамперограммы, сканируя потенциал электрода со скоростью 5 мB/с в интервале от $E = E_{corr} - 400$ мB до $E = E_{\text{corr}} + 400 \text{ мB}$, и перестраивали их в Тафелевых $\lg i - E$ координатах.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Анализ катодных ветвей циклических вольтамперограмм, полученных на Аи-электроде в аммиачно-хлоридных растворах при V = const, позволяет сделать вывод, что добавление глицина в электролит приводит к незначительному облагораживанию потенциалов катодного осаждения (рис. 1). В свою очередь, анодные максимумы $A_1 - A_3$, соответствующие инверсионному растворению покрытий, полученных при катодном сканировании в растворах без добавки и с добавкой аминоуксусной кислоты, также несколько смещены друг относительно друга, что свидетельствует о возможном различии в химическом и/или фазовом составе продуктов осаждения. При этом согласно литературным данным [20-23] анодные пики A_1 и A_2 относятся к селективному растворению цинка из цинк-никелевых фаз различного состава (α -, γ -, η -фазы), в то время как пик A_3 – к растворению никеля из обесцинкованного покрытия.

Рис. 1. Циклические вольтамперограммы, полученные в аммиачно-хлоридных электролитах с добавкой глицина, без добавки глицина. Подложка — Au, скорость развертки потенциала 10 мB/с, сканирование потенциала от бестокового значения $E \approx 400$ мB (ст. в. э.) в катодную область, затем в анодную.

С ростом скорости сканирования потенциала высота максимума i_{max} на катодной ветви циклограммы увеличивается, причем i_{max} , *V*-зависимость линеаризуется в координатах Рендлса–Шевчика (рис. 2а). Увеличение *V* приводит к сдвигу потенциала максимума в положительную сторону (рис. 2б). Согласно теории линейной вольтамперометрии [24–26], это свидетельствует о том, что процесс осложнен объемно-диффузионным транспортом разряжающихся ионов к поверхности электрода, а кинетическая стадия переноса заряда является необратимой. Таким образом, электроосаждение протекает в смешанно-кинетическом диффузионно-электрохимическом режиме.

Данный вывод справедлив для обоих типов растворов независимо от наличия глицина, т.е. добавка аминоуксусной кислоты на механизм процесса электроосаждения цинк-никелевых сплавов из аммиачно-хлоридного электролита не влияет. В то же время отрезки, отсекаемые прямыми в координатах Рендлса-Шевчика (рис. 2а) на оси ординат, имеют различную величину для разных растворов (~16 мА/см² для случая без добавки глицина и ~11 мА/см² для случая с добавкой глицина). Поскольку данные отрезки, вероятно, характеризуют скорость побочных процессов, протекающих на катоде параллельно с электроосаждением (прежде всего, это выделение водорода), то справедливо отметить, что добавка глицина снижает их вклад в общую скорость приблизительно в полтора раза.

По данным PCMA независимо от потенциала осаждения E_{dep} и наличия глицина в растворе электролита осаждения сплавные Zn, Ni-покрытия построены на основе цинка (табл. 1). Добавка

Рис. 2. (а) Зависимость потенциала максимума пика катодного осаждения от десятичного логарифма скорости развертки потенциала; (б) зависимость плотности тока максимума пика катодного осаждения от квадратного корня из скорости сканирования потенциала.

Рис. 3. Рентгеновские дифрактограммы Zn, Ni-покрытий, полученных электроосаждением на медную подложку из аммиачно-хлоридных растворов без глицина (пунктир) и с глицином (сплошная линия) при потенциале осаждения $E_{dep} = -880$ мB.

Таблица 1. Химический состав цинк-никелевых покрытий и выход по току процесса их электроосаждения из аммиачно-хлоридного раствора, не содержащего (числитель) и содержащего (знаменатель) добавку глицина

$E_{\rm dep}$, мВ	Атомная доля никеля, %	Выход по току, %	
-860	$\frac{9.2 \pm 0.5}{14.1 \pm 0.5}$	<u>89</u> 94	
-900	$\frac{9.2 \pm 0.5}{12.7 \pm 0.5}$	$\frac{86}{94}$	
-1000	$\frac{11.0 \pm 0.5}{15.3 \pm 0.5}$	$\frac{86}{92}$	

аминоуксусной кислоты увеличивает содержание никеля в сплаве в среднем приблизительно на 4 ат. %. При этом, однако, не изменяется качественный фазовый состав покрытий (рис. 3), которые являются гетерогенными, поскольку состоят из металлического цинка и γ-фазы системы Zn-Ni, включающей преимущественно интерметаллид Ni₂Zn₁₁.

Анализ данных растровой электронной микроскопии (рис. 4) показывает, что покрытия, синтезированные из глицинсодержащего раствора электролита, являются более гладкими за счет снижения общей шероховатости и уменьшения размеров зародышей растущей фазы. Кроме того, они характеризуются отсутствием крупных трещин на поверхности, характерных для покрытий, полученных из раствора без добавки аминоуксусной кислоты. Учитывая, что более равномерные и мелкозернистые покрытия получаются при относительно более низкой скорости осаждения сплава [17], можно прийти к выводу, что наблюдаемый эффект обусловлен, скорее всего, снижением плотности тока катодного осаждения при добавлении глицина.

Следует отметить не только улучшение морфологии поверхности покрытия в случае использования добавки NH_2CH_2COOH , но и отсутствие неровностей, возникающих при выделении газообразного водорода в процессе электроосаждения. Это можно объяснить упомянутым выше уменьшением вклада побочных реакций в общую скорость катодного процесса при введении добавки аминоуксусной кислоты в раствор электролита. Это подтверждает и расчет выхода по току целевого процесса, который почти не зависит от потенциала осаждения E_{dep} , однако увеличивается приблизительно на 6% при добавлении глицина (табл. 1).

Рис. 4. РЭМ-фотографии поверхностей и составы Zn, Ni-сплавов, полученных электроосаждением из аммиачно-хлоридного электролита без добавки (а) и с добавкой глицина (б) при разных потенциалах осаждения.

Для оценки противокоррозионной эффективности синтезированных цинк-никелевых покрытий получены зависимости стационарного потенциала $E_{\rm corr}$ от времени в 3.5% водном растворе NaCl (рис. 5). Видно, что во всех случаях коррозионный потенциал цинк-никелевых покрытий, устанавливающийся в хлоридной среде, находится в более положительной области по сравнению с коррозионным потенциалом чистого цинка, т.е. происходит облагораживание потенциала свободной коррозии. При этом самым положительным значением коррозионного потенциала, независимо от наличия добавки глицина в электролите осаждения, характеризуются покрытия, синтезированные при потенциале осаждения —1000 мВ, что связано, вероятно, с большим содержанием никеля в таких покрытиях. Во всех случаях $E_{\rm corr}$ цинк-никелевых покрытий в хлоридной среде

Рис. 5. Транзиенты коррозионного потенциала, снятые при погружении Zn, Ni-сплавного покрытия (потенциалы осаждения приведены на рисунке) и чистого цинка в 3.5% водный раствор NaCl. Электролит осаждения не содержал (а) и содержал (б) добавку аминоуксусной кислоты.

смещается в положительную область и затем стабилизируется. Такое облагораживание коррозионного потенциала, согласно литературным данным [17, 18], может свидетельствовать о частичном обесцинковании поверхности покрытий в ходе коррозионного процесса, что приводит к некоторому обогащению поверхностного слоя более электроположительным компонентом сплава никелем.

Рассмотрим поляризационные кривые в Тафелевых координатах, снятые на исследуемых Zn, Ni-покрытиях и на цинке в 3.5% растворе NaCl (рис. 6). Видно, что для покрытий, полученных из глицинсодержащего электролита, характерно смещение коррозионного потенциала в катодную сторону при сдвиге потенциала осаждения в отрицательную область, в то время как для покрытий, синтезированных из электролита без добавки глицина, подобной закономерности не наблюдается.

По данным, представленным на рис. 6, методом экстраполяции Тафеля рассчитывали коррозионные потенциалы E_{corr} и плотности токов коррозии i_{corr} для всех исследуемых Zn, Ni-покрытий и для цинка с целью оценки их противокоррозионной эффективности (табл. 2). Следует отметить,

Рис. 6. Поляризационные кривые в Тафелевых координатах, полученные в 3.5% NaCl на цинке и цинкникелевых покрытиях, осажденных при разных потенциалах из аммиачно-хлоридного электролита, не содержащего добавки глицина (а), содержащего добавку глицина (б).

что во всех случаях Zn, Ni-сплавные покрытия характеризуются существенно меньшими значениями токов коррозии по сравнению с цинком, что согласуется с данными [4–6, 27–33]. При этом покрытия, осажденные из глицинсодержащего электролита, также характеризуются более низкими токами коррозии по сравнению с аналогичными покрытиями, полученными из электролита, не содержащего глицин, при тех же потенциалах осаждения. Кроме того, наблюдается облагораживание коррозионного потенциала, что может быть связано как с улучшением морфологии поверхности покрытий, так и с увеличением содержания никеля в сплавах в связи с добавкой аминоуксусной кислоты.

Для Zn, Ni-покрытий, синтезированных из глицинсодержащего аммиачно-хлоридного электролита, наблюдается следующая тенденция: смещение потенциала электроосаждения покрытия в катодную область приводит к снижению плотности тока коррозии (с $3.98 \text{ до} 0.50 \ \mu\text{A/cm}^2$) и облагораживанию коррозионного потенциала (с $-950 \ \text{дo} -714 \ \text{mB}$). Наиболее вероятной причиной такой закономерности является увеличение содержания никеля в покрытии, подтвержденное

Поточного сосудания и р	Состав покрытия		E NB	<i>i</i> U A / or r^2
потенциал осаждения, мв	<i>X</i> _{Zn} , %	X _{Ni} , %	$L_{\rm corr}, {\rm MD}$	$l_{\rm corr},\mu A/CM$
	99.99	—	-1052	13.57
-860	90.79	9.21	-961	3.98
-860 (g)	85.91	14.09	-950	2.51
-880	90.80	9.20	-996	6.31
-880 (g)	86.94	13.06	-806	1.58
-900	90.77	9.23	-949	2.11
-900 (g)	87.26	12.74	-738	0.92
-1000	88.96	11.04	-998	6.60
-1000 (g)	84.73	15.27	-714	0.50

Таблица 2. Потенциалы и токи коррозии Zn/Zn, Ni-сплавных покрытий, рассчитанные методом экстраполяции Тафеля. Раствор — 3.5% NaCl. Символ "g" в столбце "потенциал осаждения" означает, что покрытие получено осаждением из глицинсодержащего электролита

экспериментально (табл. 2). Однако не исключено, что наблюдаемые изменения коррозионных характеристик цинк-никелевого сплава связаны также с изменением его количественного фазового состава. Возможно, разблагораживание потенциала осаждения вкупе с введением коплексообразователя в электролит способствуют увеличению доли наиболее коррозионно стойкой γ-фазы в синтезируемом покрытии, что в свою очередь существенно повышает его устойчивость к коррозионному разрушению.

выводы

1. Процесс электрохимического осаждения сплавов системы Zn—Ni из аммиачно-хлоридного электролита осложнен диффузионным транспортом ионов в жидкой фазе, при этом кинетическая стадия переноса заряда протекает необратимо.

2. Добавка глицина в концентрации 0.30 М не влияет на механизм электроосаждения Zn, Ni-сплавов, но приблизительно в полтора раза снижает вклад побочных реакций (вероятно, выделения водорода) в общую скорость катодного процесса.

3. Пленочные Zn, Ni-сплавы, электрохимически синтезированные из аммиачно-хлоридного электролита, построены на основе цинка, атомная доля которого практически не зависит от потенциала осаждения и в среднем составляет 10 ат. %. Добавление аминоуксусной кислоты в аммиачно-хлоридный электролит приводит к обогащению сплава никелем, доля которого становится примерно на 4 ат. % выше по сравнению со сплавами, полученными из аналогичного электролита без добавки глицина. При этом введение аминоуксусной кислоты в электролит осаждения не оказывает заметного влияния на качественный фазовый состав синтезируемых покрытий, которые во всех случаях представляют собой гетерогенную систему, состоящую из цинка и γ -фазы Ni_2Zn_{11} .

4. Электросаждение Zn, Ni-сплавов из глицинсодержащего аммиачно-хлоридного электролита позволяет получать более гладкие и блестящие покрытия, так как добавка аминоуксусной кислоты способствует снижению скорости осаждения сплава и, как следствие, шероховатости его поверхности.

5. Выход по току процесса электроосаждения цинк-никелевых сплавов из аммиачно-хлоридного электролита, не содержащего добавку глицина, слабо зависит от потенциала осаждения и равен в среднем примерно 87%. Добавление аминоуксусной кислоты к аммиачно-хлоридному электролиту осаждения увеличивает выход по току целевого процесса приблизительно на 6%.

6. Синтезируемые в настоящей работе Zn, Ni-покрытия существенно превосходят по противокоррозионной эффективности цинковое покрытие. При этом добавка глицина в аммиачно-хлоридный электролит осаждения дополнительно повышает коррозионную стойкость электроосажденных пленочных сплавов. Для Zn, Ni-покрытий, синтезированных из глицинсодержащего аммиачно-хлоридного электролита, наблюдается следующая тенденция: смещение потенциала электроосаждения сплава в катодную область приводит к снижению плотности тока коррозии (с 3.98 до 0.50 µA/см²) и облагораживанию коррозионного потенциала (с -950 до -714 мВ по шкале ст. в. э.), что, вероятно, связано с увеличением содержания никеля в покрытии и, как следствие, с повышением доли наиболее коррозионно-стойкой у-фазы.

СПИСОК ЛИТЕРАТУРЫ

- Шестаков М.А. / Автореф. дис. ... канд. хим. наук. Тюмень: Тюменский государственный нефтегазовый университет. 2007. 23 с.
- 2. Вячеславов П.М. Электролитическое осаждение сплавов. Л.: Машиностроение, 1986. С. 46.
- 3. Гаевская Т.В., Цыбульская Л.С., Бык Т.В. // Химические проблемы создания новых материалов и технологий. 2003. Вып. 2. С. 100.
- Vasilache T., Gutt S., Sandu I., Vasilache V., Gutt G., Risca M., Sandu A.V. // Recent Patents on Corrosion Science. 2010. V. 2. P. 1.
- Лякишев Н.П. Диаграммы состояния двойных металлических систем. М.: Машиностроение, 2001. Т. 3. С. 670.
- 6. Lotfia N., Aliofkhazraeia M., Rahmanib H., Barati Darbanda Gh. // Protection of Metals and Physical Chemistry of Surfaces. 2018. V. 54. № 6. P. 1102.
- Hosseini M.G., Abdolmaleki M., Ashrafpoor S. // J. Appl. Electrochem. 2012. V. 42. № 3. P. 153.
- Cai J., Xu J., Wang L., Zhang L., Zhou H., Zhong Y., Chen D., Fan H., Shao H., Zhang J., Cao C. // Int. J. Hydrogen Energy. 2013. V. 38. № 2. P. 934.
- Feng Z., Li Q., Zhang J., Tang P., Song H., An M. // Surface & Coatings Technology. 2015. V. 270. P. 47.
- 10. *Kondo K., Yokoyama M., Shinohara K.* // J. Electrochem. Soc. 1995. V. 142. № 7. P. 2256.
- 11. Garcia E., Sarret M., Müller C., Ortega J.A. // J. Electrochem. Soc. 2002. V. 149. № 5. P. 284.
- 12. *Conrad H., Corbett J., Goldenz T.D.* // J. Electrochem. Soc. 2012. V. 159. № 1. P. 29.
- 13. Mosavat S.H., Bahrololoom M.E., Shariat M.H. // Applied Surface Science. 2011. V. 257. № 20. P. 8311.
- Tsybulskaya L.S., Gaevskaya T.V., Purovskaya O.G., Byk T.V. // Surface & Coatings Technology. 2008. V. 203. № 3. P. 234.
- 15. Muresan L.M. // Studia Universitatis Babes-Bolyai Chemia. 2010. V. 55. № 1. P. 37.
- 16. *Soares M.E., Souza C.A.C., Kuri S.E.* // Surface & Coatings Technology. 2006. V. 201. № 6. P. 2953.

- 17. *Rajagopalan S.K.* Characterization of electrodeposited Zn–Ni alloy coatings as a replacement for electrodeposited Zn and Cd coatings. Montreal: McGill University, 2012. 221 p.
- 18. *Baldwin K.R., Robinson M.J., Smith C.J.E.* // Corrosion Science. 1993. V. 35. № 5–8. P. 1267.
- 19. *Rahsepar M., Bahrololoom M.E.* // Corrosion Science. 2009. V. 51. № 11. P. 2537.
- 20. *Elkhatabi F., Sarret M., Müller C.* // J. Electroanal. Chem. 1996. V. 404. № 1. P. 45.
- 21. *Lin Y., Selman J.R.* // J. Electrochem. Soc. 1993. V. 140. № 5. P. 1299.
- 22. Swathirajan S. // J. Electrochem. Soc. 1986. V. 133. № 4. P. 671.
- Elkhatabi F., Benballa M., Sarret M., Müller C. // Electrochim. Acta. 1999. V. 44. № 10. P. 1645.
- Hosseini M.G., Ashassi-Sorkhabi H., Ghiasvand H.A.Y. // Surface & Coatings Technology. 2008. V. 202. № 13. P. 2897.
- Trejo G., Ortega R., Meas Y., Ozil V.P., Chainet E., Nguyen B. // J. Electrochem. Soc. 1998. V. 145. № 12. P. 4090.
- 26. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Химия, 2001. 624 с.
- Chouchane S., Levesque A., Douglade J., Rehamnia R., Chopart J.P. // Surface & Coatings Technology. 2007. V. 201. № 14. P. 6212.
- Fratesi R., Roventi G. // Surface & Coatings Technology. 1996. V. 82. № 1–2. P. 158.
- 29. *Li G.Y., Lian J.S., Niu L.Y., Jiang Z.H.* // Surface & Coatings Technology. 2005. V. 191. № 1. P. 59.
- Ghaziof S., Gao W. // Applied Surface Science. 2014. V. 311. P. 635.
- 31. *Byk T.V., Tsybulskaya L.S., Gaevskaya T.V. //* Surface & Coatings Technology. 2008. V. 202. № 24. P. 5817.
- 32. Conrad H.A., Corbett J.R., Golden T.D. // J. Electrochem. Soc. 2012. V. 159. № 1. P. 29.
- 33. *Conde A., Arenas M.A., Damborenea J.J. //* Corrosion Science. 2011. V. 53. № 4. P. 1489.