ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ, 2020, том 56, № 4, с. 406–415

## \_\_\_\_ НАНОРАЗМЕРНЫЕ И НАНОСТРУКТУРИРОВАННЫЕ \_\_\_\_\_ Материалы и покрытия

УДК 54.057,541.64

# СИНТЕЗ ПОЛИАНИЛИНА В ПЛЕНКАХ ПОЛИЭТИЛЕНА С ПРИВИТЫМ СУЛЬФИРОВАННЫМ ПОЛИСТИРОЛОМ И СВОЙСТВА ЭТИХ ПЛЕНОК

© 2020 г. А. А. Исакова<sup>1, \*</sup>, О. Л. Грибкова<sup>1</sup>, А. Д. Алиев<sup>1</sup>, А. В. Инденбом<sup>1, 3</sup>, Н. В. Шевлякова<sup>2</sup>, В. А. Тверской<sup>2</sup>, А. А. Некрасов<sup>1</sup>

<sup>1</sup>Институт физической химии и электрохимии имени А.Н. Фрумкина РАН, Ленинский проспект, 31, корп. 4, Москва, 119071 Россия

<sup>2</sup>МИРЭА – Российский технологический университет, Институт тонких химических технологий

имени М.В. Ломоносова, пр. Вернадского, 78, Москва, 119454 Россия

<sup>3</sup>Московский физико-технический институт (национальный исследовательский университет),

Институтский пер., 9, Московская область, Долгопрудный, 141701 Россия

\**e-mail: Isakova\_Aleks@list.ru* Поступила в редакцию 17.01.2020 г. После доработки 05.02.2020 г. Принята к публикации 12.02.2020 г.

В работе представлены результаты по созданию электропроводящего слоя полианилина (ПАНИ) на поверхности пленки полиэтилена (ПЭ), модифицированной пост-радиационно-химической прививочной полимеризацией стирола с последующим сульфированием привитых цепей полистирола (ПС). Изучено распределение сульфированного ПС по толщине пленки ПЭ при варьировании как степени прививки ПС, так и степени сульфирования последнего. Показано, что с помощью указанной методики можно получить 2 типа пленок: поверхностно- и объемно-сульфированные. Синтез ПАНИ в полученных пленках проводили методом окислительной полимеризации анилина. Показано, что с синтез ПАНИ в большинстве композитных пленок имеет автокаталитический характер, подобный синтезу в среде полимерных кислот. Исследования этих пленок, содержащих ПАНИ, методами ИК-спектроскопии, атомно-силовой микроскопии и измерения их поверхностной проводимости показали, что только слои, сформированные на объемно-сульфированных пленках, в полной мере обладают свойствами, присущими ПАНИ. Минимальное из достигнутых значений поверхностного сопротивления (17 МОм/□) свидетельствует о перспективности данного метода для формирования пленочных кловерхностных слоях ПАНИ.

DOI: 10.31857/S0044185620040129

## введение

В последние годы проводящие полимеры рассматриваются как перспективные материалы для создания различных устройств в области микроэлектроники, главным образом, для создания электрохромных устройств, OLED-дисплеев, сенсорных устройств, датчиков, фотоэлектрических панелей и пр. [1]. Полианилин (ПАНИ) выделяется среди проводящих полимеров благодаря своей высокой электропроводности, химической стабильности в условиях окружающей среды, технологичности получения, в сочетании с низкой стоимостью и низкой токсичностью. Однако, несмотря на массу преимуществ, ПАНИ обладает рядом недостатков, включая низкую растворимость в обычных органических растворителях, плохие пленкообразуюшие и механические свойства.

Механические и пленкообразующие свойства ПАНИ могут быть значительно улучшены при его химическом синтезе в присутствии полимерных сульфокислот, в частности, полистиролсульфокислоты (ПССК), поли-2-акриламидо-2-метил-1-пропансульфоновой кислоты, других полимерных сульфокислот [2-4] или мембран, содержащих сульфокислотные группы (например, Нафион [5, 6] или МФ-4СК [7–9]). Наличие в матрицах таких функциональных групп как – SO<sub>3</sub>H, способных связывать молекулы анилина, обеспечивает достаточную для синтеза ПАНИ локальную концентрацию мономера в матрице и необходимое значение рН. Однако комплексы ПАНИ с поликислотами растворимы в воде и, хотя из них формируются пленки, последние все же имеют низкие физико-механические характеристики. С другой стороны, применение в качестве матриц для синтеза ПАНИ гидрофильных сульфокатионитовых мембран (Нафион, МФ-4СК), имеющих постоянную заданную концентрацию сульфокислотных групп, не позволяет получать на их основе

| Пленка<br>№ | Степень прививки ( <i>Δp</i> ), % | Содержание<br>ПС ( <i>F</i> ), % | Время сульфирования,<br>мин | СОЕ <sub>NaOH,</sub><br>мг-экв/г | [-SO <sub>3</sub> H]/[-St],<br>г-экв/моль-звено |
|-------------|-----------------------------------|----------------------------------|-----------------------------|----------------------------------|-------------------------------------------------|
| 1           | 17                                | 15                               | 10                          | 0.7                              | 0.53                                            |
| 2           | 43                                | 30                               | 10                          | 0.8                              | 0.30                                            |
| 3           | 93                                | 48                               | 10                          | 0.7                              | 0.16                                            |
| 4           | 17                                | 15                               | 60                          | 2.1                              | 1.79                                            |
| 5           | 43                                | 30                               | 60                          | 2.9                              | 1.3                                             |
| 6           | 93                                | 48                               | 60                          | 4.4                              | 1.5                                             |

Таблица 1. Характеристики пленок, содержащих сульфокислотные группы

материалы с регулируемой концентрацией и распределением в них ПАНИ.

Одним из возможных путей решения этих проблем является получение материалов, состоящих из подложки (матрицы), обеспечивающей необхолимые механические характеристики материала. и проводящего полимера (ПАНИ), действующего как активный компонент. В литературе описаны исследования, в которых ПАНИ был получен в присутствии неорганических кислот в матрице пористого полиэтилена (ПЭ) [10] и микропорах мембраны из политетрафторэтилена [11]. Однако проводящие свойства слоя ПАНИ, допированного соляной кислотой, могут ухудшаться со временем, а остаточные количества высококипящих кислот (серная, хлорная) могут частично переходить (вымываться) в жидкости, контактирующие с проводящим покрытием.

Одним из интересных и перспективных объектов исследования в рамках полимерного материаловедения являются привитые сополимеры, сочетающие в себе физико-химические и технологические свойства гомополимеров [12–15].

В данной работе исследована полимеризация анилина в сульфокатионитовых мембранах, представляющих собой пленки ПЭ с различным содержанием и распределением по толщине пленки привитой ПССК, и изучена структура и свойства полученных пленок, содержащих ПАНИ.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

#### Материалы

В качестве матриц для полимеризации анилина были использованы пленки ПЭ высокого давления толщиной 20 мкм с привитым сульфированным полистиролом (ПС). Эти пленки получали пост-радиационной прививочной полимеризацией стирола на предварительно пероксидированной пленке ПЭ с последующим сульфированием привитого ПС серной кислотой. Для генерации пероксидов в пленке ПЭ последнюю облучали на воздухе на источнике γ-излучения <sup>60</sup>Со. Пост-радиационно-химическую прививочную полимеризацию проводили в смеси стирол/метанол (1/1 по объему), содержащей сульфат железа(II) в качестве восстановителя пероксидов и ингибитора гомополимеризации стирола. Степень прививки ПС ( $\Delta p$ ) рассчитывали как увеличение массы пленки в результате образования на ПЭ привитых цепей ПС, отнесенное к массе исходной пленки:

$$\Delta p = [(m_1 - m_0)/m_0] \times 100\%,$$

где  $m_0$  и  $m_1$  — масса пленки до и после прививки ПС, соответственно,

Содержание ПС (*F*) в пленках рассчитывали по формуле:

$$F = [(m_1 - m_0)/m_1] \times 100\%.$$

Синтез этих пленок описан в работе [16].

Концентрацию сульфокислотных групп в пленках в H<sup>+</sup>-форме контролировали по величине их статической обменной емкости по 0.1 N водному раствору гидроокиси натрия (COE<sub>NaOH</sub>).

Основные характеристики этих пленок приведены в табл. 1.

#### Полимеризация анилина

Полимеризацию анилина проводили в пленках 1-6 с различным содержанием сульфокислотных групп при комнатной температуре (23°С). Пленки выдерживали в водном растворе анилина в течение 24 часов, затем помещали в спектрофотометрическую кювету толщиной 1 мм с раствором персульфата аммония (ПСА). Все опыты проводили при соотношении концентраций сульфокислотных групп в пленке и ПСА, равном 1 г-экв/моль. Ход полимеризации контролировали спектрофотометрически. По окончании полимеризации пленки промывали водой для удаления непрореагировавшего анилина и низкомолекулярных продуктов реакции. Для сравнения проведен синтез ПАНИ в присутствии ПССК ("Aldrich", 30% водный раствор,  $M_{\rm w} \sim 7 \times 10^4$ ). Комплекс ПАНИ с ПССК был получен по методике, описанной в [2], при следующих условиях: концентрация анилина в исходной реакционной среде составляла 3 мМ, отношение концентрации анилина и ПСА равно 1 : 1 моль/моль, а анилина и сульфокислотных групп поликислоты равно 1 : 2 моль/г-экв. Комплекс ПАНИ-ПССК по окончании полимеризации очищали от остатков окислителя, мономера и низкомолекулярных продуктов путем диализа, используя целлюлозную мембрану (ZelluTrans MWCO 8000–10000).

#### Инструментальные методы исследований

Исследование распределения серы по толщине образцов проводили методом электроннозондового рентгеноспектрального микроанализа с использованием растрового электронного микроскопа JSM-U3 фирмы JEOL (Япония) и рентгеновского спектрометра с энергетической дисперсией фирмы GETAC (Германия). Образцы пленок помещали в отверждаемую эпоксидную смолу и на ультрамикротоме производили срез перпендикулярно поверхности пленки. Зона генерации рентгеновского излучения составляла около 3 мкм.

Спектральные измерения в видимой области спектра в процессе матричного синтеза проводили с помощью скоростного сканирующего однолучевого оптоволоконного спектрофотометра "Avantes 2048".

ИК-Фурье-спектры регистрировали на вакуумном ИК-Фурье спектрометре "IFS 66v/s" (Bruker). Образец помещали на приставку нарушенного полного внутреннего отражения (НПВО (ATR), кристалл ZnSe) и регистрировали спектр в диапазоне 4000–600 см<sup>-1</sup> с разрешением 2 см<sup>-1</sup>.

Морфологию поверхности пленок исследовали с помощью атомно-силового микроскопа (ACM) EnviroScope с контроллером NanoScope V (Bruker) в полуконтактном режиме.

Поверхностное сопротивление пленок измеряли мегомметром на образцах размером  $1 \times 1$  см, на противоположные стороны которых наносили узкие плоские электроды длинной 1 см с помощью серебряной проводящей пасты.

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В настоящей работе сульфирование пленок ПЭ с привитым ПС проводили серной кислотой. Этот процесс лимитируется диффузией серной кислоты в объем пленки, сульфирование начинается на поверхности и затем фронтом продвигается в объем пленки [17, 18]. Поэтому при прочих одинаковых условиях глубина сульфирования зависит от времени. Кроме того, серная кислота диффундирует внутрь пленки по фазе сульфированного ПС. При низкой степени прививки ПС (17%) (при этом его содержание в пленке равно 15%) ПС образует дискретную фазу. При степени прививки ПС 93% (при этом его содержание в пленке равно 48%) ПС образует непрерывную фазу. Поэтому низкое содержание фазы ПС в пленке при низкой степени его прививки определяет и более медленную диффузию серной кислоты. Концентрация же сульфокислотных групп за фронтом сульфирования возрастает с увеличением времени сульфирования, достигая предельной величины, определяемой степенью прививки ПС.

Очевидно, что характер распределения сульфокислотных групп по толщине пленки должен оказывать влияние на скорость последующей полимеризации анилина и комплекс свойств получаемой пленки, содержащей ПАНИ, в том числе оптические и электрические свойства.

На рис. 1 представлено распределение серы по сечению этих пленок, полученное рентгеноспектральным анализом, отражающее распределение сульфокислотных групп по толщине пленки. Видно, что в образцах 1-3, сульфированных в течение 10 мин, сера присутствует только в тонких поверхностных слоях пленки и ее распределение практически одинаково. Чувствительность метода (размер зоны генерации рентгеновского излучения) не позволил обнаружить существенные различия между этими образцами. Результаты указывают лишь на то, что сульфированные пленки представляют собой трехслойные структуры с двумя тонкими сульфированными слоями на поверхностях пленок и обширной внутренней не сульфированной областью. В пленках 4-6, сульфированных в течение 1 часа, сера присутствует уже практически по всей их толщине, хотя и в них также сохраняется трехслойная структура. Содержание серы во внутреннем слое в этих образцах также не достигает того же уровня, что и во внешних.

Таким образом, распределение серы зависит как от времени сульфирования, так и от степени прививки ПС ( $\Delta p$ ) и достигает практически равномерного распределения после 60-минутного сульфирования только при  $\Delta p = 93\%$ .

Кинетику полимеризации анилина в пленках исследовали методом электронной спектроскопии в видимой и ближней ИК-области спектра. На рис. 2 представлена динамика изменения спектров оптического поглощения в процессе полимеризации анилина.

Для пленки 1 ( $\Delta p = 17\%$ ) после добавления окислителя наблюдается рост поглощения только в области около 430 нм, характерной для поглощения катион-радикальной формы ПАНИ [19]. При этом в более длинноволновой области выраженных спектральных полос нет, что свидетельствует об отсутствии делокализации катион-радикалов по системе сопряженных связей. Для





**Рис. 1.** Распределение серы по толщине пленок ПЭ с привитым сульфированным ПС. Номера рисунков соответствуют номерам образцов в табл. 1.

пленок 2 и 3 (при  $\Delta p$  равной 43 и 93%, соответственно) в начальной стадии синтеза одновременно с ростом полосы поглощения катион-радикалов наблюдается рост поглощения в области 650 нм, что свидетельствует о накоплении коротких окисленных фрагментов ПАНИ, содержащих преобладающее количество хинониминной (570 нм) формы ПАНИ, а также поляронную (750 нм) форму [19]. В дальнейшем, по мере роста длины цепи и делокализации катион-радикалов, преоблалаюшей становится уже поляронная форма ПАНИ. Интересно заметить, что в пленке 3 с высокой степенью прививки ПС ( $\Delta p = 93\%$ ), но малом времени сульфирования, спектральные изменения в ходе полимеризации в наибольшей степени напоминают полимеризацию анилина в присутствии ПССК [2, 3]. Для пленок 4-6 с большей концентрацией сульфокислотных групп полимеризация протекает практически с одновременным накоплением катион-радикальных, хинониминных и поляронных форм.

Полимеризация анилина в пленках 2–6 имеет автокаталитический характер, который, подобно синтезу в растворах поликислот, проявляется в S-образной форме временных зависимостей оптического поглощения в области 750 нм (рис. 3). В пленке 1 (рис. 2а) полимеризация сводится к стадии образования катион-радикалов, и, возможно, коротких фрагментов длиной менее 4-х звеньев, поскольку 4-звенные фрагменты уже имеют спектр ПАНИ, в макромолекуле которого имеются звенья с различной электронной структурой [20].

Необходимо отметить, что скорость полимеризации растет с увеличением содержания в пленке сульфокислотных групп. Низкие значения предельного оптического поглощения в области 750 нм (рис. 3) при полимеризации в пленках 2 и 3 связаны с низким общим содержанием в этих пленках сульфокислотных групп, находящихся только в поверхностных слоях пленок.

Иная картина наблюдается при полимеризации анилина в пленках 4—6. Видно, что с увеличением в пленках концентрации сульфокислотных групп сокращается индукционный период, возрастают скорость полимеризации и предельное оптическое поглощение. При наибольшей степени прививки ПС и степени сульфирования (пленка 6) скорость полимеризации анилина практически совпадает со скоростью его полимеризации в водном растворе ПССК (рис. 3, кривая 7).

Таким образом, судя по электронным спектрам поглощения, в пленках 2—6, различающихся концентрацией и распределением по толщине пленки сульфокислотных групп, образующийся продукт полимеризации имеет примерно одинаковую электронную структуру, подобную структуре ПАНИ. Лишь продукт полимеризации в пленке 1, как отмечалось выше, имеет искаженную электронную структуру. Возможной причиной этого является низкая концентрация сульфокислотных групп в поверхностных слоях этой пленки, в результате чего полимеризация проте-



Рис. 2. Динамика изменения электронных спектров поглощения пленок при полимеризации анилина. Номера рисунков соответствуют номерам пленок в табл. 1.

кает в условиях недостатка протонов [21]. Степень прививки ПС в этой пленке равна 17%, что, как отмечалось выше, соответствует содержанию ПС в пленке 15%. Но ввиду малого времени сульфирования (10 мин) содержание сульфокислотных групп в поверхностных слоях этой пленки значительно ниже, чем в поверхностных слоях пленки 4 с той же степенью прививки ПС, но сульфированной в течение 1 часа. Как указывалось выше содержание серы в пленках определяется как степенью прививки ПС, так и продолжительностью сульфирования.

Этот вывод подтверждается ИК-НПВО спектрами пленок (рис. 4). Так, в спектрах пленок 1–3



**Рис. 3.** Кинетика изменения оптической плотности в области 750 нм при полимеризации анилина. Номера кривых соответствуют номерам пленок в табл. 1. 7 – для полимеризации анилина в присутствии ПССК.



Рис. 4. ИК-НПВО спектры пленок 1–6 и ПССК (7). Номера спектров 1–6 соответствуют номерам пленок 1–6 в табл. 1. 7– ИК-НПВО спектр пленки ПССК.

имеются полосы с максимумами при 760 и 698 см<sup>-1</sup>, относяшиеся соответственно к внеплоскостным деформационным колебаниям связей С-Н монозамещенного фенильного кольца ПС [22]. Низкая интенсивность этих полос в спектре пленки 1 соответствует низкой степени прививки ПС. В спектрах пленок 4-6 эти полосы отсутствуют, а вместо них постепенно нарастает интенсивность полосы поглошения в области 835 см<sup>-1</sup> которая наиболее ярко проявляется в спектре ПССК и приписывается деформационным колебаниям связей С–Н в паразамещенных фенильных кольцах [23-27]. Одновременно с ростом интенсивности полосы 835 см<sup>-1</sup> в спектрах пленок 4–6 нарастает интенсивность полос поглощения с максимумами при 1122, 1035 и 1000 см<sup>-1</sup>, которые относятся к смешанным асимметричным и симметричным



**Рис. 5.** ИК-НПВО спектры пленок 1–6 после полимеризации анилина и пленки ПССК-ПАНИ (7). Номера спектров *1–6* соответствуют номерам пленок 1– 6 в табл. 1.

валентным колебаниям O=S=O сульфокислотных групп [25].

Таким образом, анализ ИК-НПВО-спектров показывает, что степень сульфирования для пленок 1—3 явно ниже чем для пленок 5 и 6, а пленка 4 занимает промежуточное положение. Важно отметить, что спектр пленки 6 содержит практически все полосы, характерные для ПССК.

На рис. 5 представлены ИК-НПВО спектры пленок после полимеризации в них анилина, а также спектр пленки ПАНИ/ПССК. Анализ этих спектров затруднен из-за наложения полос, относящихся к ПЭ, ПС, сульфированному ПС и ПАНИ, приволяшего к смешению максимумов. Однако колебания основных фрагментов структуры ПА-НИ могут быть выделены достаточно надежно [2, 23-28]: 1585 и 1495 см<sup>-1</sup> – валентные колебания C=C и C-C связей в хиноидных (Q) и бензоидных (В) кольцах ПАНИ, соответственно (1606 см<sup>-1</sup> – аналогичные колебания в ПССК [17]); 1247-1216 см<sup>-1</sup> валентные колебания C-N<sup>+</sup> в катион-радикальных фрагментах; 1172 см<sup>-1</sup> (в пленках 5, 6 – плечо при 1149 см<sup>-1</sup>) колебания заряженных фрагментов  $Q = NH^+ - B$  или  $B - NH^+ - B$ , характеризующих степень делокализации носителей заряда в полимере (высокопроводящую форму ПАНИ); 820-835 см<sup>-1</sup> – внеплоскостные деформационные колебания С-Н в фениленовом кольце (аналогично ПССК).

Из рис. 5 видно, что в спектрах пленок с поверхностным сульфированием (1–3) присутствуют полосы колебаний в области 698-760 см<sup>-1</sup>, относящиеся к не сульфированному ПС. При этом, характерные полосы ПАНИ проявляются незначительно и становятся более или менее заметны-



**Рис. 6.** Топография и профили поверхностей слоев ПАНИ, синтезированных в пленке 2 (а, б), пленке 3 (в, г), пленке 5 (д, е) и пленке 6 (ж, з).

ми только в спектре пленки 3. В спектрах объемно-сульфированных пленок (5, 6) по сравнению с пленкой 4 происходит резкое увеличение характеристических полос ПАНИ при 1585, 1495, 1247, 1172 (плечо при 1149) и 835 см<sup>-1</sup>. Также следует отметить важное отличие спектров пленок 5 и 6 от спектра пленки ПАНИ/ПССК: интенсивность полосы поглощения, относящейся к С=С колебаниям в хиноидных кольцах ПАНИ, в этих пленках выше, а интенсивности полос поглощения





—169.2 нм

(ж)





Рис. 6. Окончание.

колебаний делокализованных фрагментов ПАНИ (1247, 1172 см<sup>-1</sup>) — ниже по сравнению с интенсивностями тех же полос в ПАНИ, синтезированном в растворе ПССК. Это может быть свидетельством некоторого переокисления ПАНИ в пленках 5 и 6, что должно негативно сказываться на их электропроводности.

Методом атомно-силовой микроскопии была изучена поверхностная морфология наиболее характерных пленок, содержащих ПАНИ. Исследо-

Таблица 2. Размеры глобул фазы ПАНИ на поверхности пленок и поверхностное сопротивление этих пленок

| Пленка<br>№ | Диаметр<br>глобул, нм | Поверхностное<br>сопротивление,<br>МОм/п |  |
|-------------|-----------------------|------------------------------------------|--|
| 2           | 40-50                 | >200                                     |  |
| 3           | 50-60                 | >200                                     |  |
| 5           | 100-150               | 110                                      |  |
| 6           | 200                   | 17                                       |  |

вания проводили при двух размерных разрешениях: в кадре 5  $\times$  5 мкм для анализа морфологии фрагментов фазы полианилина и в кадре 10  $\times$  10 мкм для анализа пространственного распределения фазы ПАНИ по пленке. По профилям сечения вдоль фрагментов фазы ПАНИ (рис. 6а, 6в, 6д, 6ж) были рассчитаны размеры глобул ПАНИ, представленные в табл. 2.

На рис. 6а, 6б видно, что фаза ПАНИ распределена фрагментарно на поверхности пленки, причем данные фрагменты состоят из глобул наименьшего среди исследованных пленок размера и практически не контактируют друг с другом. Естественно, ожидать высокой проводимости такой островковой пленки не приходится.

По мере увеличения степени сульфирования для пленок 3, 5 и 6 наблюдается постепенный рост размера глобул, образующих фазу ПАНИ, и образование все более сплошного покрытия ПАНИ на поверхности пленки. Это особенно ярко видно для пленки 6 (рис. 6ж, 6з), где практически отсутствуют сквозные впадины на слое ПАНИ, достигающие основы из ПЭ с привитым сульфированным ПС.

Таким образом, на основании анализа ACMизображений следует ожидать заметных значений поверхностной проводимости для пленок 5 и 6.

Действительно, из табл. 2 видно, что значения сопротивления регистрируются только для пленок 5 и 6, в которых по данным ACM наблюдается формирование непрерывной фазы ПАНИ.

## ЗАКЛЮЧЕНИЕ

Таким образом, процесс полимеризации анилина в пленке из ПЭ с привитым сульфированным ПС и электронная структура образующегося ПАНИ зависят не только от концентрации сульфокислотных групп в этих пленках, но и их распределения по толщине последних. Локализация сульфокислотных групп в поверхностных слоях пленки позволила создать материал с низким поверхностным сопротивлением. АСМ измерения поверхности выполнены на оборудовании ЦКП ФМИ ИФХЭ РАН. Авторы выражают благодарность Ю.В. Костиной за измерения ИК-Фурье-спектров.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Handbook of Conducting Polymers. 3rd ed. Conjugated Polymers. Processing and Applications / Eds Skotheim T.A., Reynolds J.R. L.; N.Y.: Taylor & Francis Group, 2007.
- Gribkova O.L., Nekrasov A.A., Trchova M., Ivanov V.F., Sazikov V.I., Razova A.B., Tverskoy V.A., Vannikov A.V. // Polymer. 2011. V. 52. P. 2474–2484. https://doi.org/10.1016/j.polymer.2011.04.003
- Gribkova O.L., Nekrasov A.A., Ivanov V.F., Vannikov A.V., Razova A.B., Tverskoi V.A. // Protection of Metals and Physical Chemistry of Surfaces. 2010. V. 46. P. 540– 545.
- Guseva M.A., Isakova A.A., Gribkova O.L., Tverskoy V.A., Ivanov V.F., Vannikov A.V., Fedotov Yu.A. // Polym. Sci., Ser. A. 2007. V. 49. P. 4.
- Li N., Lee J.Y., Ong L.H. // J. Applied Electrochemistry. 1992. V. 22. I. 6. P. 512–516.
- 6. Сапурина И.Ю., Компан М.Е., Малышкин В.В., Розанов В.В., Стейскал Я. // Электрохимия. 2009. Т. 45. № 6. С. 744.
- Berezina N.P., Shkirskaya S.A., Kolechko M.V., Popova O.V., Senchikhin I.N., Roldugin V.I. // Russian J. Electrochemistry. 2011. V. 47. № 9. P. 995–1005.
- Berezina N.P., Kononenko N.A., Sytcheva A.A.-R., Loza N.V., Shkirskaya S.A., Hegman N., Pungor A. // Electrochimica Acta. 2009. V. 54. P. 2342.
- 9. Лысова А.А., Стенина И.А., Долгополов С.В., Горбунова Ю.Г., Кононенко Н.А., Ярославцев А.Б. // Доклады Академии наук. 2009. Т. 427. № 4. С. 508— 511.
- Elyashevich G.K., Sidorovich A.V., Smirnov M.A., Kuryndin I.S., Bobrova N.V., Trchova M., Stejskal J. // Polymer Degradation and Stability. 2006. V. 91. P. 2786–2792.
- 11. Физзулин Д.Д., Маврин Г.В., Шайхиев И.Г. // Мембраны и мембранные технологии. 2017. Т. 7. № 1. С. 57-64.
- 12. *Круль Л.П., Поликарпов А.П.* // Успехи химии. 1990. Т. 59. Вып. 5. С. 807–826.
- 13. *Jetsrisuparb R., Balog S., Bas C., Parrin L. u dp.* // Eur. Polym. J. 2014. V. 53. P. 75–89.
- Komacka E.M., Przybytuluk G., Fuks L., Walo M., Lyczko K. // Radiat. Phys. And Chem. 2014. V. 94. P. 115–118.
- Sproll V., Nagy G., Gasser U., Ebms J.P. et al. // Macromolecules. 2016. V. 49. № 11. P. 4253–4264.
- Жиляева Н.А., Миронова Е.Ю., Ермилова М.М., Орехова Н.В., Бондаренко Г.Н., Дьякова М.Г., Шевлякова Н.В., Тверской В.А., Ярославцев А.Б. // Мембраны и мембранные технологии. 2016. Т. 6. № 4. С. 382–390.
- Gibson H.W., Bailey F.C. // Macromolecules. 1980.
  V. 13. № 1. P. 34–41.

- Семенов В.И., Шевлякова Н.В., Шифрина Р.Р., Александрова Л.Б., Тверской В.А., Праведников А.Н. // ВМС. Краткие сообщ. 1983. Т. 25Б. № 8. С. 590– 594.
- 19. *Nekrasov A.A., Ivanov V.F., Vannikov A.V. //* J. Electroanal. Chem. 2000. V. 482. № 1. P. 11–17. https://doi.org/10.1016/S0022-0728(00)00005-X
- Ding Y., Liang J., Liu G., Ni W., Shen L. // Coatings. 2019. V. 9. № 6. P. 399. https://doi.org/10.3390/coatings9060399
- Trchova M., Moravkova Z., Blaha M., Stejskal J. // Electrochimica Acta. 2014. V. 122. P. 28–38.
- Bhutto A.A., Vesely D., Gabrys B.J. // Polymer. 2003.
  V. 44. P. 6627–6631. https://doi.org/10.1016/j.polymer.2003.08.005

- Kang E.T., Neoh K.G., Tan K.L. // Prog. Polym. Sci. 1998. V. 23. P. 277. https://doi.org/10.1016/S0079-6700
- Boyer M.-I., Quillard S., Rebourt E., Louarn G., Buisson J.P., Monkman A., Lefrant S. // Phys Chem B. 1998. V. 102. № 38. 7382–7392.
- 25. Socrates G. Infrared and Raman characteristic group frequencies. New York: Wiley, 2001.
- 26. *Bellamy L.J.* The infra-red spectra of complex molecules. Bungay, Suffolk: Richard Clay, 1962.
- 27. Vien D.L., Colthup N.B., Fateley W.G., Grasselli J.G. The handbook of infrared and Raman characteristic frequencies of organic molecules. San Diego: Academic Press, 1991.
- 28. Boyer M.L., Quillard S., Louarn G., Froyer G., Lefrant S.J. // Phys Chem B. 2000. V. 104. P. 8952–8961.