ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ, 2020, том 56, № 4, с. 374–381

\_\_ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ НА МЕЖФАЗНЫХ ГРАНИЦАХ \_\_\_\_\_

УДК 541.64 532.135:536.6

# ТЕПЛОВЫЕ ПРОЦЕССЫ В СМЕСЯХ ЖЕЛЕЗА С ПОЛИМЕРАМИ И НИЗКОМОЛЕКУЛЯРНЫМИ ОРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ ПОСЛЕ ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ ПОЛ ВЫСОКИМ ЛАВЛЕНИЕМ

© 2020 г. В. А. Жорин<sup>1, \*</sup>, М. Р. Киселев<sup>2</sup>, В. А. Котенев<sup>2</sup>

<sup>1</sup>Учреждение Российской академии наук Институт химической физики им. Н.Н. Семенова РАН,

ул. Косыгина, 4, Москва, 119991 Россия

<sup>2</sup>Учреждение Российской академии наук Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр., 31, Москва, 119991 Россия

\*e-mail: vzhorin@mail.ru Поступила в редакцию 25.10.2019 г. После доработки 06.01.2020 г. Принята к публикации 13.01.2020 г.

Для металл-полимерного композита, полученного методом интенсивного пластического деформирования смесей железный порошок—полимер, исследовались пассивирующие свойства различных полимерных матриц, а также процессы их термического разложения в присутствии наполнителя — активных частиц железа, а также процессы последующей депассивации и окисления железа. Для этого исходные смеси железа с 10 мас. % различных компонентов подвергали пластическому деформированию под давлениями 1.5 и 2.5 ГПа на наковальнях Бриджмена, а затем исследовали термогравиметрическим методом в температурном диапазоне 20–800°С в воздушной среде. При нагревании деформированных смесей в калориметре в Т-диапазоне 30–400°С регистрировали уменьшение массы связанное с разложением органических соединений, а в Т-диапазоне 400–800°С увеличение массы связанное с окислением железа. Изменения массы в обоих Т-диапазонах сопровождались экзотермическими эффектами.

**DOI:** 10.31857/S0044185620040282

## введение

Полимер-матричные композиционные материалы с органическими и неорганическими наполнителями широко используется в самых разных областях науки и техники [1, 2]. Помимо широко распространенных конструкционных материалов, такие композиты также используются в качестве функциональных наноматериалов и нанослоев. Особый интерес в последнее время вызывает использование в качестве неорганической подсистемы металл-полимерного композита активных металлических наночастиц, что позволяет получать композиционые материалы с выражеными свойствами активных металлических и металл-оксидных наночастиц [2], в комбинации с контролируемыми защитными и/или активирующими свойствами контактирующей с наночастицами полимерной матрицы [2].

В качестве матрицы широко используются различные органические соединения и полимерные связующие, промышленный ассортимент которых дает возможность использовать их для различных технологических применений и в жизнедеятельности человека благодаря экологической безопасности и эксплуатационным характеристикам [3–5]. Введение наполнителей различного назна-

чения в композиционные материалы с участием различных полимерных связующих позволяет придать им требуемые эксплуатационные характеристики (прочность, твердость и модуль упругости) и решить прикладные задачи коррозионной стойкости, износостойкости и т.п. [3–6].

Важным аспектом при выборе металлических наполнителей и полимерной матрицы является долговечность, а также термо- и механическая стойкость получаемого композиционного материала. В условиях действия атмосферных факторов она зависит от напряженного состояния на границе "полимер—металл" [1—5]. Наиболее дефектным является поверхностный слой, в котором могут образовываться трещины, направление которых соответствует линиям усадочных напряжений<sup>1</sup>. Для

<sup>&</sup>lt;sup>1</sup> Высокоэластичные свойства полимерного материала могут нивелировать напряженное состояние при введении металлического наполнителя. Компенсацию напряжений в металло-полимерных системах можно осуществить также применением эластичных подслоев, которые снижают значительную разницу термических коэффициентов расширения между ними. В качестве таких подслоев в композициях железо-латексный полимер могут быть использованы водорастворимые органосилоксаны, которые зарекомендовали себя также как ингибиторы коррозии металла [6, 7].

устранения этого эффекта требуется упрочнение поверхностных слоев, повышение адгезии на границе полимер-металл, что можно достичь предварительным удалением поверхностного оксидного слоя с поверхности частиц металла (активирование металла) для дальнейшего прямого контакта и химического взаимодействия полимер-металл.

Эффективным методом активирования полимерных смесей [8] а также порошкообразных металлов (с формированием свежевскрытых поверхностей на частицах порошков, свободных от поверхностных оксидных фаз) [9, 10], является метод интенсивного пластического деформирования (ИПД) на аппарате высокого давления типа наковален Бриджмена [8–10]. При деформировании в таких условиях различных смесей полимер-металл происходит уменьшение размеров индивидуальных частиц металла с образованием свежевскрытых поверхностей, а также дальнейшее формирование развитой межфазной границы полимер-металл с повышенной адгезией. Пассивации свежевскрытой поверхности частиц порошкообразного железа может происходить при этом непосредственно на границе полимер-металл, в результате чего формируется плотный межфазный контакт<sup>2</sup>.

Очевидно, можно ожидать, что полученный металл-полимерный композит будет изолировать железо от окружающей атмосферы. Однако при превышении температуры выше предельной температуры плавления/деградации полимерной фазы, железо будет окисляться с достаточно высокой эффективностью экзотермических процессов, что, например, ранее наблюдалось при исследованиях термоинициируемых процессов в металлополимерных смесях на основе алюминия после пластического деформирования под высоким давлением [10].

В данной работе для активированного металлорганического композита, полученного методом интенсивного пластического деформирования смесей железный порошок—полимер, исследовались пассивирующие свойства различных полимеров и низкомолекулярных органических соединений, процессы их термического разложения, а также процессы последующей депассивации и окисления железа, когда полимерная фаза уже разложилась.

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектом исследования было выбрано порошкообразное карбонильное железо с размером частиц 5-10 мкм. В качестве компонентов смесей были выбраны низкомолекулярные органические соединения: пентаэритрит, аспарагиновая кислота, адамантан, конго красный, фенолфталеин и антрацен; полимеры: полиэтилен высокой плотности, полипропилен, микрокристаллическая целлюлоза; слоистые соединения: нитрид бора (BN) и дисульфид молибдена (MoS<sub>2</sub>). Исходные смеси железа с 10 мас. % различных компонентов готовили в ступке. Обработку под давлением 1.5 и 2.5 ГПа проводили на наковальнях из твердого сплава ВК6 с диаметром рабочих поверхностей 15 мм. Для анализа выбирали материал из краевой зоны 10-15 мм. Обработанные под давлением смеси анализировали на микрокалориметре Q600 TA INSTRUMENTS в температурном диапазоне 20-800°С в воздушной среде при скорости нагрева 10 град/мин; одновременно регистрировали тепловые эффекты и изменения массы образцов.

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При нагревании исходного порошкообразного железа при  $T = 200^{\circ}$ С начинается увеличение массы образца, связанное с окислением и азотированием железа. Приращение массы (+м) при 600°С составило 33.4% (рис. 1). В Т-диапазоне 600–800°С процесс увеличения массы замедляется и при 800°С общее увеличение массы достигает 37.8%. Деформирование под давлением 1.5 ГПа приводило к компактированию порошкообразного железа; в этом случае образец представлял собой кусочки металла размером 2–5 мм. Нагревание такого образца до 800°С сопровождалось увеличением массы на 10.5% (снижение +м в результате деформирования составило 3.5 раза).

Для сравнения исследовали железо армко с размером частиц 0.1–0.2 мм. В исходном образце значение +м при 800°С достигало 24.2%, а после обработки под давлением 1.5 ГПа значение +м составило 8.6% (снижение +м в результате деформирования составило 2.8 раза) (рис. 1).

Увеличение массы образца сопровождается выделением тепла; этот процесс на термограмме исходного карбонильного железа описывается экзотермическим пиком, максимум которого лежит в Т-диапазоне наиболее сильного изменения массы образца – при 485°С (рис. 2). Энтальпия этого экзопроцесса составляет  $\Delta H = 5353 \, \text{Дж r}^{-1}$  при расчете на полную массу образца (энтальпия образования оксида железа составляет 20000 Дж г<sup>-1</sup>). Для корректного сравнения энергетических характеристик исследуемых образцов удобно использовать "приведенную" энтальпию  $\Delta H_{\text{прив}} =$ 

<sup>&</sup>lt;sup>2</sup> Действительно, ранее в [9] было показано, что скорость приращения массы исходного недеформированного порошка железа выше, чем деформированного (спрессованного на наковальне Бриджмена) (особенно в высокотемпературной области). Было показано, что существенное замедление процесса окисления в ИПД-деформированных образцах связано с компактированием порошкообразного железа, результирующим ростом диффузионных ограничений и сокращением доступной кислороду поверхности частиц порошка железа.



**Рис. 1.** Увеличение массы при нагревании: исходное карбонильное железо (1), исходное армко железо (2); после деформирования под давлением 1.5 ГПа: карбонильное железо (3), армко железо (4).

 $= \Delta H/^+$ м — где  $\Delta H$  — энтальпия экзотермического процесса, полученная в эксперименте, а <sup>+</sup>м – увеличение массы образца в этом температурном диапазоне за счет присоединения кислорода. Для исходного порошкообразного железа использованного в наших экспериментах значение  $\Delta H_{\text{прив}}$ составит 144 (в случае окисления эталонного железа  $\Delta H_{\text{прив}}$  составит 200). В оксиде железа соотношение компонентов составляет Fe-O = 70-30%. Если принять содержание железа в образце за 100%, тогда приращение массы в нашем эксперименте за счет присоединения кислорода должно составить 43%, а имеем 37.1%. Эта разница может быть связана с неполным окислением железа при нагревании до 800°C, а также с присутствием на поверхности металлических частиц молекул оксида. Следует также отметить, что при нагревании в воздушной среде может протекать процесс азотирования, энтальпия которого составляет 194 Дж/г.

На термограмме исходного образца железа при температуре 600°С присутствует слабое плечо, свидетельствующее о протекании в образце наряду с основным экзопроцессом с максимумом при 485°С еще одного (рис. 2).

В смесях железа, как с низкомолекулярными органическими соединениями, так и с полимерами в Т-диапазоне 200–800°С протекают химические процессы с выделением энергии, которые на термограммах описываются суперпозицией экзотермических пиков. Тепловым эффектам в разных смесях соответствовали разные приращения массы. Поэтому для сравнения эффективности тепловых процессов в различных смесях целесообразно сравнивать "приведенные" энтальпии.



**Рис. 2.** Увеличение массы (1) и тепловой эффект (2) при нагревании исходного карбонильного железа.

Деформированные смеси с низкомолекулярными соединениями можно разделит на две группы. В первую группу следует отнести смеси, в которых в Т-диапазоне 150-300°С происходит снижение массы на 5% (адамантан, аспарагиновая кислота) и на 8% (пентаэритрит). Такие изменения связаны с термическим разложением органических компонентов. Тот факт, что снижение массы меньше содержащегося в смеси органического компонента, может быть связан с тем, что химическое взаимодействие между компонентами смеси протекает как при деформировании смеси, так и при взаимодействии продуктов разложения органического компонента с железом при нагревании смеси. Таким образом, и при деформировании под давлением, и при нагревании смесей в результате взаимодействия органики и железа может происходить образование термостойких продуктов, например, карбидов железа.

В исходном адамантане полное разложение вещества происходит при 180–200°С. В исходном железе увеличение массы на 1% регистрировали при 300°С. Таким образом, Т-диапазоны тепловых процессов в компонентах смеси не перекрываются. Суммарный экзоэффект в деформированной смеси составил 5640 Дж г<sup>-1</sup>, а приращение массы 26.7%. В таком случае  $\Delta H_{прив}$  для процесса окисления железа будет 211 (рис. 3).

На термограмме смеси с пентаэритритом присутствуют два перекрывающихся экзопика с максимумами при 280 и 507°С, суммарная энтальпия которых составила 5620 Дж г<sup>-1</sup>. Низкотемпературный пик лежит в температурном диапазоне разложения пентаэритрита, который полностью разлагается при 280–300°С. Графическое разделение дает для низкотемпературного пика энтальпию 1500 Дж г<sup>-1</sup>, а для процесса окисления





**Рис. 3.** Увеличение массы при нагревании смесей железа с адамантаном (*1*), пентаэритритом (*2*) и аспарагиновой кислотой (*3*); термограммы смесей с адамантаном (*4*), пентаэритритом (*5*) и аспарагиновой кислотой (*6*).

железа — 4120 Дж г<sup>-1</sup>. В этом случае "приведенная энтальпия" составит 186.

В деформированной смеси Fe + 10 мас. % аспарагиновой кислоты снижение массы при  $350^{\circ}$ C составило 5.2%. На термограмме деформированной смеси присутствуют перекрывающиеся экзотермические пики, суммарная энтальпия которых составила 4450 Дж г<sup>-1</sup>. Графическое разделение пиков дает для экзопроцесса в Т-диапазоне разложения органического компонента энталь-

пию 950 Дж г<sup>-1</sup>, а для процесса окисления железа – 3540 Дж г<sup>-1</sup>; в таком случае для процесса окисления  $\Delta H_{\text{прив}} = 183$ .

Во вторую группу можно отнести смеси с конго красным, антраценом и фенолфталеином, в которых снижение массы в Т-диапазоне разложения органики не превышало 1% — это может означать, что вся органика прореагировала с железом при деформировании под давлением.

На термограммах всех деформированных смесей экзотермические процессы начинались при 200°С и описывались суперпозицией нескольких пиков, разделить которые не представляется возможным (рис. 4). Основное тепловыделение в смеси с конго красным происходило в Т-диапазоне 400-700°С с максимумом при 550°С. В смеси с фенолфталеином экзопроцессы заканчивались при 750°C, а на термограмме присутствовали пики с максимумами при 270 и 360°С. В смеси с антраценом экзопроцессы проходили в Т-диапазоне 200-600°С и описывались тремя экзопиками с максимумами при 311-380-465°С. Численные значения энтальпий экзопроцессов и приращения массы в смесях приведены в табл. 1. На основе этих данных рассчитаны значения  $\Delta H_{\text{прив}}$ , которые варьировались в широких пределах: 188 – в смеси с конго красным, 398 – в смеси с антраценом и 707 – в смеси с фенолфталеином (табл. 1).

На термограммах смесей с ПЭСВМ и ПП доминировали экзопики в Т-диапазоне, в котором заканчивалось снижение массы, связанное с разложением полимера, и начиналось увеличение массы, связанное с окислением железа. На термограмме смеси с МКЦ двойной экзопик с максимумами при 292 и 322°С находится именно в Т-диапазоне разложения полимера. Термическое разложение исходных полимеров сопровождается экзотермическими эффектами, суммарные энтальпии которых в ряду ПЭСВМ-ПП-МКЦ, составляют 5200–4700–3000 Дж г<sup>-1</sup>, соответственно.

На термограмме деформированной смеси с ПЭСВМ доминирует узкий экзопик с максимумом при 505°С, которому соответствует интенсивное возрастание массы связанное с окислением железа. С низкотемпературной стороны присутствуют три сильно перекрывающихся экзопика, которые можно отнести к разложению полимера; в этом же Т-диапазоне регистрировали снижение массы. Суммарная энтальпия экзопроцессов в такой смеси составила 5040 Дж г<sup>-1</sup>. Методом графического разделения энтальпию экзопроцесса, связанного с разложением полимера можно оценить в 1800 Дж г<sup>-1</sup>, а энтальпию окисления железа — в 3240 Дж г<sup>-1</sup>; в этом случае  $\Delta H_{прив} = 150$ , то есть как в исходном железе.



**Рис. 4.** Увеличение массы при нагревании смесей железа с конго красным (1), фенолфталеином (2) и антраценом (3); термограммы смесей с конго красным (4), фенолфталеином (5) и антраценом (6).

На термограмме деформированной смеси с ПП присутствовали два экзопика с максимумами при 451 и 530°С. Пик с максимумом при 451°С можно частично отнести к процессу разложения полимера, а частично к окислению железа; пик с максимумом при 530°С полностью относится к окислению железа. Суммарная энтальпия экзопроцессов в деформированной смеси составила



Рис. 5. Увеличение массы при нагревании смесей железа с ПЭСВМ (I), ПП (2) и МКЦ (3); термограммы смесей с ПЭСВМ (4), ПП (5) и МКЦ (6).

5260 Дж г<sup>-1</sup>. При графическом разделении пиков энтальпию разложения полимера можно оценить 1700 в Дж г<sup>-1</sup> при снижении массы на 8.7% (при пересчете на 10% это будет 1950 Дж г<sup>-1</sup>). В Т-диапазоне окисления железа энтальпия составила 3560 Дж г<sup>-1</sup> и тогда  $\Delta H_{\text{прив}} = 208$ .

При графическом разделении экзопиков в деформированной смеси с МКЦ энтальпия двойного пика соответствующего разложению полимера при

| Таблица | 1 |
|---------|---|
|---------|---|

| Добавка, 10%      | $P = 1.5 \Gamma \Pi a$ |                    |                   | <i>P</i> = 2.5 ГПа |                    |                   |
|-------------------|------------------------|--------------------|-------------------|--------------------|--------------------|-------------------|
|                   | $\Delta H$ , Дж/г      | + <sub>M</sub> , % | $\Delta H$ привед | $\Delta H$ , Дж/г  | + <sub>M</sub> , % | $\Delta H$ привед |
| Железо            | 5350                   | 37.0               | 144               | _                  | _                  | —                 |
| адамантан         | 5640                   | 26.7               | 211               | 5860               | 33.0               | 177               |
| пентаэритрит      | 4120                   | 22.1               | 186               | 5300               | 22.4               | 237               |
| аспарагинов. к-та | 3540                   | 19.3               | 183               | 5280               | 10.1               | 523               |
| красный конго     | 2540                   | 13.5               | 188               | 1370               | 13.5               | 102               |
| антрацен          | 6540                   | 16.4               | 398               | 5420               | 14.5               | 374               |
| фенофталеин       | 4600                   | 6.5                | 707               | 3180               | 1.9                | 1673              |
| ПЭСВМ             | 3240                   | 21.6               | 150               | 5446               | 23.4               | 233               |
| ПП                | 3560                   | 17.1               | 208               | 4970               | 19.1               | 260               |
| МКЦ               | 1920                   | 7.8                | 246               | 4100               | 9.5                | 431               |
| BN                | 1800                   | 14.3               | 128               | —                  | —                  | —                 |
| MoS <sub>2</sub>  | 590                    | 14.3               | 54                | 590                | 6.7                | 88                |

## Таблица 2

|         | Расчетные энтальпии, Дж/г |                     |           | Экспериментальные энтальпии, Дж/г |                     |           |  |
|---------|---------------------------|---------------------|-----------|-----------------------------------|---------------------|-----------|--|
| Полимер | разложение<br>полимера    | окисление<br>железа | суммарная | разложение<br>полимера            | окисление<br>железа | суммарная |  |
| ПЭСВМ   | 520                       | 4820                | 5340      | 1800                              | 3240                | 5040      |  |
| ПП      | 470                       | 4820                | 5290      | 1950                              | 3560                | 5510      |  |
| МКЦ     | 300                       | 4820                | 5120      | 2840                              | 1920                | 4760      |  |

снижении массы на 6.4% составила 1820 Дж г<sup>-1</sup> ( при пересчете на 10% это будет 2850 Дж г<sup>-1</sup>). Энтальпия окисления железа в такой смеси составит 1920 Дж г<sup>-1</sup>, а  $\Delta H_{\text{прив}} = 246$ .

На основе данных об энтальпиях разложения исходных полимеров и энтальпии окисления исходного железа можно рассчитать возможные суммарные энтальпии экзопроцессов в исходных смесях Fe—10 мас. % полимер. Из данных, приведенных в табл. 2 видно, что суммарные энтальпии в различных смесях различаются мало. В деформированных смесях суммарные энтальпии различаются не более, чем на 16%.

Из данных табл. 2 видно, что энтальпии разложения полимеров в деформированных смесях больше, чем в (рассчетных) исходных: для ПЭ-СВМ – в 3.5 раза, для ПП – в 4.15 раза, а для МКЦ – в 9.5 раз.

Несмотря на снижение измеренной энтальпии окисления железа в деформированных смесях,  $\Delta H_{\text{прив}}$  возрастает по сравнению с исходным железом.

Термическое разложение полимера и окисление железа — химические процессы, тепловые эффекты которых не зависят от пути протекания реакции, а только от разницы энергий исходных и конечных продуктов. Для увеличения теплового эффекта химической реакции необходимо увеличить энергию исходных продуктов, то есть перевести их в предактивированное состояние. Повидимому, это происходит и с полимером и с железом при деформировании метало-полимерных смесей.

Увеличение давления деформирования до 2.5 ГПа приводило лишь к небольшому увеличению энтальпии разложения полимеров в ряду ПЭСВМ-ПП-МКЦ – 2100–2000–3100 Дж г<sup>-1</sup>, соответственно. Величины  $\Delta H_{\rm прив}$  в смесях с ПЭСВМ и МКЦ практически не изменились с увеличением давления деформирования, а в смеси с ПП снизились от 208 до 178.

Известно, что при пластическом деформировании под давлением в смесях слоистых соединений с металлами образуются интеркаляционные комплексы [11]. В этой связи представляет интерес исследовать окисление железа в смесях с BN и MoS<sub>2</sub>.

На термограмме смеси Fe-10 мас. % ВN после обработки под давлением 1.5 ГПа в Т-диаппазоне 200-800°С присутствовало несколько перекры-



**Рис. 6.** Увеличение массы при нагревании (1) и термограмма смеси Fe-10 мас. % BN (2).

вающихся экзопиков с максимумами при 314, 445, 595 и 668°С (рис. 6), суммарная энтальпия которых составила 1800 Дж г<sup>-1</sup>, а приращение массы, начинавшееся при 200°С, составило 14.3% (рис. 6). В этом случае  $\Delta H_{\text{прив}} = 126$ , то есть меньше, чем в исходном железе.

На термограмме смеси Fe–10 мас. % MoS<sub>2</sub> после деформирования под давлением 1.5 ГПа присутствовал широкий экзопик с энтальпией 590 Дж г<sup>-1</sup>, которому сопутствовало увеличение массы +м = = 6.7%; в этом случае  $\Delta H_{прив} = 88$ . Увеличение давления обработки до 2.5 ГПа приводило к тому, что значение  $\Delta H_{прив}$  снижалось до 54.

Таким образом, в смесях со слоистыми соединениями происходило снижение  $\Delta H_{\text{прив}}$ .

Обработке под давлением 1.5 ГПа подвергали смеси железа с  $Fe_2O_3$ . Оказалось, что увеличение содержания в смесях оксида приводило к увеличению температуры, при которой значение +м достигало 4% (рис. 7). При увеличении содержания оксида в смесях регистрировали резкое снижение <sup>+</sup>м (рис. 7).

## ЗАКЛЮЧЕНИЕ

Возрастание массы в деформированных образцах карбонильного железа, связанное с окислением, снижается в 3.6 раза — это связано, скорее всего, с компактированием порошкообразного металла.

В смесях с различными органическими компонентами изменения массы деформированных образцов происходит в двух Т-диапазонах. В диапазоне 30–400°С происходит снижение массы связанное с термическим разложением органического компонента смеси, а в диапазоне 400–800°С происходит увеличение массы связанное с окислением железа.



**Рис.** 7. Увеличение температуры начала процесса окисления железа (1) и приращение массы (2) в смесях  $Fe-Fe_2O_3$  в зависимости от содержания оксида.

Уменьшение массы образцов было всегда меньше количества органического компонента в смеси. Это указывает на образование в образцах термостойких продуктов - скорее всего, карбидов железа. Результаты для смесей с конго красным, антраценом и фенолфталеином об отсутствии снижения массы свидетельствуют о том, что эти органические компоненты полностью прореагировали с железом во время деформирования под давлением. В других же смесях, в которых регистрировали снижение массы, образование термостойких продуктов могло происходить, как при деформировании, так и при взаимодействии продуктов термического разложения органического компонента с атомами железа на поверхности металлических частиц.

Во всех деформированных смесях возрастание массы, связанное с окислением железа, всегда было меньше, чем в исходном, но всегда больше, чем в деформированном железе. Исключение составили смеси с фенолфталеином и МКЦ, у которых значения +м составили 6.5 и 7.8%.

Окисление железа сопровождается экзотермическим эффектом, энтальпия которого в нашем случае составила 5350 Дж г<sup>-1</sup>. В деформированных смесях с органическими компонентами экзотермические эффекты проявлялись как при окислении железа, так и при разложении органики. Максимальная суммарная энтальпия экзопроцессов была зарегистрирована в смеси с антраценом и составила 6540 Дж г<sup>-1</sup>, а минимальная в смеси с МКЦ и составила 1920 Дж г<sup>-1</sup>.

При окислении железа в смесях с разными компонентами различались не только энтальпии, но и приращение массы. Для корректной оценки влияния органических компонентов на энерговыделение при окислении железа в деформированных смесях сравнивали "приведенные" энтальпии — тепловой процесс, отнесенный к увеличению массы образца на 1%. Оказалось, что в большинстве смесей  $\Delta H_{\text{прив}}$  превышает аналогичную характеристику в исходном железе. В случае смеси с фенолфталеином значение  $\Delta H_{\text{прив}}$  составило 707, то есть превышало "приведенную" энтальпию для исходного железа в 4.9 раза.

Результаты измерений массовых потерь в деформированных смесях, связанных с термическим разложением органических компонентов, свидетельствуют о том, что в смесях протекают процессы химического взаимолействия органики с металлом. Такое взаимодействие может протекать как при деформировании, так и при последующем нагревании смесей. При этом на поверхности металлических частиц образуется слой новых продуктов, который, по-видимому, и определяет протекание процесса окисления железа. Существенные различия величин  $\Delta H_{\text{прив}}$  для разных смесей свидетельствует о сильном различии в свойствах образующихся веществ и формирующихся на поверхности металлических частиц слоях. Возможно, что именно это и определяет протекание процесса окисления железа в деформированных образцах.

### СПИСОК ЛИТЕРАТУРЫ

 Полимерные смеси / под ред. Пола Д., Ньюмена С. М.: Мир, 1981.

- Hybrid Nanocomposites for Nanotechnology. Ed. Mehrani L. Springer Science + Business Media, LLC 2009.
- Кербер М.Л. Полимерные композиционные материалы. Структура. Свойства. Технологии. СПб: Профессия, 2008.
- 4. *Яковлев А.Д.* Химия и технология лакокрасочных покрытий. Л., 1981.
- 5. Daniels E.S., Sudol E.D., El-Aasser M.S. Polymer Latexes: Preparation, Characterization, and Applications (ACS Symposium, № 492). N.Y.: Kluwer Academic Pub., 1998.
- Асламазова Т.Р., Высоцкий В.В., Золотаревский В.И., Котенев В.А., Ломовской В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 6. С. 620–625.
- Петрунин М.А., Максаева Л.Б., Гладких Н.А., Наркевич Е.Н., Юрасова Т.А., Рыбкин А.А., Терехова Е.В., Котенев В.А., Каблов Е.Н., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2018. Т. 54. № 5. С. 457–465.
- Жорин В.А., Киселев М.Р., Котенев В.А. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 3. С. 261–266.
- 9. Котенев В.А., Жорин В.А., Киселев М.Р., Высоцкий В.В., Аверин А.А., Ролдугин В.И., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2015. Т. 51. № 5, С. 512–516.
- Жорин В.А., Киселев М.Р., Котенев В.А. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 4. С. 350-358.
- 11. Жорин В.А., Нефедьев А.В., Линский В.А., Новиков Ю.Н., Стукан Р.А., Вольпин М.Е., Гольданский В.И., Ениколопян Н.С. // Докл. АН СССР. 1981. Т. 256. № 3. С. 598–600.