_____ НАНОРАЗМЕРНЫЕ И НАНОСТРУКТУРИРОВАННЫЕ ____ МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК

ТЕРМОГРАВИМЕТРИЧЕСКОЕ И ДСК-ИССЛЕДОВАНИЕ СМЕСЕЙ ПОРОШКА АЛЮМИНИЯ С НИЗКОМОЛЕКУЛЯРНЫМИ ОРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ ПОСЛЕ ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ ПОД ВЫСОКИМ ДАВЛЕНИЕМ

© 2020 г. В. А. Жорин^{1,} *, М. Р. Киселев², В. А. Котенев²

¹Учреждение Российской академии наук Институт химической физики им. Н.Н. Семенова РАН, ул. Косыгина, 4, Москва, 119991 Россия

²Учреждение Российской академии наук Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр., 31, Москва, 119991 Россия

> *e-mail: vzhorin@mail.ru Поступила в редакцию 30.11.2019 г. После доработки 17.03.2020 г. Принята к публикации 24.03.2020 г.

Порошкообразные смеси алюминия с 20 мас. % органических компонентов подвергали пластическому деформированию под давлением 0.5–4.0 ГПа на аппарате высокого давления типа наковален, а затем исследовали методом термогравиметрии и ДСК. В деформированных смесях в Т-диапазоне 30–500°С происходило снижение массы, связанное с разложением органических компонентов, а в Т-диапазоне 500–800°С возрастание массы, связанное с окислением алюминия. Изменениям массы сопутствовали экзотермические эффекты. Энтальпии экзоэффектов в высокотемпературном диапазоне были всегда больше, чем в низкотемпературном диапазоне. Величины экзоэффектов зависели от содержания в органических молекулах углерода и кислорода, а в ряду органических кислот – от pH кислот.

Ключевые слова: высокое давление, пластические деформации, алюминий, металлоорганические композиты, термогравиметрия, дифференциальная сканирующая калориметрия

DOI: 10.31857/S0044185620050319

введение

Окисление металлов в воздушной среде сопровождается выделением большого количества энергии. Для получения максимальной энергии в единицу времени используют порошки металлов разной дисперсности, имея в виду, что, чем выше дисперсность порошка, тем больше его удельная поверхность. Активность порошкообразного металла будет также зависеть от структуры поверхности и от веществ, контактирующих с этой поверхностью. Интерес к процессу окисления металлических порошков связан с тем, что порошкообразные металлы оказывают сильное влияние на процессы, протекающие в твердых топливах и взрывчатых веществах.

Одним из наиболее эффективных металлов, используемых в качестве компонентов твердых топлив, является алюминий [1, 2]. В настоящее время проводятся широкие исследования процесса горения как индивидуальных порошков алюминия разной дисперсности [3], так и смесей алюминия с разными компонентами с целью интенсификации процесса горения [4]. В качестве добавок используют как порошкообразные металлы, так и органические соединения [5–8].

В работе [9] исследовали влияние нитроцеллюлозы, олеиновой и стеариновой кислоты на процесс окисления нанодисперсных порошков алюминия, а в работе [10] исследовали окисление порошкообразного алюминия после модификации поверхности формиатами Mn, Fe, Co и Ni. В работе [11] установили, что скорость окисления наночастиц алюминия с покрытием из олеиновой кислоты выше, чем с оксидным или фторполимерным покрытием, нанесенным на поверхность. В [12] было установлено, что скорость горения алюминия в нанокомпозитах алюминийоктоген тем выше, чем больше размер кристаллов октогена на частицах металла.

Эффективным методом создания свежевскрытых поверхностей в твердых талах различной химической природы является пластическое деформирование под высоким давлением на аппаратуре высокого давления типа наковален. Пластиче-

531

ское деформирование под высоким давлением гетерогенных смесей приводит к уменьшению размеров индивидуальных частиц, образованию свежевскрытых поверхностей и формированию протяженной межфазной границы в плоскости течения материала.

На разнородных поверхностях за счет переноса заряда из одного материала в другой (инжекции) формируются двойные электрические слои. Структурные дефекты являются ловушками для инжектированных зарядов. При пластическом увеличивается деформировании количество структурных дефектов, а высокое давление усиливает инжекцию электронов из металла наковален в диэлектрические образцы. Таким образом, не только атомы и молекулы, лежащие на поверхностях раздела, но атомно-молекулярные слои прилегающие к поверхности оказываются в поле действия сильных градиентов электрических полей. Это приведет к поляризации электронной структуры молекул органического компонента, что проявится в изменении его реакционной способности. Возможно, именно с этим эффектом связано то, что химические процессы при пластическом деформировании в различных веществах протекают без инициаторов и катализаторов. По завершению деформирования и снятия давления часть структурных дефектов с захваченными электронами выйдет из вещества, а часть останется; сохранится и межфазная граница. Таким образом, часть молекул останется в поляризованном состоянии — это может проявиться в термоинициируемых процессах в деформированных смесях. При пластическом деформировании под высоким давлением смесей металл – органический компонент сформируется плотный межфазовый контакт и органическое соединение будет препятствовать доступу кислорода к поверхности алюминия. Низкомолекулярные органические вещества широко различаются по своей химической активности – кислоты, спирты, амиды. Некоторые из них при пластическом деформировании под высоким давлением являются химически инертными, а некоторые претерпевают химические превращения. Это означает, что они могут взаимодействовать с высокоактивным алюминием уже при пластическом деформировании, образуя на поверхности алюминиевых частиц слой новых продуктов, которые могут по-разному влиять на химические процессы при последующем нагревании деформированных смесей. В этой связи представляет интерес исследование термостимулируемых процессов в металлоорганических композитах, полученных методом пластического деформирования под высоким давлением.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данной работе в качестве объектов исследования были выбраны аламантан, антрацен, аспарагиновая кислота, янтарная кислота, малеиновая кислота, пентаэритрит, акриламид, ацетиленовая сажа и порошкообразный алюминий марки АСД8 (размер частиц 1-5 мкм). Смеси Al с 20 мас. % органических компонентов готовили в ступке. Деформирование смесей под давлением 0.5 и 1.0 ГПа проводили при комнатной температуре на наковальнях из каленой стали ХВГ с диаметром рабочих поверхностей 20 мм, а под давлением 4 ГПа на наковальнях из твердого сплава ВК6 с диаметром рабочих поверхностей 15 мм. Для анализа выбирали краевую зону образцов шириной 3-4 мм. Толщина образцов в этой зоне составляла 80-100 мкм. Изменения массы образцов при нагревании изучили на приборе Q500 TA INSTRUMENT в диапазоне 25-800°С в воздушной среде при скорости нагрева 20 град мин⁻¹; отдельные измерения были проведены в аргоне; массу образцов варьировали от 5 до 10 мг. Были проведены также измерения на микрокалориметре Q600 ТА INSTRUMENT при температурах до 800°С с одновременной записью тепловых потоков и изменений массы образцов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Выбранные для исследования органические соединения в обычных условиях различаются по своей реакционной способности. Адамантан и антрацен малоактивные вещества, в то время как аспарагиновая, малеиновая и янтарная кислота наиболее активны в ряду органических двухосновных кислот; пентаэритрит содержит четыре активные карбоксильные группы. Перечисленные соединения не испытывают химических превращений при пластическом деформировании под высоким давлением — исключение составляет акриламид, который легко полимеризуется в этих условиях до 100% конверсии.

На температурной зависимости изменения массы для исходного алюминия в температурном диапазоне 30-450°С происходило снижение массы на 0.1%, а в диапазоне 450-800°С регистрировали увеличение массы на 0.3-0.6%, связанное с окислением алюминия. На термограммах исходного алюминия присутствует эндотермический пик плавления с максимумом при 665°С и энтальпией 300 Дж г^{-1} ; табличное значение энтальпии плавления алюминия составляет 390 Дж г^{-1} . Различие в энтальпиях может быть связано с оксидной пленкой на поверхности алюминиевых частиц; в этом случае содержание оксида в исходном алюминии может достигать 23 мас. %.

Термическое разложение большинства исходных органических соединений и связанное с этим процессом уменьшение массы проходило в одну стадию. Конечная температура варьировалась от 200°С для адамантана до 370°С для пентаэритрита. В то же время в аспарагиновой кислоте уменьшение массы проходило в три стадии и завершалось при 760–770°С.

Температурные зависимости изменения массы в деформированных смесевых образцах состоят из двух диапазонов: в диапазоне 30–400°С происходит уменьшение массы (–м), связанное с разложением органических компонентов смесей, а в диапазоне 400–800°С регистрировали возрастание массы (+м), связанное с взаимодействием алюминия с кислородом и азотом воздуха (рис. 1).

В табл. 1 приведены величины —м для разных смесей после деформирования под давлением 0.5, 1.0 и 4.0 ГПа. Во всех смесях независимо от давления обработки величины —м были меньше 20%. Не полное разложение органических компонентов при нагревании деформированных образцов может быть связано с образованием термостойких продуктов как во время деформирования, так и при нагревании смесей. Такими продуктами могут быть Al_2O_3 , AIN, Al_4C_3 .

После деформирования под давлением 0.5 ГПа значение —м для смеси с антраценом составило 16.9%, а в смеси с адамантаном 13.2%; после деформирования под давлением 1 ГПа —м в смеси с антраценом составило 7.9%, а в смеси с адамантаном 2.1%. Таким образом, потери массы в смесях с антраценом больше, чем в смесях с адамантаном — это означает, что в смесях с адамантаном образуется больше термостойких продуктов, чем в смесях с антраценом. Такая разница в поведении может быть связана с более высокой химической активностью адамантана в смеси с алюминием, по сравнению с антраценом при выбранных условиях обработки.

На примере смесей с антраценом и адамантаном видно, что значения -м уменьшаются (возрастает количество термостойких продуктов) с увеличением давления деформирования от 0.5 до 4.0 ГПа – это свидетельствует о том, что химические превращения в смесях, приводящие к образованию термостойких продуктов, протекают именно во время деформирования под давлением. В других же смесях, обработанных под давлением 4 ГПа, значения –м варьировались в пределах 1.5-3.4%, то есть практически совпадали с величинами, полученными после обработки под давлением 0.5 ГПа. Это означает, что в этих смесях практически полное расходование органических компонентов в химических процессах происходит уже при деформировании под давлением 0.5 ГПа.

По количеству образовавшихся термостойких продуктов смеси, деформированные под давлением 1 ГПа, можно выстроить в следующий ряд: адамантан (18.5%), малеиновая кислота (18.3%), ян-

Рис. 1. Изменение массы при нагревании смесей (1, 3, 5, 7) и термограммы смесей (2, 4, 6, 8) содержащих 20 мас. %: адамантана (1, 2), антрацена (3, 4), янтарной кислоты (5, 6), пентаэритрита (7, 8) после деформирования под давлением 0.5 ГПа.

тарная кислота (18.0%), аспарагиновая кислота (17.0%), акриламид (15.8%), пентаэритрит (15.0%), антрацен (12.1%).

Среди органических соединений, выбранных для исследования, присутствуют двухосновные органические кислоты, которые различаются по своей химической активности, характеризуемой в обычных условиях константами диссоциации. По первой константе диссоциации (K_1) самой сильной кислотой является малеиновая ($K_1 = 1000 \times 10^{-5}$), затем следует аспарагиновая кислота ($K_1 = 750 \times 10^{-5}$), а потом янтарная кислота ($K_1 = 6.4 \times 10^{-5}$). По второй константе диссоциации (К₂) ряд активности кислот выглядит по-другому: аспарагиновая кислота ($K_2 = 17.7 \times 10^{-5}$), янтарная кислота ($K_2 = 0.23 \times 10^{-5}$), малеиновая кислота ($K_2 = 0.05 \times 10^{-5}$). Приведенные данные свидетельствуют о том, что в ряду двухосновных кислот количество образующихся термостойких продуктов уменьшается по мере увеличения силы кислоты по константе K_2 .

Наименьшее количество термостойких продуктов (12.1%) регистрировали в антрацене, который можно рассматривать как слабую С–Н-кислоту. Если предположить, что установленное на

	<i>Р</i> , ГПа	—м, %	—м2, %	$+_{\mathrm{M}}$, %
Антрацен	0.5	16.9		150
	1.0	7.9	0.5	17.0
	1.0 Ar	13.4		—
	4.0	1.4	1.5	7.5
Адамантан	0.5	13.2		22.0
	1.0	1.5		26.2
	1.0 Ar	3.7		—
	4.0	1.5		3.5
Янтарная кислота	0.5	1.9		13.2
	1.0	2.0	2.1	6.1
	1.0 Ar	5.1		—
	4.0	1.9	1.8	3.5
Аспарагиновая кислота	0.5	3.5		
	1.0	3.0	3.0	9.0
	4.	2.5	2.5	4.8
Малениновая кислота	0.5	1.8		
	1.0	1.7	1.2	6.2
	4.0	1.5	1.7	2.6
Пентаэритрит	0.5	1.5		22.4
	1.0	5.0	3.1	4.0
	4.0	3.4	1.3	16.5
Акриламид	0.5	4.5		
	1.0	4.2	4.2	12.0
	4.0	2.8	2.8	6.0

Таблица 1. Уменьшение массы (-м%, -м2%) в температурном диапазоне 30–400°С и увеличение массы (+м%) в диапазоне 400–800°С после деформирования смесей при разных давлениях (*P*, ГПа)

примере ряда кислот снижение количества термостойких продуктов связано с увеличением кислотности, тогда полученному в смесях с антраценом количеству термостойких продуктов должна соответствовать константа диссоциации 454.0 $\times 10^{-5}$, то есть в 25 раз больше, чем K_2 в сильной аспарагиновой кислоте.

Образование термостойких продуктов может происходить в процессе деформирования при взаимодействии активных атомов алюминия с молекулами органических соединений, а также с кислородом и азотом воздуха. При нагревании деформированных смесей алюминий может прореагировать с продуктами термического разложения органики, а также с кислородом и азотом воздуха. Конечными продуктами таких процессов будут Al_2O_3 , $Al(OH)_3$, Al_4C_3 , AlN. В этой связи представляет интерес вопрос о том, какое количество новых продуктов образуется при окислении, карбидизации и азотировании. Для ответа на этот вопрос деформированные под давлением 1 ГПа смеси с адамантаном, янтарной кислотой и антраценом нагревали в аргоне. При измерениях в воздушной среде протекают процессы, как с участием кислорода и азота воздуха, так и с участием углерода. При измерениях в аргоне будут исключены процессы окисления и азотирования, а основным химическим процессом будет взаимодействие атомов алюминия на свежевскрытой поверхности металлических частиц с атомами углерода органических компонентов.

Оказалось, что при измерениях в аргоне смесей с антраценом, адамантаном и янтарной кислотой количество вылетающих продуктов было больше, чем при измерениях в воздушной среде. По данным, приведенным в табл. 1, можно определить количество термостойких продуктов, образующихся в температурном диапазоне разложения органических соединений, как в воздушной среде, так и в аргоне. Количеству карбидов соответствует количество термостойких продуктов образующихся при измерениях в аргоне; для адамантана, янтарной кислоты и антрацена эти величины составили 16.3, 14.9 и 6.6%, соответ-

ственно. Разница между количеством термостойких продуктов, полученных при измерениях в воздушной среде и в аргоне, дает суммарное количество продуктов окисления и азотирования, которое для адамантана составило 2.2%, для янтарной кислоты – 3.1%, а для антрацена – 5.5%. В случае смеси с антраценом количество термостойких продуктов, которые можно связать с образованием карбида алюминия (6.6%), в 1.2 раза превышает количество термостойких продуктов, образование которых произошло при окислении и азотировании алюминия (5.5%); в случае смеси с адамантаном количество образующегося карбида (16.3%) в 7.4 раза превышает суммарное количество нитридов и оксидов (2.2%); в смеси с янтарной кислотой количество карбида (14.9%) в 4.8 раза превышает суммарное количество продуктов окисления и азотирования (3.1%). Таким образом, во всех смесях после обработки под давлением и нагрева до 450-500°С содержание карбида превышает содержание оксида и нитрила алюминия.

Молекула антрацена в своем строении содержит 94% углерода; в молекуле адамантана углерода содержится 88%, а в молекуле янтарной кислоты — 41%. На основе этих данных можно оценить "активность" атомов углерода в разных соединениях как отношение количества образовавшегося карбида к содержанию углерода в органической молекуле. Для антрацена, адамантана и янтарной кислоты эти величины составили 0.07, 0.18 и 0.36, соответственно. Таким образом, в низкотемпературной области, "активность" углерода в янтарной кислоте в 5.3 раза выше, чем в антрацене и в 2 раза выше, чем в адамантане.

Во всех смесях, деформированных под давлением 1 и 4 ГПа, при измерении в воздушной среде, в температурном диапазоне 450-530°С регистрировали второй этап снижения массы (-м2), сразу после которого начиналось увеличение массы, связанное с окислением алюминия. Исключение составила смесь с адамантаном, в которой сразу по завершению основного процесса разложения органической фазы начиналось увеличение массы образцов (после 0.5 ГПа этого этапа не было). Величины –м2 различались для смесей с разными органическими компонентами (табл. 1), но мало отличались от значений —м: так после деформирования под давлением 1 ГПа минимальное значение -м2 = 0.5% было получено для смеси с антраценом, а максимальное – для смеси с акриламидом (4.2%). Возможно, что снижение массы в металлополимерных смесях в диапазоне 450-530°С связано с частичным распадом термостойких продуктов образовавшихся, как при деформировании под давлением, так и при взаимодействии продуктов разложения органического компонента с атомами алюминия на свежевскрытой поверхности металлических частиц.

Таблица 2. Элементный состав органических соединений и увеличение массы (+м, %) в деформированных смесях

	+ _M ,%	C, %	0, %	N, %	Η, %
Адамантан	26.2	88	0	0	12
Антрацен	17.2	94	0	0	6
Акриламид	12.0	48	21	23	7
Аспарагиновая к-та	9.0	39	35	18	6
Янтарная к-та	6.4	41	43	0	8
Малеиновая к-та	6.1	50	44	0	5
Пентаэритрит	4.0	46	49	0	3

В Т-лиапазоне 50-450°С происхолит полное разложение органических компонентов и в смеси остается алюминий и образовавшиеся термостойкие продукты. К началу интенсивных процессов окисления и азотирования при температурах выше 500°C на поверхности металлических частиц формируются слои из термостойких продуктов, образовавшихся при взаимодействии органических компонентов смесей с активными атомами алюминия на свежевскрытых поверхностях алюминия, как во время деформирования, так и при взаимодействии продуктов разложения органических вешеств с алюминием при нагревании. Таким образом, влияние органических компонентов на процессы окисления и азотирования при высоких температурах, скорее всего, надо искать в элементном составе исследуемых органических соединений.

В табл. 2 приведены данные о приращении массы в деформированных смесях в температурном диапазоне $500-800^{\circ}$ С. Максимальное приращение массы после деформирования под давлением 1 ГПа достигало +m = 26.2% в смеси с адамантаном, а минимальное +m = 4% было зарегистрировано в смеси с пентаэритритом. В табл. 2 приведены также данные по элементному составу органических компонентов смесей, которые свидетельствуют о том, что значения +m уменьшаются по мере снижения в органических компонентах углерода и увеличения содержания кислорода. На рис. 2 показано влияние кислорода на величину +m в разных смесях.

В ряду двухосновных кислот значения +м уменьшаются по мере уменьшения константы диссоциации K_2 . В паре азотсодержащих соединений (акриламид, аспарагиновая кислота) оказалось, что, чем больше содержание азота, тем больше значение +м.

Таким образом, величина +м зависит не только от элементного состава органических молекул, а в ряду органических кислот и от величины константы диссоциации. Кислоты оказывают противоположное влияние на изменения массы в де-

Рис. 2. Зависимость приращения массы (+м, %) в Т-диапазоне 450–800°С от содержания кислорода в органической молекуле.

формированных смесях: так в Т-диапазоне разложения органики количество образующихся термостойких продуктов снижается с увеличением силы кислоты, а в Т-диапазоне интенсивного окисления алюминия приращение массы возрастает с увеличением силы кислоты. Наиболее сильное влияние на процессы приводящие к изменениям массы проявляют слабые С–Н-кислоты.

Известно, что растворы спирооксазина при $У\Phi$ -облучении приобретают синюю окраску, а в кислой среде окраска становится красной (солевая форма). В работе [13] было показано, что в результате пластического деформирования под давлением 1 ГПа спирооксазин окрашивается в синий цвет. В результате деформирования под высоким давлением смеси спирооксазана с кислотами (малеиновой, фумаровой) приобретали красную окраску. Красным же был и цвет деформированной смеси спирооксазина со слабой N-Hкислотой – акриламидом. Образование солевой формы (красную окраску) наблюдали также в деформированной смеси с полиэтиленом. Таким образом, при пластическом деформировании под высоким давлением кислотные свойства (способность протонировать) может проявлять и полиэтилен.

На рис. 3 представлены значения +м для разных смесей в зависимости от давления деформирования. В случае смеси с адамантаном величины +м достигала максимального значения (26.2%) при давлении 1 ГПа и далее не зависела от давления обработки. Зависимость для смеси с пентаэритритом имела ярко выраженный экстремаль-

Рис. 3. Зависимость приращения массы (+м, %) в Т-диапазоне 450–800°С в смесях с адамантаном (I), пентаэритритом (2), антраценом (3) и янтарной кислотой (4) в зависимости от давления деформирования P, ГПа.

ный характер с минимумом при давлении 1 ГПа. Для смесей с антраценом и янтарной кислотой также было зарегистрировано нарушение монотонности на барических зависимостях.

Химические реакции, протекающие в смесевых образцах при нагревании, должны сопровождаться выделением тепла. Для изучения этих процессов смеси с адамантаном, антраценом, янтарной кислотой и пентаэритритом исследовали методом ДСК с одновременной записью m—T-зависимостей. Деформирование смесей проводили под давлением 0.5 ГПа — в этом случае в образцах будет оставаться максимальное количество не прореагировавшей под давлением органики и максимальным же будет приращение массы в высокотемпературном диапазоне; таким образом можно ожидать, что экзотермические эффекты проявятся в наибольшей степени.

На рис. 1 приведены термограммы деформированных смесей и соответствующие им m–T-зависимости, полученные в воздушной среде. На термограммах всех смесей в диапазоне 30–500°С присутствуют экзотермические пики, проявляющиеся при температурах, при которых на m–T-зависимостях происходит снижение массы, а в диапазоне 500–800°С присутствуют экзотермические пики, которым на m–T-зависимостях соответствует интенсивное увеличение массы.

	% термост	∆HI, Дж/г	∆НІприв	+ _M , %	∆HII, Дж/г	∆HIIприв			
Пентаэритрит	18.6	1300	70	4.0	4100	1025			
Адамантан	6.8	410	60	26.2	2780	106			
Антрацен	3.1	380	122	16.0	2400	150			
Янтарная кислота	18.1	300	17	13.4	3000	224			

Таблица 3. Количество образовавшихся термостабильных продуктов (% термост.), энтальпия экзопроцесса (Δ HI, Дж/г) и приведенная энтальпия (Δ HIприв) в Т-диапазоне 50–450°С; приращение массы (+м, %), энтальпия экзопроцесса (ΔНП. Дж/г) и приведенная энтальпия (ΔНПприв) в Т-диапазоне 450–800°С

Характерно то, что и увеличение массы и экзотермические пики наиболее сильно проявляются при температурах ниже T_{nn} алюминия; при более высоких температурах скорость приращения массы заметно снижается.

Следует отметить, что термическое разложение низкомолекулярных органических соединений использованных в данной работе сопровождается эндотермическими эффектами, энтальпии которых в ряду пентаэритрит-адамантан-антрацен-янтарная кислота составляют 1100-100- $580-1300 \ \text{Дж r}^{-1}$. Изменение знака теплового эффекта при разложении органического компонента в деформированной смеси может быть связано с выделением энергии при взаимодействии продуктов разложения органики с атомами алюминия на свежевскрытых поверхностях металлических частиц.

Экзотермические пики на термограммах частично перекрывались и для оценки их энтальпий использовали метод графического разделения. В табл. 3 приведены энтальпии экзотермических процессов в температурном диапазоне разложения органической фазы и в диапазоне увеличения массы, связанным с окислением; расчет энтальпий проводили на полную массу образцов. При такой обработке энтальпии экзопроцессов в низкотемпературном диапазоне варьировались от 300 Дж г⁻¹ в янтарной кислоте до 1300 Дж г⁻¹ в пентаэритрите. В высокотемпературном диапазоне минимальное значение энтальпии было получено в смеси с антраценом и составило 2400 Дж г⁻¹, а максимальное в смеси с пентаэритритом и достигало 4200 Дж г⁻¹.

Данные табл. 3 свидетельствуют о том, что эгерговыделение в низкотемпературном диапазоне ниже, чем в высокотемпературном. Наибольшие величины экзотермического эффекта в обоих температурных диапазонах были зарегистрированы в пентаэритрите - веществе с максимальным содержанием кислорода в молекуле.

Экзотермическим эффектам для разных смесей соответствовали разные изменения массы. Для более корректного сравнения энергетических процессов в деформированных металлоорганических смесях измеренные энтальпии экзоэффектов относили к соответствующему изменению массы

("приведенная" энтальпия) – уменьшению в низкотемпературном диапазоне и увеличению в высокотемпературном (ДНІприв и ДНІІприв); полученные значения приведены в табл. 3.

антрацен—адамантан R паре величина ∆НІприв коррелирует с содержанием углерода в органической молекуле; в паре пентаэритритянтарная кислота значение Δ HIприв тем больше, чем выше содержание углерода в молекуле, и чем ниже содержание кислорода. Янтарная кислота наиболее химически активна, а значение Δ НІприв самое маленькое. Этот эффект, возможно, связан с тем, что часть термостойких продуктов образовалась уже при деформировании, а экзоэффект относиться к химическому процессу при нагревании.

Табличное значение энтальпии плавления Al составляет 390 Дж г⁻¹, а энтальпия плавления использованного в нашей работе порошка не превышала 300 Дж г⁻¹; такое различие может быть связано с частичным окислением используемого алюминиевого порошка. Для исследуемого порошка "приведенная" энтальпия составляет 144. Таким образом, для смеси с пентаэритритом "приведенная" энтальпия в 7 раз больше, а для смеси с янтарной кислотой в 1.5 раза больше, чем для исходного алюминия. Эффект увеличения "приведенной" энтальпии характерен только для кислородсодержащих органических соединений. В смесях с антраценом и адамантаном "приведенная" энтальпия либо совпадала с аналогичной характеристикой для исходного алюминия, либо была меньше.

Основным продуктом, образующимся при разложении органических соединений, является углерод. Однако, тот факт, что органические соединения при нагревании теряют 100% массы, означает, что углерод полностью сгорает уже при 400-450°С. Представляло интерес исследовать смесь алюминия с углеродом после деформирования под высоким давлением. С этой целью обработке под давлением 1 ГПа подвергали смесь Al-20 мас. % ацетиленовой сажи.

В исходной смеси Al-сажа снижение массы начиналось уже при 40-50°С и при 630°С составило 0.5%; при 680°C снижение массы достигало 2%, а снижение в 18% регистрировали при 780°С.

536

Таким образом, углерод, образующийся при разложении органических соединений, сгорает при температурах до 450°С, а ацетиленовая сажа при значительно более высокой температуре — выше 780°С. В смеси Al—сажа обработанной под давлением 1 ГПа снижение массы при 700°С составило 3.8%, а возрастание массы при 800°С составило 0.9%.

На термограмме деформированной смеси Alуглерод присутствовали экзотермические пики, на которые накладывался эндотермический пик плавления алюминия, максимум которого находился при 650°C, а энтальпия составила 15.5 Дж r^{-1} . Температура плавления используемого нами порошка алюминия составляла $T_{\rm пл} = 662^{\circ}$ С. Согласно данным работы [14] снижение $T_{\text{пл}}$ алюминия на 12 град свидетельствует о том, что размер частиш металла уменьшился до 140-150 нм. Энтальпия плавления исходного порошкообразного алюминия не превышала 300 Дж г⁻¹ – это означает, что энтальпия плавления 80 мас. % Al должна составить 240 Дж г⁻¹, а в деформированной смеси энтальпия плавления алюминия составила лишь 15.5 Дж г⁻¹ – такая энтальпия соответствует плавлению только 6.5% алюминия.

Суммарная энтальпия экзотермических процессов в деформированной смеси составила 3210 Дж г⁻¹. Экзо процессы в деформированной смеси идут с очень маленькими изменениями массы. Это означает, что выделение энергии не связано с окислением алюминия. Скорее всего, экзотермические эффекты связаны с взаимодействием алюминия и углерода. Энтальпия образования карбида алюминия составляет 209 кДж/моль = 1.45 кДж/г, а суммарная энтальпия экзопроцессов в смеси достигает 3.21 кДж/г. Возможно, что наряду с образованием карбида алюминия происходит образование интеркалляционных комплексов – внедрение атомов алюминия в межслоевые пространства графита – это и дает дополнительный вклад в суммарную энергию.

ЗАКЛЮЧЕНИЕ

При деформировании бикомпонентных смесей под высоким давлением пластические деформации развиваются в обоих компонентах. В случае смесей алюминий—20 мас. % органического компонента частицы металла дробятся до размера 140—150 нм. При этом на частицах металла образуется высоко активная свежевскрытая поверхность. Такие изменения способствуют протеканию в деформируемых смесях химических процессов между молекулами органического компонента и атомами алюминия. О химическом взаимодействии в деформируемых смесях свидетельствует почернение образцов, а также то, что количество образующихся термостойких продуктов возрастает с увеличением давления обработки.

Термостимулируемые процессы в деформированных металлоорганических смесях протекают в двух Т-диапазонах. В диапазоне 30–500°С это связано с разложением органических компонентов, а в диапазоне 500–800°С с окислением алюминия. Энтальпии экзопроцессов в низкотемпературном диапазоне были всегда меньше, чем энтальпии экзопроцессов в высокотемпературном диапазоне.

В деформированных смесях потери массы были всегда меньше 20%, что указывает на образование термостабильных продуктов.

При нагревании деформированных смесей в температурном диапазоне 30–500°С регистрировали снижение массы, связанное с разложением органики, а в диапазоне 500–800°С увеличение массы, связанное с окислением и азотированием алюминия. Изменения массы в смесях сопровождались химическими процессами, которым на термограммах соответствовали экзотермические пики.

Количество образующихся термостойких продуктов в Т-диапазоне разложения органики в ряду двухосновных органических О-Н-кислот уменьшается при увеличении силы кислоты. Наиболее сильным снижение количества термостойких продуктов оказалось в смесях со слабыми в обычных условиях N-H- и C-H-кислотами. В обычных условиях активность аспарагиновой кислоты в 350 раз выше, чем малеиновой, а в деформированных смесях различие сокращается до 1.07 раза. Такой эффект может быть связан с формированием на границах разнородных фаз двойных электрических слоев. В этом случае органические молекулы оказываются в поле действия сильных электрических полей, способных поляризовать электронную структуру молекул. Уменьшение различий в химической активности кислот возможно в том случае когда суммарная поляризация молекул кислот – эффект от влияния электрических полей и естественная поляризация органических молекул _ будет существенно превышать поляризацию молекул в обычных условиях.

Количество термостойких продуктов в диапазоне 500—800°С, когда основными образующимися продуктами являются оксиды и нитриды алюминия, тем больше, чем больше содержание углерода в органических молекулах; присутствие кислорода в строении органических молекул снижает количество образующихся термостойких продуктов.

Работа выполнена за счет субсидии, выделенной ИХФ РАН на выполнение государственного задания; тема 0082-2014-0015 "Разработка методологии синтеза новых высокополимеров, олигомеров и макромономеров и изучение влияния структуры полимеров на их свойства"; АААА-А17-117032750201-9; а также в рамках госзадания ИФХЭ РАН по теме госзадания "Физикохимия функциональных материалов на основе архитектурных ансамблей металл-оксидных наноструктур, многослойных наночастиц и пленочных нанокомпозитов". Регистрационный номер НИОКТР АААА-А19-119031490082-6.

СПИСОК ЛИТЕРАТУРЫ

- 1. Иванов В.Г., Гаврилюк О.В. // Физика горения и взрыва. 1999. Т. 35. № 6. С. 53-60.
- Ильин А.П., Громов А.А., Яблуновский Г.В. // Физика горения и взрыва. 2001. Т. 37. № 4. С. 58–62.
- 3. *Сандарам Д., Янг В., Зарко В.Е. //* Физика горения и взрыва. 2015. Т. 51. № 2. С. 37-63.
- 4. Громов А.А., Попенко Е.М., Ильин А.П. // Химическая физика. 2005. Т. 24. № 4. С. 69–83.
- Dreizin E.L., Shosin Yu.L., Mudryy R.S., Hoffman V.K. // Cobustion and Flame. 2002. V. 130. P. 381–387.
- 6. *Брейтлер А.Л., Мальцев В.М., Попов Е.И.* // Физика горения и взрыва 1990. Т. 26. № 1. С. 97–104.

- Шевченко В.Г., Кононенко В.И., Булатов М.Л., Латош И.Н., Чупова И.А. // Физика горения и взрыва. 1998. Т. 34. № 1. С. 45.
- Жорин В.А., Киселев М.Р., Котенев В.А. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 4. С. 350–358.
- Громов А.А., Ильин А.П., Бозе-Бат У., Тайпель У. // Физика горения и взрыва. 2006. Т. 42. № 2. С. 61– 69.
- 10. Шевченко В.Г., Красильников В.Н., Еселевич Д.А., Конюкова А.В. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 1. С. 25–32.
- Lewis W.K., Rumchik C.G., Smith M.J., Fernando K.A.S., Crouse C.a., Spowart J.E., Guliants E.A., Bunker C.E. // J. Appl. Phys. 2013. V. 113. P. 044907-1-5. https://doi.org/10.1063/1.4790159
- Жигач А.Н., Лейпунский И.О., Пивкина А.Н., Муравьев И.В., Моногаров К.А., Кусков М.Л., Афанасенкова Е.С., Березкина Н.Г., Пшечков П.А., Брагин А.А. // Физика горения и взрыва. 2015. Т. 51. № 1. С. 117– 124.
- Жорин В.А., Зеленецкий А.Н., Киселев М.Р., Маревцев В.С., Шиенок А.И. // Журн. прикладной химии. 2005. Т. 78. № 6. С. 977–983.
- Lai S.L., Carlsson J.R.A., Allen L.H. // Appl. Physics Letters. 1988. V. 72. P. 1098–1100.