ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ, 2020, том 56, № 6, с. 591–594

____ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ _____

УДК 541.183

ЗАВИСИМОСТИ АДСОРБИРОВАННЫХ КОЛИЧЕСТВ И КОЭФФИЦИЕНТОВ РАЗДЕЛЕНИЯ КОМПОНЕНТОВ БИНАРНЫХ СМЕСЕЙ МЕТАНА С ЭТАНОМ, ПРОПАНОМ И БУТАНОМ ОТ СОСТАВА СМЕСЕЙ, ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ

© 2020 г. А. М. Толмачев^{1,} *, М. Р. Гумеров¹, Т. А. Кузнецова¹

¹ Московский государственный университет имени М.В. Ломоносова, Химический факультет, ГСП-1, Ленинские горы, 1, стр. 3, Москва, 119991 Россия *e-mail: amtolmach@yandex.ru

Поступила в редакцию 10.02.2020 г. После доработки 23.06.2020 г. Принята к публикации 30.06.2020 г.

В связи с необходимостью разработки технологий безрегенерационного адсорбционного выделения этана, пропана и бутана из смесей (1–5%) с природным газом, методом молекулярной динамики рассчитаны зависимости адсорбированных количеств и коэффициентов разделения компонентов бинарных смей метана с этаном, пропаном и бутаном от состава смесей, температуры и давления.

Ключевые слова: адсорбция, микропористые угли, изотермы адсорбции, коэффициенты разделения, молекулярно-динамические расчеты

DOI: 10.31857/S0044185620060236

ВВЕДЕНИЕ

Содержание легких углеводородов в природном газе отдельных газовых месторождений России составлет 1-5% а, иногда, и более. Поскольку легкие углеводороды являются ценными компонентами для химической промышленности, важной и актуальной является задача их извлечения из природного газа.

В связи с этим перспективными могут быть высокоселективные процессы адсорбционного разделения соответствующих газовых смесей. Поскольку основные затраты при адсорбционном разделении связаны с термической или реагентной регенерацией адсорбентов, особый интерес представляют технологии так называемых безрегенерационных" методов, в которых разделение компонентов не требует регенерации адсорбентов и основано на изменении коэффициентов разделения компонентов смеси при периодическом изменении температуры или давления разделяемой смеси в адсорбционных установках (колоннах). Подробное описание таких технологий применительно к разделению смесей электролитов описано в обзорах [1, 2].

Для разработки таких технологий, наиболее эффективных при периодическом изменении давления, необходимы подробные данные о зависимостях адсорбированных количеств и коэффициентов разделения компонентов бинарных смесей метана с этаном, пропаном и бутаном от состава смесей, температуры и давления. Получение таких данных в физических экспериментах применительно к микропримесям затруднено из-за больших ошибок в определении адсорбированных концентраций микропримесей. Численные методы позволяют добиваться существенно более высоких точностей [3, 4]. Для решения этой задачи в настоящей работе методом молекулярной динамики определены равновесные характеристики адсорбции смесей метана с этаном, пропаном и бутаном (1-5%) при различных температурах и давлениях. Количественное совпадение рассчитанных данных с даными физического эксперимента было доказано ранее [5, 6].

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Методика эксперимента описана в работах [3, 4]. Заметим дополнительно, что проведение расчетов при давлениях, различающихся в 10 раз, потребовало изменения длины ребра ячейки от 25 до 8 нм. В ячейку, схема которой представлена на рис. 1, помещалась микропора, образованная двумя квадратными графеновыми пластинами $l = 5 \times 5$ нм (атомы водорода на границах микропоры на рисунке не показаны) и 10000 молекул смесей.

Рис. 1. Ячейка с микропорой шириной h, образованной двумя графеновымим поверхностями 5 × 5 нм. Атомы водорода на гранях поверхностей не указаны.

Все расчеты проводились для конкретного микропористого угля ЛЦН, используемого для адсорбционного аккумулирования метана [7]. Характеристики угля приведены в табл. 1.

В соответствии с данными табл. 1 рассчитывалось число модельных микропор, шириной h = 1.38 нм, в 1 грамме угля и усредненные по 800 мгновенных снимков количества адсорбированных в микропорах углеводородов (ммоль грамм угля ЛЦН). По этим данным рассчитывались коэффициенты разделения (уравнение (1)) этана, пропана и бутана с метаном при адсорбции соответствующих смесей, содержащих 95, 97, 99% метана, при исходных давлениях смесей 10, 30, 70 и 100 атм и постоянных температурах 273, 303 и 333 К.

$$K = \frac{X_1(1 - Y_1)}{Y_1(1 - X_1)},$$
(1)

где *X*₁, *Y*₁ – мольные доли этана, пропана и бутана в адсорбционной и газовой фазах соответственно.

Относительные ошибки расчетов коэффициентов разделения составляли 2–3% для смесей, содержащих 95 и 97% метана, и увеличивались до 8–9% для смесей с 99% метана.

Интервалы изменения составов, давлений и температур выбраны в соответствии с условиями транспортировки природного газа, наиболее подходящими для разработки технологий выведения этана, пропана и бутана из смесей с метаном.

Результаты приведены в табл. 2, 3, 4.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Прежде всего отметим, что, как следует из табл. 5, расчеты адсорбции смесей проводились только для метана при $T < T_{\rm kp}$ и $P < P_{\rm ct}$ ($P_{\rm ct}(T) = P_{\rm s}(T)$ при $T < T_{\rm kp}$ и $P_{\rm ct}(T) = P^{\rm s}(T)$, которое находится экстраполяцией зависимости $\ln P_{\rm s}$ от обратной температуры в закритическую область температур [8]. Соотношения P, $P_{\rm ct}$ T и $T_{\rm kp}$ для остальных углеводородов имеют более сложный характер (см. табл. 2–5), что необходимо учитывать при анализе зависимостей коэффициентов от давления и температуры.

Кроме того необходимо учитывать, что адсорбция метана в отличие от примесей этана, пропана и бутана осуществлялась в области заключительной части изотерм, близкой к насыщению, а энергия адсорбции метана меньше энергий адсорбции примесей. Эти обстоятельства должны приводить к росту коэффициентов разделения с увеличением давления и температуры, что и наблюдается в случае пропана и бутана (см. табл. 3 и 4). Сильное изменение коэффициентов разделения и с давлением, и с температурой делает весьма перспективным использование "безрегенерационных" технологий для выделения пропана и бутана из природного газа.

В случае этана заметно проявляется конкурентное вытеснение и, поэтому, изменения ко-

Удельный объем микропор W_0 , см ³ /г	0.68
Характеристическая энергия адсорбции по азоту Е, кДж/моль	5.7
Характеристическая энергия адсорбции по стандартному пару бензолу E_0 , кДж/моль	17.45
Характеристическая энергия адсорбции по метану Е, кДж/моль	6.2
Полуширина микропор <i>x</i> ₀ , нм	0.69
Удельная поверхность адсорбента $S_{\text{БЭТ}}$, м ² /г	1814
Предельный адсорбционный объем <i>W_s</i> , см ³ /г	0.91
Удельная поверхность мезопор S_{me} , м ² /г	6.63
Удельный объем мезопор W_{me} , см ³ /г	0.23

Таблица 1. Структурно-энергетические характеристики адсорбента ЛЦН

T = 273 K	К Содержание метана – 95 мол. %			Содержание метана – 97 мол. %			Содержание метана – 99 мол. %		
<i>р</i> , атм	метан, адс. ммоль г ⁻¹	этан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	этан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	этан, адс. ммоль г ⁻¹	коэфф. разд.
10	4.0	0.6	3.3	4.5	0.3	1.9	4.6	1.4	4.4
35	4.7	1.4	4.3	8.3	0.8	3.9	8.8	9.4	5.1
70	9.2	1.9	4.8	9.9	1.3	5.2	10.7	8.9	4.6
100	10.3	1.7	4.8	10.8	1.3	5.2	10.8	8.0	4.6
T = 303 K	03 К Содержание метана – 95 мол. %			Содержание метана – 97 мол. %			Содержание метана – 99 мол. %		
<i>р</i> , атм	метан, адс. ммоль г ⁻¹	этан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	этан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	этан, адс. ммоль г ⁻¹	коэфф. разд.
10	2.7	0.4	2.8	2.9	0.2	2.2	2.9	0.1	2.5
35	6.2	1.1	3.8	6.6	0.7	4.3	6.9	0.3	4.2
70	8.1	1.4	4.0	8.5	0.9	4.3	9.1	0.2	3.3
100	8.9	1.4	3.9	9.5	0.9	4.0	10.1	0.3	4.0
T = 333 K	К Содержание метана – 95 мол. %		Содержание метана – 97 мол. %			Содержание метана – 99 мол. %			
<i>р</i> , атм	метан, адс. ммоль г ⁻¹	этан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	этан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	этан, адс. ммоль г ⁻¹	коэфф. разд.
10	1.8	0.4	4.5	1.8	0.2	3.4	1.9	0.1	2.9
35	4.8	0.8	3.7	5.1	0.4	2.9	5.1	0.2	3.6
70	6.8	1.2	3.9	7.1	0.7	3.6	7.5	0.2	2.7
100	7.8	1.3	3.9	8.0	0.9	4.4	8.7	0.2	2.8

Таблица 2. Адсорбированные количества (ммоль г⁻¹) и коэффициенты разделения про адсорбции смесей этана и метана на угле ЛЦН при различных давлениях и температурах

Таблица 3. Адсорбированные количества (ммоль г⁻¹) и коэффициенты разделения про адсорбции смесей пропана и метана на угле ЛЦН при различных давлениях и температурах

T = 273 K	Содержание метана – 95 мол. %			Содержан	ие метана – 9'	7 мол. %	Содержание метана – 99 мол. %		
<i>р</i> , атм	метан, адс. ммоль г ⁻¹	пропан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	пропан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	пропан, адс. ммоль г ⁻¹	коэфф. разд.
10	4.3	0.3	1.7	4.5	0.2	1.3	4.2	0.1	2.3
35	7.8	1.4	5.0	8.2	0.8	4.6	8.7	0.1	3.4
70	8.2	2.4	9.7	9.6	1.3	7.8	10.5	0.4	6.2
100	8.6	2.6	10.1	9.7	1.8	11.6	11.6	0.5	7.5
T = 303 K	<i>T</i> = 303 К Содержание метана – 95 мол. %			Содержан	ие метана – 9'	7 мол. %	Содержание метана – 99 мол. %		
<i>р</i> , атм	метан, адс. ммоль г ⁻¹	пропан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	пропан, адс. молекул	коэфф. разд.	метан, адс. ммоль г ⁻¹	пропан, адс. ммоль г ⁻¹	коэфф. разд.
10	2.9	0.4	2.7	2.9	0.2	1.8	2.8	0.1	3.5
35	5.8	1.5	6.6	6.3	0.8	5.6	6.7	0.2	4.0
70	6.8	2.3	10.3	8.1	1.2	7.4	8.9	0.3	6.1
100	7.6	2.4	10.3	8.7	1.4	8.7	9.9	0.5	8.6
T = 333 K	К Содержание метана – 95 мол. %			Содержание метана – 97 мол. %			Содержание метана – 99 мол. %		
<i>р</i> , атм	метан, адс. ммоль г ⁻¹	пропан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. молекул	пропан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	пропан, адс. ммоль г ⁻¹	коэфф. разд.
10	2.0	0.3	3.3	2.0	0.2	2.5	2.0	0.1	5.4
35	4.8	1.0	5.0	5.1	0.7	5.5	5.1	0.2	6.1
70	6.1	1.8	8.0	6.6	1.2	8.6	7.3	0.5	9.5
100	7.7	2.1	8.9	7.8	1.1	8.4	8.3	0.6	8.0

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 56 № 6 2020

ТОЛМАЧЕВ и др.

T = 273 K	Содержание метана – 95 мол. %			Содержание метана – 97 мол. %			Содержание метана – 99 мол. %		
<i>р</i> , атм	метан, адс. ммоль г ⁻¹	бутан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	бутан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	бутан, адс. ммоль г ⁻¹	коэфф. разд.
10	4.1	0.2	1.2	4.5	0.3	2.3	4.5	0.1	3.1
35	7.2	1.0	3.3	8.3	0.7	3.8	8.7	0.2	4.0
70	7.9	2.3	12.2	8.5	1.1	8.7	9.1	0.5	6.2
100	7.8	2.7	14.9	10.0	1.4	9.5	11.6	0.7	12.7
T = 303 K	303 К Содержание метана – 95 мол. %			Содержан	ие метана – 9	7 мол. %	Содержание метана – 99 мол. %		
<i>р</i> , атм	метан, адс. ммоль г ⁻¹	бутан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	бутан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	бутан, адс. ммоль г ⁻¹	коэфф. разд.
10	2.6	0.2	1.9	2.8	0.3	4.2	2.9	0.1	3.6
35	6.0	1.1	3.3	6.3	0.8	5.9	6.9	0.2	4.0
70	6.5	2.3	12.2	7.5	1.2	9.6	8.9	0.4	8.3
100	6.7	2.6	14.7	8.5	1.4	11.7	9.8	0.4	9.2
T = 333 K	К Содержание метана – 95 мол. %			Содержание метана – 97 мол. %			Содержание метана – 99 мол. %		
<i>р</i> , атм	метан, адс. ммоль г ⁻¹	бутан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	бутан, адс. ммоль г ⁻¹	коэфф. разд.	метан, адс. ммоль г ⁻¹	бутан, адс. ммоль г ⁻¹	коэфф. разд.
10	1.9	0.4	4.6	1.8	0.3	5.9	2.1	0.2	6.7
35	4.9	0.8	4.8	5.0	0.7	6.2	5.2	0.3	7.3
70	5.3	2.2	13.1	6.5	1.2	10.4	7.4	0.4	8.1
100	5.9	2.4	13.6	7.1	1.5	12.6	8.3	0.5	11.2

Таблица 4. Адсорбированные количества (ммоль г⁻¹) и коэффициенты разделения про адсорбции смесей бутана и метана на угле ЛЦН при различных давлениях и температурах

эффициентов равновесия с изменением температуры и особенно давления незначительны. Однако достаточно большие численные значения K(2-5) и их изменение с температурой делают перспективными разнообразные технологии выделения этана из природного газа. Кроме того, следует ожидать увеличения коэффициентов разделения этана и метана при использовании микропористых углей с более узкими микропорами (0.8–1.0 нм) [3, 4].

Таким образом, приведенные в данной работе данные являются важной базовой информацией для разработки технологий адсорбционного выделения примесей легких углеводородов из метана.

Таблица 5. Характеристики исследуемых газов

Газ		тк			
1 45	T = 273 K	T = 303 K	<i>T</i> = 333 K	1 kp, 11	
CH ₄	232.7	337.8	466.3	190.9	
C_2H_6	25.7	46.3	78.8	305.3	
C_3H_8	46.5	10.8	45.8	364.8	
C_4H_{10}	1.0	2.8	6.4	425	

СПИСОК ЛИТЕРАТУРЫ

- 1. *Khamizov R.Kh., Ivanov V.A., Madani A.A.* // Reactive and Functional Polimers. 2010. V. 70. P. 521–530.
- Khamizov R.Kh., Ivanov V.A., Tikhonov N.A. "Dual Temperature Methods of Separation and Concentration of Elements in Ion Exchange Columns" // Ion Exchange and Solvent Extraction: Series of Advances. 1910. V. 20. Chapte 5.
- 3. Гумеров М.Р., Фоменков П.Е., Крюченкова Н.Г., Толмачев А.М. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 2. С. 115–119.
- 4. Толмачев А.М., Фоменков П.Е., Кузнецова Т.А., Павлюченков А.С. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 5. С. 461–466.
- 5. *Анучин К.М.* Дис. канд. хим. наук. 2011, Москва. ИФХЭ РАН.
- 6. Толмачев А.М., Фоменков П.Е., Гумеров М.Р., Кузнецова Т.А. // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 1. С. 8.
- Shevchenko A.O., Pribylov A.A., Zhedulov S.A., Men'shchikov I.E., Shkolin A.V., Fomkin A.A. // Protection of Metals and Physical Chemistry of Surfaces. 2019. V. 55. № 2. P. 211–216.
- 8. Фоменков П.Е., Гумеров М.Р., Толмачев А.М. // Физикохимия поверхности и защита материалов. 2018. Т. 54. № 4. С. 374.