НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 544.015.4

ФАЗОВОЕ РАВНОВЕСИЕ И МОРФОЛОГИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ КОНДЕНСАЦИОННЫХ СТРУКТУР В ТРЕХ-И ЧЕТЫРЕХКОМПОНЕНТНЫХ СИСТЕМАХ

© 2020 г. Т. А. Воробьева^{1, *}, В. К. Герасимов¹, В. В. Матвеев¹, А. Е. Чалых¹

¹Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский проспект, 31, Москва, 119071 Россия *e-mail: ptitza37@mail.ru Поступила в редакцию 17.12.2019 г. После доработки 10.07.2020 г. Принята к публикации 17.07.2020 г.

Методом диффузионного обогащения нерастворителем растворов полимера в смешанных растворителях получены пористые структуры и определены их структурные характеристики. Получены квазибинарные диаграммы состояния двух четырехкомпонентных систем. Измерены вязкости растворов полимера в смешанных растворителях. Получены зависимости приведенной вязкости от концентрации полимера, определены тангенсы углов наклона прямых и характеристические вязкости. Показано, что свойства структурных элементов ([η] и tg α) растворов значительно различаются в зависимости от состава смешанного растворителя, и что положение областей гетерогенности на квазибинарных диаграммах состояния для изученных систем соответствуют этим различиям. Показано, что значительные различия размеров пор и их доли в площади плоского сечения структуры соответствуют различиям диаграмм состояния и степени неравновесности структур, которая качественно оценивалась по величине [η]. Результаты свидетельствуют о том, что проведенные вискозиметрические измерения дают полезную информацию при изучении модифицирования морфологии конденсационных структур изменением состава смешанного растворителя.

DOI: 10.31857/S004418562006025X

введение

Известно, что структурообразование из метастабильных и/или лабильных растворов полимеров дает возможность получать разнообразные по свойствам и структурно-морфологическим параметрам дисперсии, мембраны, пористые материалы, защитные покрытия [1–3]. Традиционно при разработке рецептур и выборе условий формирования конденсационных и коагуляционных структур исходят из анализа диаграмм фазового состояния систем [4]. Если для двухкомпонентных систем информация о диаграммах состояния дает возможность определить составы сосуществующих фаз, идентифицировать область обращения фаз и положение спинодальных пограничных кривых, то в случае многокомпонентной системы для получения зависимостей фазового состояния от состава и температуры используют определенные упрощения - рассматривают многокомпонентные системы как квазибинарные [5], строят изотермические сечения диаграмм состояния [6], а для их интерпретации используют теорию Флори–Хаггинса–Скотта [7–9]. Очевидно, что для таких построений, обстоятельный обзор

которых представлен в [4], трудно получить корректную информацию о морфологии образующейся гетерогенной системы, поскольку параметры пористых конденсационных структур существенно зависят от кинетических факторов [10].

В настоящей работе сделана попытка выяснить, можно ли, используя результаты вискозиметрических измерений, с одной стороны, и данные метода "точек помутнения", с другой, получить сбалансированную информацию о квазибинарных диаграммах фазового состояния трех- и четырехкомпонентных систем, термодинамических параметрах смешения компонентов при использовании смешанного растворителя, конформации молекул полимеров в растворе и дисперсной структуре пленок.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе в качестве объекта исследования использован полиэфируретан (ПЭУ) марки Санпрен-18 (Япония) ($M_w = 32.9 \text{ кД}, M_n = 22.1 \text{ кД}$), получаемый при синтезе полиэтиленбутиладипината и 4,4-дифенилметандиизоцианата в диме-

Таблица 1. Растворители и состав смешанных растворителей

Растворители	1	2	3	4	5	6
Мочевина		2				
ДМФА	100	98	96	92	90	90
Глицерин			4	8		
Этиленгликоль					10	
Морфолин						10

Таблица 2. Параметры растворимости компонентов

	δ (кал/см ³) ^{1/2}	δ_{d}	δ_{p}	δ_{h}
ДМФА	22.75	8.52	6.7	5.5
Глицерин	21.1, 17.8	8.46	5.9	14.3
Этиленгликоль	16.05	8.25	5.4	12.7
Морфолин	10.52	9.2	2.4	4.5
Вода	23.45	6.0	15.3	16.7
Мочевина	20.95	8.8	13.0	15.2

тилформамиде (ДМФА). Для получения пористых пленок использовали раствор ПЭУ 20 мас. %.

Пленкообразование проводили методом диффузионного обогащения раствора полимера нерастворителем [11]. В качестве нерастворителя были использованы бинарные и трехкомпонентные растворы ДМФА + Вода, Мочевина + Вода, этиленгликоль + Вода, ДМФА + Морфолин + + Вода, ДМФА + Глицерин + Вода [12]. Информация о составе нерастворителей и их параметрах растворимости представлена в табл. 1 и 2.

Информацию о составе сосуществующих фазах получали методом "точек помутнения" [13, 14]. Измерения мутности 30% раствора ПЭУ в ДМФА с добавлением заданного количества растворов нерастворителей проводили визуально при $21 \pm 1^{\circ}$ С. Готовили растворы заданной концентрации добавлением определенного количества растворов нерастворителей в ДМФА (табл. 1). Трехи четырехкомпонентные системы нагревали и/или охлаждали в режиме ступенчатого повышения температуры и регистрировали температуру просветления ↔ помутнения дисперсий. По результатам этих измерений строили фрагменты бинодальных кривых квазибинарных диаграмм фазового состояния систем (ДМФА $+ \Pi \Im Y$)-(ДМФА + Вода); (ДМФА $+ \Pi \Im Y$)-(Мочевина + Вода); (ДМ Φ A + ПЭУ)-(этиленгликоль + + Вода); (ДМФА + ПЭУ)–(ДМФА + Морфолин + + Вода); (ДМ Φ A + ПЭУ)–(ДМ Φ A + Глицерин + + Вода). Температуру растворов повышали и понижали со скоростью ~9 град/ч. Точки помутнения и просветления фиксировали визуально.

Пористые пленки полиэфируретана толщиной 100—150 мкм получали из 20 мас. % раствора ПЭУ. С этой целью раствор с помощью ракли с зазором ~800 мкм наносили на стеклянную пластину, которую погружали на 20 мин в ванну с водой. Полученные пленки промывали в проточной воде в течение 10 мин и сушили при комнатной температуре на воздухе в течение 3-х сут. Остаточное содержание воды по данным масс-термического анализа составляло 1.5 мас. %.

Структуру пленок исследовали методами сканирующей и просвечивающей электронной микроскопии с использованием EM-301 Philips (Голландия) и JSM U3 (Япония) на поперечных срезах пористых образцов.

Измерения вязкости разбавленных растворов (ДМФА + ПЭУ)–(Мочевина), (ДМФА + Π ЭУ)–(ДМФА + Морфолин), и растворов с добавлением нерастворителя проводили при концентрациях ПЭУ 0.5; 1.0; 1.5; 2.0 мас. % при 20 ± 1°С с помощью шарикового вискозиметра Гепплера.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены типичные фрагменты квазибинарных диаграмм фазового состояния (ДФС) растворов со смешанными растворителями (ДМФА + ПЭУ) + (ДМФА + Мочевина), $(\square M \Phi A + \Pi \Im Y) + (\square M \Phi A + Морфолин) и для$ тех же растворов при добавлении в них воды. Видно, что все системы характеризуются диаграммами аморфного расслоения с ВКТС, расположенной в области температур от 10 до 40°С и критических составов от 15 до 20 мас. %. Введение в состав раствора воды, как правило, смещает критическую точку в область смешанных растворов ДМФА + Морфолин + Вода, ДМФА + Мочевина + Вода и приводит к повышению ВКТС. Так система ($ДМФА + \Pi ЭУ$)–(ДМФА + Морфолин) характеризуется критической температурой 17°С, система (ДМФА + ПЭУ)-(ДМФА + Морфолин + 9% Воды) – 30°С, а система (ДМФА + ПЭУ)-(ДМФА + + Морфолин + 12% Воды) -42°C.

Термодинамический анализ аморфного расслоения растворов ПЭУ в многокомпонентных растворителях проводили в псевдобинарном приближении с использованием уравнений теории полимерных растворов Флори–Хаггинса–Скотта [15, 16]. Бинодальные кривые, показанные на рис. 1 и представленные как псевдобинарные системы "полимер-растворитель", использовали для получения температурных зависимостей эффективного параметра Флори–Хаггинса (χ). Расчет χ для каждой температуры проводили по уравнению [17]:

Рис. 1. Кривые, разделяющие области гомогенного и гетерогенного состояний, для систем, содержащих мочевину и морфолин (кривые 1 и 2 соответственно) и с добавками 7% H₂O к раствору, содержащему мочевину (кривая 3), 9 и 12% H₂O к раствору, содержащему морфолин (кривые 4 и 5 соответственно).

$$\chi = \frac{\ln\left(\frac{\phi_{1}^{\prime\prime}}{\phi_{1}^{\prime}}\right) - \frac{\ln\left(\frac{\phi_{2}^{\prime\prime}}{\phi_{2}^{\prime}}\right)}{r_{2}}}{2\left(\phi_{2}^{\prime\prime} - \phi_{2}^{\prime}\right)},$$
(1)

где φ_1 , φ_2 — объемные концентрации растворителя и полимера соответственно. Надстрочные индексы / и // оответствуют составам сосуществующими фазами, r_2 степень полимеризации ПЭУ.

Все полученные температурные зависимости χ

близки к линейным в координатах $\chi -\frac{1}{T}$ как это и предсказывает теория полимерных растворов. Это позволило оценить вклад в парный параметр взаимодействия его энтропийной и энтальпийной составляющей

$$\chi = \chi_H + \chi_S = \frac{k_H}{T} + \chi_S, \qquad (2)$$

где k_H — энтальпийная мода парного параметра. Результаты расчетов представлены в табл. 3.

Из сравнения k_H и χ_S следует, что основной вклад в параметр взаимодействия вносит энтропийная составляющая, свидетельствующая о формировании упорядоченных структур в растворах многокомпонентных растворителей.

По фрагментам квазибинарных диаграмм фазового состояния обводненных растворов полиэфируретанов были построены диаграммы в трехкомпонентных системах (ДМФА + Мочевина) + + (ПЭУ + Вода) (рис. 2). На поле диаграммы нанесена траектория движения фигуративной точки 20 мас. % раствора ПЭУ при его приведении в контакт с водой.

Рис. 2. Фрагмент диаграммы фазового состояния трехкомпонентной системы (ДМФА + Мочевина) + + (ПЭУ + Вода). (*A*) – траектория движения фигуративной точки при обогащении раствора осадителем (водой). Области истинных растворов (I), гетерогенного состояния (II), область обращения фаз (III). В вершинах треугольника: вверху полиэфируретан (100%), внизу слева (ДММА + Мочевина), справа – Вода (100%); внутри треугольника – прямые параллельные стороне полиэфируретан – (ДММА + Мочевина) при 5, 7, и 12%; траектория изменения состава воды вершина с угла 100% воды и 20% на стороне "полиэфируретан (ДММА + Мочевина)".

Можно видеть, что по мере диффузионного проникновения воды в раствор ПЭУ фигуративная точка раствора достигает критического значения $C_{\rm kp}$, соответствующего пересечению определенного участка профиля распределения концентрации бинодальной пограничной кривой. При этих условиях происходит фазовый распад системы с образованием структур типа матрица—включение. При этом в качестве дисперсной фазы выступают разбавленные растворы ПЭУ, а в качестве дисперсионной среды — растворы обогащенные ПЭУ.

Именно этот тип фазовой структуры пленки (рис. 3) формируется после десорбции — растворения продуктов фазового распада в процессе промывки мембраны водой и сушки. Табл. 4 [18]

Таблица 3. Составляющие параметра взаимодействия Флори–Хаггинса

Система	k_H	χs
1	0.099	0.269
2	0.038	0.474
3	0.154	0.115
4	0.038	0.490
5		

Рис. 3. Микрофотографии поперечных срезов пленок: 1 -растворитель ДМФА, 2 -растворитель (ДМФА + 2% мочевины), 3 -растворитель (ДМФА + + 4% глицерина), 4 -растворитель (ДМФА + 8% глицерина), 5 -растворитель (ДМФА + 10% этиленгликоля), 6 -растворитель (ДМФА + 10% морфолина).

и рис. 7 содержат сведения о морфологических свойствах пористых пленок. Свойства охарактеризованы линейными размерами элементов структуры плоского сечения образцов на полученных снимках с использованием метода хорд [19].

Интересно отметить, что доля пор в этих системах пропорциональна доле дисперсной фазы (*A*), которую оценивали, используя правило рычага (рис. 4). Отклонение корреляционной зависимости связано с тем, что в процессе сушки про-

Таблица 4. Морфологические свойства полученных структур

Состав растворителя	Средний размер пор в сечении, мкм	Доля сечения, приходящая на поры, % А _{1по рис. 3} А _{2 по ДФС}
ДМФА(1)	5.48	56.75 62 [18]
+2%мочевины (2)	1.41	6.6 10
+4% глицерина (3)	5.99	61
+8% глицерина (4)	9.03	68.23
+10% этиленгликоля (5)	12.19	53
+10 морфолина (6)	22.5	68.13 70

Рис. 4. Корреляционная зависимость доли пор в высушенных мембранах (рис. 3) и доли частиц – включений на диаграммах фазового состояния трехкомпонентных систем, рассчитанных по правилу рычага.

исходит контракция объема и уменьшение размеров пор.

Получить дополнительную информацию о структурообразовании в растворах полиэфируретанов можно из результатов измерения вязкости разбавленных растворов, приведенных на рис. 6 и 7. Результаты измерений представлены в виде зависимостей приведенной вязкости $\eta_{v\pi}/c$ от концентрации с_{полимера}, где $\eta_{yg} = \eta_{paствора} - \eta_{paстворителя}/\eta_{pac-}$ творителя. В соответствии с представлениями Штаудингера [20] тангенс угла наклона экспериментальной прямой к оси концентраций (tgα) определяется интенсивностью взаимодействия молекул полимера и компонентов растворителя, а величина угла наклона α является характеристикой качества растворителя. Для хорошего растворителя $tg\alpha > 0$, для θ – растворителя tg $\alpha = 0$ и для плохого растворителя tg $\alpha < 0$. Величина отрезка, отсекаемого экспериментальной прямой на оси ординат, традиционно определяется как характеристическая вязкость [η]. По величине [η] судят об эффективном размере полимерного клубка в растворе [21]. Как следует из полученных зависимостей, представленных на рис. 5 и 6, обе исходные системы (ДМФА + ПЭУ) + (ДМФА + Мочевина), (ДМФА + ПЭУ) + (ДМФА + Морфолин) при21°С (без добавок воды) представляют собой растворы ПЭУ в хороших растворителях. Таким образом, можно предполагать, что структурные элементы растворов ПЭУ представляют собой гибкие набухшие полимерные клубки, включающие молекулы смешанных растворителей.

При добавлении воды, наклон экспериментальных прямых уменьшается. В растворе (ДМФА + ПЭУ) + (ДМФА + Мочевина + Вода) эти изменения при добавлении 7% H₂O незначи-

Рис. 5. Зависимости приведенной вязкости от концентрации полимера для системы со смешанным растворителем, содержащим мочевину, (прямая *I*) и с добавками 1.0, 1.5, 2.5, 3.5, 5.5 и 6% H₂O (прямые 2–7 соответственно).

тельны, состояние клубка меняются незначительно вплоть до помутнения растворов, вызванного начавшимся процессом выделения новых фаз. В [22] содержится обширный обзор работ по изучению конформационного состояния молекул полимера в тройных системах по изменению [n] и tg α , и обсуждаются возможные конформации полимерной молекулы и взаимное распонизкомолекулярных компонентов ложение (растворителей, нерастворителей, осадителей) и молекул полимера. В частности, обсуждаются системы полимер-растворитель-осадитель, подобные изученной в настоящей работе системе (ДМФА + ПЭУ) + (ДМФА + Мочевина + Вода),в которых сольватированные полимерные молекулы, представляющие собой растворы в хорошем растворителе, рассматриваются как устойчивые кластеры, сохраняющиеся при добавлении осадителя.

Введение 3.5% воды в систему (ДМФА + ПЭУ) + + (ДМФА + Морфолин + Вода) уже вызывает значительные изменения свойств раствора ($tg\alpha < 0$). Взаимодействие полимер—растворитель уменьшается, возрастает роль взаимодействий полимерных молекул друг с другом или отдельных групп в молекуле между собой. При этом меняется конформация полимерных молекул, возрастает [η]. Дальнейшее повышение содержания воды (до 8.5%), продолжает ухудшать качество растворителя, не вызывая помутнения. Растворы с растворителями, содержащими мочевину и морфолин, различаются величиной [η], tgα и характером их изменений при введении в системы воды.

Рис. 6. Зависимости приведенной вязкости от концентрации полимера для системы со смешанным растворителем, содержащим морфолин, (прямая *1*) и с добавками 1.5, 2.5, 4.5, 6.0, 7.0, 8.0, 8.5% H₂O (прямые *2–8* соответственно).

Рис. 7. Кривые распределения пор по размерам в образцах *1–6*.

Как показал Хаггинс [23], гибкие макромолекулы, способные изгибаться, имеют меньший эффективный размер и оказывают меньшее сопротивление потоку. Сравнивая [η] одного и того же полимера в различных растворителях, можно считать, что жесткость и эффективный размер структурных элементов в растворителе, содержащем морфолин, выше, чем в растворителе, содержащем мочевину.

В некоторых случаях при описании термодинамических свойств растворов, как показал Гильдебранд, целесообразно вместо молярных долей компонентов растворителя и полимера (x_0 и x_p) использовать их объемные доли (ϕ_0 и ϕ_p). Им получены выражения $\phi_0 = x_0/\{x_0 + x_p(v_p/v_0)\}$ и $\phi_p =$

Рис. 8. Бинодали двухкомпонентных систем при различном соотношении объемов молекул компонентов.

 $= x_p/\{x_p + x_o/(v_p/v_o)\}$. При использовании этих выражений в уравнении $T = 2T_\kappa(x_o - x_p)/(\ln x_o - \ln x_p)$ [24], описывающим положение границы, разделяющей области стабильного и метастабильного состояний, для $T_{\rm kp} = 300$ К диаграммы состояния систем с соотношением объемов молекул $v_{\rm p}/v_{\rm o}$ 1, 10, 100, 1000 принимают вид, приведенный на рис. 8. В соответствии с результатом Гильдебранда, смещение диаграммы состояния системы, содержащей мочевину вправо относительно диаграммы состояния системы, содержащей морфолин, может быть вызвано тем, что первичные структурные элементы в системе, содержащей мочевину, меньше, чем в системе, содержащей морфолин. Это предположение подтверждается полученными данными о величинах [ŋ] для этих систем, приведенных на рис. 5 и 6.

Из рис. 1 следует, что одной и той же концентрации полимера и температуре (20% ПЭУ и 20°С) соответствуют на этих диаграммах растворы новых полимерных фазы с различной концентрацией полимера, что должно привести к формированию структур с различной морфологией. В [1] описаны 4 вида конденсационных структур, получающихся из концентрированных растворов полимера. Вид структуры зависит от содержания полимера в выделившейся концентрированной дисперсной фазе и от ее реологических свойств. Чем выше концентрация полимера, тем меньше пор. При одном и том же положении точек начального и конечного состояний (концентрация полимера и температура) содержание полимера в концентрированной новой фазе системы, содержащей мочевину, выше, чем в системе, содержащей морфолин.

Таким образом, величины $[\eta]$ и tg α дают представление о размерах первичных структурных элементов растворов и о гибкости молекул в этих элементах. Эти сведения позволяют понять, как те или иные компоненты смешанного растворителя изменяют диаграмму состояния системы и в какой степени структурные элементы в этих системах будут способны приблизиться к равновесному состоянию.

выводы

Показано, что изменением состава смешанного растворителя можно изменять конформацию и размер полимерной молекулы в растворе и таким образом вызывать изменения положения границ области гетерогенности системы. Это дает возможность при одних и тех же условиях для одной и той же концентрации раствора полимера и температуры получать конденсационные структуры с различными морфологическими свойствами. Вискозиметрические измерения являются надежным методом изучения состояния молекул полимера в многокомпонентных растворах. Контролирование свойств многокомпонентных растворов в различных смешанных растворителях по величинам $[\eta]$ и tg α и по их изменениям по мере обогащения раствора полимера нерастворителем в соответствии с полученными результатами дает возможность делать предположения как о характере изменений диаграмм состояния, так и о степени неравновесности систем, определяющих морфологию получаемых структур.

Данные табл. 3 качественно согласуются с диаграммами состояния, представленными на рис. 2. Некоторые различия размеров пор и доли их в сечении пленок, представленных на рис. 2 и табл. 4, могут быть объяснены с учетом реологических свойств концентрированных дисперсных фаз и, следовательно, кинетики формирования структур. Как указано выше, морфологические свойства конденсационных структур связаны с особенностями конформационного состояния молекул в системах (их гибкостью или жесткостью) и вызванным этим различием степени неравновесности структур. Многочисленные исследования с использованием ПЭУ, различающихся гибкостью полимерных цепей, показали [25], что большинство простых ПЭУ с гибкими молекулярными цепями теряют пористость либо в процессе получения, либо при высушивании структур, т.к. оказываются неустойчивыми к действию сил капиллярной контракции и система переходит в равновесное состояние с макро-расслоением и плоской поверхностью раздела фаз. Только при наличии микро-фрагментов с жесткой структурой, препятствующих достижению равновесия,

наблюдается устойчивость пор при их формировании. Структура, полученная с использованием мочевины, как следует из рис. 36, формируется из раствора с гибкими полимерными цепями. Выделяющаяся новая фаза представляет собой раствор полимера в хорошем растворителе, и система приближается к равновесному состоянию в большей степени, чем система, содержащая жесткие, менее подвижные структурные элементы, наблюдаемые в системе с растворителем, содержащим морфолин (рис. 3е).

Работа выполнена при финансовой поддержке Минобрнауки РФ (регистрационный номер АААА-А19-119011790097-9).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ребиндер П.А., Влодавец И.Н.* Международный ежегодник Наука и человечество. М.: Знание, 1968. С. 346.
- 2. Влодавец И.Н., Ребиндер П.А. // Вестник АН СССР. 1962. № 11. С. 80.
- Ребиндер П.А., Влодавец И.Н. // Сб. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов. Рига. 1967. С. 95.
- Чалых А.Е., Герасимов В.К., Михайлов Ю.М. Диаграммы фазового состояния полимерных систем. М.: Янус-К. 1998. С. 11.
- 5. Ябко Я.М., Полинский С.Л., Жданова В.И., Влодавец И.Н. // ДАН СССР. 1970. Т. 191. № 1. С. 1.
- 6. Чалых А.Е. // ВМС. 2010. Т. 52. № 11. С. 1990.
- Flory P.J. // J. Principles of polymer chemistry. N-Y: Cornell. Univ. Press. 1953. P. 594.
- 8. *Huggins M.L.* // Physical chemistry. of polymers. N-Y: Interscience. 1958. P. 175.
- 9. Scott R.L. // J. Chem. Phys. 1949. V. 17. №. 2. P. 268.

- 10. Остриков М.С., Духанина Т.П. и др. // Колл. журн. 1964. Т. 26. № 4. С. 600.
- 11. Патент 3330206 С06 Н5/12 (США) Производство кожезаменителя. 1962.
- 12. Hansen C.M. // I & ec Product Research end Development. 1969. V. 8. № 1. P. 2.
- 13. *Алексеев В.Ф.* // Горный журн. 1879. Т. 4. № 10. С. 83–114.
- 14. Герасимов Я.И. Материалы по истории отечественной химии. Сб. докладов на Первом всесоюзном совещании по истории отечественной химии 12–15 мая 1948 г. 1950. М., Л.: Изд. АН СССР. С. 52–62.
- 15. Flory P.J. // J.Chem. Phys. 1941. V. 9. № 3. P. 660.
- 16. *Huggins M.L.* // J. Phys. Chem. 1941. V. 9. № 5. P. 440.
- Чалых А.Е., Герасимов В.К., Михайлов Ю.М. // Диаграммы фазового состояния полимерных систем. М. Янус-К. 1998. С. 23.
- Бокова Е.С. // Дис. Физико-химические основы и технология модификации растворов полимеров в производстве волокнисто-пористых систем, д-ра техн. наук: 05.17.06. М. РГУ им. Косыгина, 2007. С. 44.
- Салтыков С.А. Стереометрическая металлография. М.: Металлургия. 1976. С. 57.
- 20. Воюцкий С.С. Растворы высокомолекулярных соединений. М.: Госхимиздат. 1960. С. 81.
- 21. *Тагер А.А.* Физикохимия полимеров. М.: Химия. 1978. С. 375.
- 22. Бектуров Е.А. Тройные полимерные системы в растворах. Каз. ССР. А-А: Наука. 1975. С. 11.
- 23. Воюцкий С.С. Растворы высокомолекулярных соединений. М.: Госхимиздат. 1960. С. 84.
- 24. Hildebrand J.H. // Disc. Farad. Sos. 1953. V. 15. P. 9.
- 25. Георгиева Н.С., Писаренко А.П., Штарх Б.В. // ДАН. 1963. Т. 151. С. 634.