— ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ НА МЕЖФАЗНЫХ ГРАНИЦАХ —

УДК 544.74

ВЫЯВЛЕНИЕ ЗАКОНОМЕРНОСТЕЙ СОРБЦИОННОГО СВЯЗЫВАНИЯ ИОНОВ КАДМИЯ ПЕКТИНОВЫМИ ВЕЩЕСТВАМИ ИЗ ВОДНЫХ РАСТВОРОВ

© 2021 г. С. В. Алеева^{1, *}, О. В. Лепилова¹, С. А. Кокшаров¹

¹Федеральное государственное бюджетное учреждение науки Институт химии растворов им. Г.А. Крестова Российской академии наук, ул. Академическая, 1, Иваново, 153045 Россия

> *e-mail: sva@isc-ras.ru Поступила в редакцию 12.12.2019 г. После доработки 10.09.2020 г. Принята к публикации 17.09.2020 г.

Методом ИК-спектроскопии полимерных пленок оценено комплексное влияние сорбции ионов кадмия на состояние пектиновых веществ по изменению полос поглощения, формируемых валентными колебаниями связи С–О карбоксильных групп пектатов, а также деформационными колебаниями связи О–Н вторичных гидроксилов и валентными колебаниями карбонила в сложноэфирных группах. Проведен анализ изотерм адсорбции Cd²⁺ при 293–308 К. Для образцов пектина, выделенных из биомассы лопуха *Arctium lappa* L., ревеня *Rheum* и цитрусовых культур, а также для модельных субстратов пектината, пектата и пектовой кислоты на их основе получено адекватное описание сорбционного процесса с помощью модели сорбции Ленгмюра. Определены термодинамические параметры адсорбции, которые количественно характеризуют связывание кадмия по механизмам ионного обмена с группами –СООН, катионного замещения с группами –СООСа_{1/2} и координационных взаимодействий с участием спиртовых гидроксилов и карбонильного кислорода метоксилированных галактуронатных звеньев.

Ключевые слова: пектин, строение галактуронатных звеньев, ИК-спектроскопия, адсорбция, термодинамика

DOI: 10.31857/S0044185621010034

введение

Решение проблем экологии неразрывно связано с необходимостью сокращения объемов сточных вод, загрязненных различными химическими токсикантами, включая соли тяжелых металлов. Одним из высокотоксичных металлов. содержащихся в водных стоках, является кадмий, который наряду с мышьяком, свинцом, ртутью отнесен к 1 классу опасности. Согласно СанПин 2.1.4.1074-01 предельно допустимая концентрация кадмия в воде хозяйственно-питьевого и культурно-бытового водопользования составляет 0.001 мг/дм³. Наиболее интенсивными источниками загрязнения окружающей среды кадмием являются металлургия, гальванотехника, лакокрасочные производства. Повышенный уровень антропогенного загрязнения окружающей среды ионами Cd²⁺ отмечается для процессов сжигания твердого и жидкого топлива.

С 2010 по 2016 г. сброс загрязненных стоков в России снижен с 16.5 до 14.7 млрд м³. Однако их доля в общем объеме водоотведения составляет примерно 1/3 [1]. Более 75% в указанных объемах

составляют промышленные стоки с недостаточной степенью очистки. Их количество в течение указанного периода также сокращено с 13.1 до 11.3 млрд м³, но темпы снижения недостаточны. Для ускоренного развития водоочистных технологий существенное значение имеет совершенствование сорбционных методов, в том числе с применением биополимерных сорбентов [2, 3].

В числе достоинств природных сорбентов отмечают доступность, дешевизну, простоту изготовления, применения и утилизации, а среди ограничительных факторов – недостаточную селективность и невысокую сорбционную емкость [4]. Часто адсорбционные свойства растительных материалов рассматривают лишь в отношении к основному полимерному компоненту – целлюлозе – с поиском методов ее целенаправленной модификации [5, 6]. В частности считают [7], что связывание ионов металлов обеспечивают карбоксильные группы, которые в целлюлозе могут присутствовать при 1, 2, 3 и 6 атомах углерода пиранозного цикла:

В природной целлюлозе СООН-группы практически отсутствуют и могут появляться в результате химической обработки растительного сырья для очистки целлюлозы от примесей. Использование окислительной деструкции целлюлозы может быть оправдано, например, для модификации хлопковых волокон [8], содержащих 95– 98% целлюлозы. Для многих видов растительного сырья сорбционные свойства обусловлены присутствием нецеллюлозных полисахаридов [9, 10]. Например, повышенный уровень карбоксильной кислотности биомассы стебля топинамбура (0.82 мг-экв/г) [7] обусловлен присутствием в субстрате 8–10 мас. % полиуронидных соединений.

Комплексообразующую способность пектинов преимущественно связывают с участием во взаимодействиях галактуронатных звеньев с незамещенной карбоксильной группой. В модельных исследованиях часто применяют пектовые кислоты, состоящие в основном из деметоксилированной полигалактуроновой кислоты. Этерификация карбоксилов понижает реакционную способность биополимера. В частности, высокометоксилированные пектины связывают ионы Pb²⁺ в 1.7 слабее, особенно в кислой среде [11].

Часть галактуронатных звеньев в растительных пектинах присутствует в виде кальциевой соли. Ионы Са²⁺ образуют межцепные связи, обеспечивая поперечную сшивку макромолекул пектина [12, 13]. Это не исключает возможность участия кальций-пектатных форм в сорбционном связывании неорганических поллютантов в связи с легкостью протекания замены Ca²⁺ на ионы тяжелых *d*- и *f*-металлов. По уровню проявляемого сродства к пектовой кислоте ионы располагаются в возрастающей последовательности: K⁺ < Mg²⁺ < $< Ca^{2+} < Ni^{2+} < Pb^{2+} < Co^{2+} < Zn^{2+} < Cu^{2+} < Mn^{2+}.$ При этом по величине сродства к низкометоксилированному пектину ионы кадмия превышают показатель для ионов свинца: 0.051 и 0.017 ммоль/г соответственно [14].

Настоящая работа продолжает изучение связи между сорбционными свойствами и характеристиками молекулярного строения пектинов. Ранее на примере препаратов растительного пектина и модельных субстратов на их основе выявлены закономерности изменения кинетических характеристик и адсорбционной емкости по кальцию [15]. Показано, что вклад в суммарную сорбционную емкость незамещенного галактуронатного звена превышает активность кальций-пектатных форм и метилгалактуронатных звеньев в 10 и 13 раз соответственно. Предполагается, что различия отражают участие в сорбционном процессе рассматриваемых структурных фрагментов по механизмам ионного обмена, катионного замещения и координационного связывания.

В развитие применяемых подходов к получению пектиновых субстратов с целенаправленным изменением состояния карбоксильных групп и выявлением отклика в изменении их сорбционной активности проведена оценка закономерностей влияния химического строения полиуронидов на проявление сорбционных свойств в отношении растворов солей кадмия. Результаты позволят расширить представления о природе и механизмах протекания взаимодействий и методах управления системой для максимального использования ресурсов, которыми обладают биополимерные растительные материалы с разнообразным сочетанием адсорбционных центров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе применены коммерческий препарат цитрусового пектина P_C (производитель Yantai Andre Pectin, Китай), а также пектины лопуха *Arctium lappa* L. (P_{AL}) и ревеня *Rheum* (P_R), выделение и идентификация которых проведена в соответствии с описанием в работе [15].

В качестве дополнительных модельных сорбентов использованы препараты пектинатов, пектатов и пектовой кислоты, которые применяются для количественной оценки долевого содержания в пектине галактуронатных звеньев с незамещенной карбоксильной группой (unsubstituted group, G_{ug}), а также в метилгалактуронатной (methylgalacturonate group, G_{mg}) и кальций-пектатной (calcium pectate, G_{cp}) формах. Получение модельных сорбентов и анализ карбоксильных групп в полимерах осуществлены в соответствии с рекомендациями [16]. Параметры молекулярного строения исследуемых субстратов представлены в табл. 1. Содержание форм галактуронатных звеньев выражено в долевом соотношении к их общему количеству, принимаемому за единицу.

	Долевое соотношение форм галактуронатных звеньев в субстратах								
Образец пектина		пектин		пект	инат	пектовая кислота	пектат		
	G_{ug}	G_{mg}	G_{cp}	G _{mg}	G_{cp}	G _{ug}	G _{cp}		
P _{AL}	0.30	0.46	0.24	0.46	0.54	1	1		
P_R	0.28	0.53	0.19	0.53	0.47	1	1		
P_C	0.15	0.68	0.17	0.68	0.32	1	1		

Таблица 1. Параметры химического строения сравниваемых образцов пектина и модельных препаратов на их основе

Для исследования изменения состояния пектинов при сорбции ионов кадмия использован метод ИК-спектроскопии полимерных пленок. Анализ образцов проведен на спектрофотометре AVATAR-360 в режиме на пропускание в области частот 400-2000 см⁻¹. Выделение пектиновых веществ из исходной суспензии и после ее обработки в растворе сульфата кадмия осуществляли путем осаждения полимера 96%-ным этанолом. Отделяемый пектиновый коагулят промывали 70 и 96%-ным этанолом и сушили при 303 К. Для получения пленок 10 мл водного раствора пектина с концентрацией 6 г/л выливали на шаблон из фторопласта площадью 60 см² и высушивали на воздухе. Поверхностная плотность получаемых пленок составляла 1.0 ± 0.1 мг/см².

Для нивелирования колебания толщины пленки испытуемых образцов при анализе спектрограмм использован прием оценки изменения интенсивности характеристических полос поглощения в относительном выражении к полосе внутреннего стандарта. В качестве внутреннего стандарта выбрана полоса валентных колебаний связей С–С и С–О в пиранозном цикле $v_{as}(C-C) = 1020$ см⁻¹, характеризующая содержание мономерных звеньев.

Показатель относительной оптической плотности dD^i для адсорбционных центров в исследуемых образцах с учетом внутреннего стандарта рассчитывали по формуле:

$$dD^{i} = \frac{D^{i}}{D^{1020}},$$
 (1)

где D^{1020} — оптическая плотность полосы внутреннего стандарта.

Величину оптической плотности *D* в максимуме полосы внутреннего стандарта и *i*-той полосы колебаний для соответствующих функциональных групп, участвующих в адсорбционном процессе, определяли из соотношения:

$$D = \lg \frac{I_0}{I},\tag{2}$$

где I_0 , I – интенсивность соответственно падающего и прошедшего света.

Величину I_0 определяли с использованием приема построения базисной линии, позволяющей учесть различия толщины анализируемых пленок и изменений величины фона, обусловленных дефектами их поверхности. Базисную линию строили через минимумы поглощения при 1850 и 860 см⁻¹, полностью охватывая зону измерений.

Для получения изотерм сорбции проведены серии экспериментов с варьированием начальной концентрации Cd²⁺ в рабочем растворе сульфата кадмия (квалификация "х. ч.") в интервале 1-50 ммоль/л при фиксированном значении рН 4.5 с термостатированием в интервале 293-308 К. Остаточное содержание Cd²⁺ в растворе опрелеляли метолом атомно-алсорбнионной спектроскопии на спектрофотометре AAS-3 по ГОСТ 24596.11-2015. По кинетике взаимодействия Cd²⁺ и пектина установлена продолжительность выхода системы на сорбционное равновесие – 1 час. По истечение необходимого времени сорбент отделяли центрифугированием и определяли равновесную концентрацию ионов кадмия в супернатанте. Равновесную сорбционную емкость пектиновых субстратов (А, ммоль/г) вычисляли по формуле:

$$A = V(C_0 - C_P)/m, \qquad (3)$$

где V— объем раствора в инкубационной емкости, л; C_0 и C_P — соответственно начальная и равновесная концентрация Cd²⁺ в растворе, ммоль/л; m— масса пектинового образца, г.

Обработка изотерм поглощения Cd²⁺ образцами пектиновых сорбентов для описания молекулярной адсорбции на полимерах осуществлена с применением модели Ленгмюра. Уравнение изотермы Ленгмюра имеет следующий вид:

$$A = A_m K_L C_P / (1 + K_L C_P), \qquad (4)$$

где A_m – адсорбционная емкость сорбента при насыщении, ммоль/л; K_L – константа адсорбционного равновесия, л/ммоль.

Рис. 1. ИК-спектры пленок пектина $P_R(1)$ и его комплекса с кадмием (2).

Для определения параметров A_m и K_L использовали линейную форму уравнения (4):

$$C_P/A = (K_L A_m)^{-1} + C_P/A_m.$$
 (5)

Представление экспериментальных данных в координатах $C_p/A = f(C_p)$ линейного уравнения (5) позволяет графически определить значения A_m и K_L соответственно по тангенсу угла наклона и свободному члену линейной зависимости.

Из величины константы K_L определяли параметры коэффициента распределения ионов металла между фазой раствора и фазой полимерного материала K_D :

$$K_D = K_L \times 1000 \times C_0. \tag{6}$$

Сопоставление термодинамических параметров сорбции проведено по показателям свободной энергии Гиббса (ΔG , кДж/моль), внутренней энергии (ΔH , кДж/моль) и энтропии адсорбции (ΔS , Дж/К моль). Расчеты выполнены в соответствии с фундаментальным уравнением термодинамики:

$$\Delta G = \Delta H - T \Delta S = -RT \ln K_D, \tag{7}$$

где R — универсальная газовая постоянная (R = $= 8.314 \, \text{Дж/K}$ моль); T — температура, K.

Предполагая, что ΔH в узком исследованном интервале температур не зависит от температуры, уравнение (7) можно представить в интегральном виде:

$$\ln K_D = -\Delta H / RT + \text{const.}$$
(8)

Тепловой эффект сорбции определяли графически из уравнения прямой линии в координатах Аррениуса $\ln K_D = f(1/T)$.

 ΔS рассчитывали из уравнения термодинамики (7).

Математическая обработка экспериментальных данных проведена с использованием программы Statgraphics PLUS 2000 Professional.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Оценка изменения ИК-спектров пектиновых веществ при сорбционном связывании катионов Cd^{2^+} демонстрирует комплексных характер взаимодействий с участием нескольких реакционных центров полимера. На рис. 1 приведены спектрограммы пленок пектина ревеня P_R до и после обработки раствором сульфата кадмия. Выделены пики валентных колебаний, отражающие отклик структурных элементов макромолекулы:

-1235 см⁻¹ – деформационные колебания связи в спиртовой OH-группе вторичных гидроксилов галактуронатных звеньев δ (OH);

-1610-1625 см⁻¹ — валентные колебания связи С-О карбоксильных групп пектатов с ионами металлов v_{as} (СОО–);

 $- 1750 \text{ см}^{-1}$ — валентные колебания карбонила в сложноэфирных группах $v_{as}(C=O)$.

Представленные в табл. 2 результаты обработки ИК-спектров демонстрируют однотипные отклики для всей совокупности полимерных субстратов и получаемых адсорбшионных комплексов. Основные отклонения зафиксированы для карбоксильных групп, обеспечивающих ковалентное связывание катионов кадмия. Полоса валентных колебаний связи С-О после сорбции Cd²⁺ смещается в сторону увеличения волнового числа с 1615 до 1625 см-1 и возрастает по амплитуде. Для комплекса Cd-P_R величина относительной оптической плотности dD^{1625} в 2.2 раза превышает значение dD^{1615} для исходного образца P_R . При переходе к соответствующим пикам для образцов на основе P_C и P_{AL} прирост относительной оптической плотности составляет 1.9 и 2.4 раза. Усиление эффекта согласуется с потенциальной способностью препаратов к связыванию металла не только за счет перевода незамещенной формы галактуронатных звеньев в пектат кадмия, но и замещения катиона в кальций-пектатных фрагментах (см. табл. 1).

Сорбция кадмия приводит к уменьшению амплитуды полосы деформационных колебаний гидроксильных групп галактуронатного звена. Для всех адсорбционных комплексов получено одинаковое снижение величины dD^{1235} в 2–2.1 раза, что характеризует равные возможности уча-

Образец	Оптическая плотность					Относительная оптическая плотность			
	D^{1020}	D^{1615}	D^{1625}	D^{1235}	D^{1750}	dD^{1615}	dD^{1625}	dD^{1235}	dD^{1750}
P_{AL}	0.468	0.355		0.271	0.459	0.76		0.58	0.98
$Cd-P_{AL}$	0.512		0.855	0.148	0.149		1.67	0.29	0.29
P_R	0.433	0.364		0.234	0.355	0.84		0.54	0.82
$Cd-P_R$	0.494		0.998	0.133	0.133		2.02	0.27	0.27
P_C	0.476	0.305		0.291	0.566	0.64		0.61	1.19
$Cd-P_C$	0.467		0.569	0.135	0.149		1.22	0.29	0.32

Таблица 2. Изменение характеристических полос поглощения ИК-спектров пектиновых веществ при адсорбционном связывании ионов кадмия

стия вторичных гидроксилов в координационных взаимодействиях с Cd²⁺ не зависимо от исходного состояния пектиновых веществ.

Изменение амплитуды пика валентных колебаний связи C=O в сложноэфирных группах позволяет считать карбонильный кислород метоксилированных звеньев активным участником комплексообразования. Снижение величины dD^{1750} нарастает с 3 раз для комплекса Cd- P_{AL} до 3.4 и 3.7 раза при переходе соответственно к образцам на основе P_R и P_C . Увеличение эффекта коррелирует с величиной долевого содержания мономерных звеньев G_{mg} в сопоставляемых образцах пектиновых веществ (см. табл. 1).

На рис. 2 продемонстрирован ход зависимостей равновесной сорбции ионов кадмия от концентрации Cd^{2+} в термостатируемом растворе для сравниваемых препаратов пектина и модельных субстратов на основе образца P_R . Аналогичные исследования проведены для температурного интервала 293–308 К.

Зависимости, полученные для каждой из исследуемых биополимерных систем, имеют традиционный вид изотермы адсорбции Ленгмюра для случая химического взаимодействия между поглощаемым веществом и частицами адсорбента. Представленные данные отражают характерную для всех условий сорбционного эксперимента тенденцию к нарастанию величины равновесного поглощения в ряду $P_C < P_R < P_{AL}$. При этом ход изотермы адсорбции модельным образцом пектовой кислоты многократно превышает уровень значений для базового препарата P_R . В свою очередь результаты сорбции модельным субстратом пектата кальция уступают показателям исходного биополимера, но превосходят сорбционную способность пектината.

Аналитическое описание изотерм равновесной адсорбции кадмия на биополимерных материалах осуществлено путем интерпретации результатов в координатах линейного уравнения Ленгмюра $C_P/A = f(C_P)$. Высокую степень аппроксимации экспериментальных данных отражают значения коэффициентов детерминации R^2 , указанные в табл. 3.

Применение модели Ленгмюра позволяет охарактеризовать процесс сорбции по двум ключевым показателям: константа адсорбционного равновесия K_L и предельная сорбция A_m . Достигаемый уровень A_m отражает количество активных центров в молекулярной цепи полиуронида, которые могут взаимодействовать с Cd²⁺. Величина константы K_L характеризует изменение энергии взаимодействия с сорбентом. С ростом показателя K_L увеличивается сродство сорбируемого вещества к адсорбционным центрам биополимера, повышается прочность возникающих связей в системе "сорбент—металл". Расчетные параметры моделирования равновесных закономерностей адсорбционного процесса для сравниваемых биополимер-

Рис. 2. Изотермы сорбции ионов кадмия сравниваемыми образцами пектина (1-3) и модельными препаратами на основе пектина ревеня (2^*-2^{***}) при 303 К: $1 - P_R$; $2 - P_{AL}$; $3 - P_C$; 2^* – пектовая кислота; 2^{**} – пектат; 2^{***} – пектинат.

Образць	<i>R</i> ²	<i>А_m</i> , ммоль/г	K_L , л/ммоль	
	0.986	0.35	0.048	
	0.996	0.84	0.196	
	0.983	0.54	0.065	
Модельные субстраты	Пектовая кислота	0.995	1.79	0.535
на основе P_R	Пектат	0.995	0.26	0.125
	Пектинат	0.986	0.19	0.088

Таблица 3. Результаты анализа сорбционной способности исследуемых препаратов пектиновых веществ в отношении ионов кадмия по модели Ленгмюра при 303 К

ных материалов даны в табл. 3. Анализ показал, что выбранный вариант зависимости удовлетворяет условиям адекватности, поскольку различие расчетной величины A_m и экспериментальных значений сорбционной емкости сорбентов (см. рис. 2) не превышает 5%.

Нетрудно проследить связь между расчетной величиной предельной сорбции и характеристиками молекулярного строения исследуемых пектинов. Возрастание показателя A_m симбатно увеличению содержания свободных карбоксильных групп и кальций пектатных форм при снижении доли метоксилированных звеньев в цепи полиуронида. Данные для модельных субстратов позволяют сопоставить роль структурных фрагментов макромолекулы как в плане изменений доступности адсорбционных центров, так и проявляемого к ним сродства сорбируемого вещества.

Получаемые в рамках модели Ленгмюра результаты еще не дают представления о механизме взаимодействий в системах. Вместе с тем выявленные значения константы адсорбционного равновесия K_L позволяют перейти к термодинамическому описанию процесса и количественно охарактеризовать роль структурных компонентов

Рис. 3. Температурная зависимость адсорбционного равновесия для исследуемых образцов пектинов (а) и для модельных препаратов на основе полиуронида ревеня (б); $1 - P_R$; $2 - P_{AL}$; $3 - P_C$; 2^* – пектовая кислота; 2^{**} – пектат; 2^{***} – пектинат.

полимера в суммарном результате реализации различных механизмов хемосорбции.

На рис. 3 приведены температурные зависимости адсорбционного равновесия в координатах Аррениуса для базовых образцов и для модельных субстратов. Интерпретация данных проведена с применением коэффициента распределения ионов металла между фазами раствора и полимерного материала K_D , величина которого определена исходя из данных константы K_L по уравнению (6). Представленные результаты свидетельствуют о высокой степени аппроксимации расчетных параметров K_D всех полимерных сорбентов ($R^2 > 0.98$), что обеспечивает корректное определение основных энергетических составляющих в соответствии с фундаментальными уравнениями термодинамики (7)-(8). Результаты обработки зависимостей представлены в табл. 4.

Для всех рассматриваемых субстратов поглощение Cd²⁺ протекает самопроизвольно ($\Delta G < 0$) и сопровождается выделением тепла ($\Delta H < 0$). Для образцов с однородным составом функциональных группировок - пектовой кислоты и пектата – протекание процесса сорбции более эффективно при низких температурах. При нагревании систем наблюдается уменьшение свободной энергии Гиббса. Максимальная амплитуда различий зафиксирована для варианта сорбции Cd²⁺ на незамешенных карбоксилах пектовой кислоты. Экзотермический эффект сорбции и достигаемый уровень энтальпии для пектовой кислоты свидетельствуют о протекании хемосорбционных взаимодействий с образованием стабильных хелатных структур; сорбция кадмия практически необратима.

Подобная характеристика применима и для образцов пектата из разных препаратов пектина. Меньший уровень показателей ΔH и ΔG обусловлен более существенными энергозатратами на вытеснение из субстрата ионов кальция.

Отрицательные значения структурной (энтропийной) составляющей сорбции для пектовой кислоты и пектата отражают утрату молекулами адсорбтива при взаимодействии опреде-

ВЫЯВЛЕНИЕ ЗАКОНОМЕРНОСТЕЙ

Препараты пектина		Δ <i>Н</i> , кДж/моль	ΔS ,	ΔG , кДж/моль			
			Дж/(К моль)	293 K	298 K	303 K	
	P_C	-15.01	48.39	-29.19	-29.43	-29.67	
Пектин	P_R	-22.59	26.07	-30.22	-30.35	-30.48	
	P_{AL}	-30.95	7.14	-33.04	-33.07	-33.11	
	P _C	-80.67	-155.81	-35.28	-34.57	-33.94	
Пектовая кислота	P_R	-79.88	-153.17	-35.00	-34.24	-33.47	
	P_{AL}	-80.27	-154.49	-35.17	-34.40	-33.83	
	P_C	-54.74	-72.63	-33.74	-33.37	-32.91	
Пектат	P_R	-54.34	-71.30	-33.45	-33.09	-32.73	
	P_{AL}	-54.19	-70.77	-33.33	-32.97	-32.51	
	P_C	-10.69	50.00	-25.34	-25.59	-25.84	
Пектинат	P_R	-20.35	20.74	-26.43	-26.53	-26.63	
	P_{AL}	-24.94	14.34	-28.71	-28.78	-28.85	

Таблица 4. Термодинамические параметры сорбции ионов кадмия пектиновыми веществами

ленного количества степеней свободы, включая способность к перемещению по адсорбирующей поверхности, к вращательным и колебательным движениям. В наибольшей степени этот эффект проявляется при переходе пектовой кислоты в состояние пектата кадмия. В этом случае резко ограничивается сегментальная подвижность и молекул полимера, уменьшается возможное число конформаций пиранозных звеньев. Для кальций-пектат-ной формы результат ионного замещения выражен в меньшей степени, поскольку в исходном виде она уже обладает высокой степенью упорядоченности.

Для пектина и пектината, являющихся полимерами со смешанным составом функциональных групп, с повышением температуры свободная энергия процесса нарастает. По-видимому, в этом случае определяющий вклад вносят метоксилированные звенья полимерной цепи. Хемосорбция для таких систем менее выражена. Показатель энтальпии снижается при уменьшении содержания формы G_{ug} в сравниваемых препаратах пектина, а также при увеличении содержания формы G_{mg} , что обусловлено низким уровнем теплового эффекта для случаев образования координационной связи (10–15 кДж/моль).

Характеризуя энтропийный фактор в рассматриваемых системах, следует отметить, что при связывании кадмия пектинами и пектинатами зафиксировано возрастание показателя и переход в область положительных значений ($\Delta S > 0$). Повидимому, это отражает наименьшую стабильность адсорбционного комплекса на основе координационного связывания ионов металла этерифицированными участками полимерной цепи. Для поиска корреляций между величиной теплоты адсорбции и строением пектиновых субстратов сформирован подход к оценке вклада структурных фрагментов в величину показателя ΔH с помощью многопараметровой зависимости общего вида:

$$\Delta H = x_1 G_{mg} + x_2 G_{cp} + x_3 G_{ug}.$$
 (9)

Величину причленных множителей удалось определить путем последовательного усложнения состава рассматриваемых биополимерных систем с учетом данных табл. 1 и 4.

Для группы двухкомпонентных пектинатов на основе пектинов из цитрусового сырья и ревеня вклад метоксилированной и кальций-пектатной форм структурных звеньев отражает система уравнений (10), которая трансформируется в равенство (11):

$$\begin{cases} \Delta H^{P_{c}} = x_{1}G^{P_{c}}_{mg} + x_{2}G^{P_{c}}_{cp} \\ \Delta H^{P_{R}} = x_{1}G^{P_{R}}_{mg} + x_{2}G^{P_{R}}_{cp}, \end{cases}$$
(10)

$$x_{1} = \frac{\Delta H^{P_{c}} - x_{2} G^{P_{c}}_{cp}}{G^{P_{c}}_{mg}} = \frac{\Delta H^{P_{R}} - x_{2} G^{P_{R}}_{cp}}{G^{P_{A}}_{mg}}.$$
 (11)

Выражение (11) позволяет определить величину множителя $x_2 = -54.87$, которая должна быть неизменной для всех видов пектиновых веществ с учетом постоянства значений ΔH в исследуемой группе пектатов (см. табл. 4). Используя значение x_2 при решении уравнений системы (10), получаем численные варианты множителя $x_1 = 10.10$ для пектината на основе P_C и $x_1 = 10.32$ для пектината на основе P_R . Верификация расчета значений x_1 с использованием зависимости для пектината на основе пектина лопуха: $\Delta H^{P_{AL}} = x_1 G_{mg}^{P_{AL}} + x_2 G_{cp}^{P_{AL}} -$ дает численный вариант множителя $x_1 = 10.56$ для пектината на основе P_{AL} . Среднее значение множителя при показателе G_{mg} в уравнении (9) составляет 10.33 при величине отклонений в дисперсии менее 3%.

Проверка корректности определения множителя x_2 проведена с учетом соблюдения зависимости $\Delta H = x_2 G_{cp}$ по результатам сорбции ионов кадмия модельными препаратами пектатов на основе исследуемых образцов пектина. Полученные значения показателя составили -54.74 для пектата P_C , -54.34 для пектата P_R и -54.19 для пектата P_{AL} . Таким образом, отличия расчетных значений x_2 для исследуемой группы пектатов от величины, полученной из системы уравнений (10) для пектинатов не превышают 2.0%.

Решая систему уравнений (12) для сорбции кадмия образцами пектиновых препаратов с учетом средних значений x_1 и x_2 находим численные варианты множителя x_3 :

$$\begin{cases} \Delta H^{P_c} = x_1 G_{mg}^{P_c} + x_2 G_{cp}^{P_c} + x_3 G_{ug}^{P_c} \implies x_3 = -84.71 \\ \Delta H^{P_R} = x_1 G_{mg}^{P_R} + x_2 G_{cp}^{P_R} + x_3 G_{ug}^{U_R} \implies x_3 = -80.03 \\ \Delta H^{P_{AL}} = x_1 G_{mg}^{P_{AL}} + x_2 G_{cp}^{P_{AL}} + x_3 G_{ug}^{U_R} \implies x_3 = -82.55. \end{cases}$$
(12)

Полученные значения сопоставлены с условиями реализации зависимости $\Delta H = x_3 G_{ug}$ по результатам сорбции Cd²⁺ модельными препаратами пектовой кислоты. Соответствующие значения показателя x_3 составляют –80.67; –79.88 и –80.27 для модельных субстратов на основе P_C , P_R и P_{AL} . Отклонения результатов от среднего значения $x_3 = -81.35$ не превышают 3%.

ЗАКЛЮЧЕНИЕ

Таким образом, обобщенная математическая модель для описания влияния химического строения пектина на величину теплового эффекта сорбции Cd²⁺ имеет вид:

$$\Delta H = -81.35G_{ug} - 54.87G_{cp} + 10.33G_{mg}.$$
 (13)

Величина причленных множителей отражает уровень тепловых эффектов адсорбции катионов кадмия по механизмам:

 ионного обмена на незамещенных карбоксильных группах (-81.35 кДж/моль);

 – катионного замещения на участках галактуронатных звеньев в кальций-пектатной форме (–54.87 кДж/моль);

 координационного связывания с участием адсорбционных центров метилгалактуронатных звеньев (10.33 кДж/моль).

Величина множителя при G_{mg} отражает протекание взаимодействия по механизму физической сорбции. Примечателен положительный вклад структурных фрагментов G_{mg} в суммарную величину энтальпии сорбции кадмия многокомпонентными биополимерными материалами. Очевидно, в этом случае процесс сорбции контролируется внутренней диффузией Cd²⁺ в структуре полимера, которая ускоряется с повышением температуры. Это обстоятельство определяет эндотермический характер связывания ионов металлов на метоксилированных участках полимера, что проявляется в температурной зависимости параметра ΔG для пектинов и пектинатов (см. табл. 4).

Полученная модель адсорбционной активности пектиновых веществ обладает высокой прогностической способностью и позволяет оценить внутреннюю энергию процесса сорбции для любого соотношения форм мономерных галактуронатных звеньев в структуре полимера. Результаты исследований являются обоснованием для развития технологических подходов к повышению сорбционных свойств пектинсодержащих сорбентов, в частности, за счет проведения биокатализируемых процессов деметоксилирования полимера с использованием ферментов пектинэстераза.

Исследования проведены в рамках Государственного задания Института химии растворов им. Г.А. Крестова РАН (проект № 012012 60483). В работе использована приборная база Центра коллективного пользования научным оборудованием "Верхневолжский региональный центр физико-химических исследований".

СПИСОК ЛИТЕРАТУРЫ

- 1. http://water-rf.ru/water/gosdoc/31.html
- Lipatova I.M., Makarova L.I., Yusova A.A. // Chemosphere. 2018. V. 212. P. 1155–1162. https://doi.org/10.1016/j.chemosphere.2018.08.158
- Al-Homaidan A.A., Al-Qahtani H.S., Al-Ghanayem A.A. et al. // Saudi J. Biol. Sci. 2018.V. 25. № 8. P. 1733– 1738.

https://doi.org/10.1016/j.sjbs.2018.07.011

- Ahmaruzzaman Md. // Adv. Colloid Interface Sci. 2008. V. 143. P. 48–67. https://doi.org/10.1016/j.cis.2008.07.002
- 5. *Titov V.A., Stokozenko V.G., Titova Yu.V. et al.* // High Energ. Chem. 2015. V. 49 № 6. P. 459–464. https://doi.org/10.1134/S0018143915050148
- O'Connell D.W., Birkinshaw C., O'Dwyer T.F. // J. Appl. Polym. Sci. V. 99. № 6. P. 2888–2897. https://doi.org/10.1002/app.22568
- 7. *Никифорова Т.Е., Козлов В.А.* // Физикохимия поверхности и защита материалов. 2016. Т. 52. № 3. С. 243–271. https://doi.org/10.7868/S0044185616030219
- 8. Никифорова Т.Е., Багровская Н.А., Козлов В.А. и др. // Химия растительного сырья. 2009. № 1. С. 5–14.
- Алеева С.В., Лепилова О.В., Курзанова П.Ю. и др. // Изв. вузов. Химия и хим. технология. 2018. Т. 61. № 2. С. 80-85. https://doi.org/10.6060/tcct.20186102.5512

- Qin F., Wen B., Shan X.Q. et al. // Environ. Pollut. V. 144. P. 669–680, https://doi.org/10.1016/j.envpol.2005.12.036
- Khotimchenko M., Kovalev V., Khotimchenko Yu. // J. Hazard. Mater. 2007. V. 149. P. 693–699. https://doi.org/10.1016/j.jhazmat.2007.04.030
- 12. Assifaoui A., Lerbret A., Uyen H.T. et al. // Soft Mater. 2015. V. 11. № 3. P. 551–560. https://doi.org/10.1039/c4sm01839g
- 13. Лепилова О.В., Алеева С.В., Кокшаров С.А. // Журн. прикл. химии. 2018. Т. 91. Вып. 1. С. 68–73. https://doi.org/10.1134/S1070427218010147
- 14. Ленская К.В. // Автореф. ... канд. биол. наук: 14.00.25. Владивосток: ВГМУ. 2007. 22 с.
- 15. Алеева С.В., Чистякова Г.В., Лепилова О.В. и др. // Журн. физ. химии. 2018. Т. 92. № 8. С. 1308–1315. https://doi.org/10.1134/S0036024418080022
- 16. Алеева С.В., Чистякова Г.В., Кокшаров С.А. // Изв. вузов. Химия и хим. технология. 2009. Т. 52. № 10. С. 118–121.