____ ФИЗИКО-ХИМИЧЕСКИЕ ПРОБЛЕМЫ _____ ЗАЩИТЫ МАТЕРИАЛОВ

УДК 550.8.004

ПРОБЛЕМЫ ГИДРОДИНАМИЧЕСКОЙ КОРРОЗИИ В МУЛЬТИФАЗНЫХ ТРУБОПРОВОДАХ

© 2021 г. Г. Г. Исмайылов^{1, *}, Э. Х. Искендеров¹, Ф. Б. Исмайылова¹

¹Азербайджанский государственный университет нефти и промышленности, пр. Азадлыг, 20, Баку, Az1010 Азербайджан *e-mail: asi_zum@mail.ru Поступила в редакцию 15.05.2019 г.

После доработки 12.09.2020 г. Принята к публикации 19.09.2020 г.

В статье проанализированы причины коррозионных и эрозионных процессов в мультифазных трубопроводных системах сбора-транспорта углеводородов промысловых технологических трубопроводов месторождений Азербайджана. При различных значениях начального давления и диаметра были вычислены оптимальные значения дальности перекачки гетерогенных продукций скважин с учетом изменений вязкости и рельефа трассы трубопроводов. Было исследовано влияние фракционного состава содержащихся в нефти механических примесей на эрозионно-коррозионные процессы в внутрипромысловых трубопроводах с учетом гидродинамики мультифазных потоков. Предложены конкретные возможные варианты снижения скорости динамической коррозии в мультифазных трубопроводах и утилизации отделившихся механических примесей и воды в промысловых условиях.

DOI: 10.31857/S0044185621010125

введение

Добыча, сбор, подготовка и транспортировка углеводородов основаны на движения мультифазных систем нефти, пластовой воды, нефте-газовых смесей и механических частиц, которые охватывают процессы, включающие подъем продукции скважин на поверхность земли, направлению ее на пункты сепарации, разделение их на фазы и внутри промысловую транспортировку [1]. К проблемам добычи полезных ископаемых, связанных с мультифазностью пролукции можно отнести: движение рабочей среды (продукта), пульсацию давления и других осложнений в сети сбора нефти, а также учет добываемого продукта, коррозию промыслово-технологических трубопроводов, использование мультифазных насосов и др.

На практике эксплуатации месторождений углеводородов, где осуществляется добыча и транспортировка нефти и газа одним из основных факторов является, возникновение разливов нефти в результате аварий в системе трубопроводов, которые негативно влияют на окружающую среду. Анализ показывает, что подавляющее большинство разрушения труб — это эрозия или разрушение эрозионно-коррозионного характера. Разрушение трубопровода происходит на его нижней поверхности и в течении короткого времени разрушает стенку трубы [2, 3].

ОБЪЕКТ ИССЛЕДОВАНИЯ

Статистика разрушения отдельных трубопроводов показывает, что транспортировка компонентов по отдельности по промысловым трубопроводам не представляет серьезной угрозы. В целом, согласно исследованиям по коррозионной активности, если нефть и газ не содержат газообразного сероводорода, они считаются средой с низкой коррозионной активностью. Как правило, скорость коррозии стальных труб не очень велика и составляет 0.1 мм/год. Пластовая вода, которая имеет высокий уровень минерализации, обладает умеренной коррозионной активностью в таких статических условиях. Скорость коррозии стальных конструкций в такой среде не превышает 0.3 мм/год. Относительно большая скорость коррозии наблюдается при транспортировке водонефтяных эмульсий, в основном при меньших скоростях транспортировки и низких скоростях потока в промысловых трубопроводах. Скорость коррозии в это время достигает 3-5 мм/год, и это не случайно, т.к. эти трубопроводы могут разрушаться через 2–3 года.

Промысловый опыт также подтверждает, что при больших скоростях транспортировки сталь-

Рис. 1. Щелевая коррозия в технологических трубо-проводах.

ные трубопроводы более устойчивы к коррозии. Согласно существующим фактам можно утверждать, что корреляция между скоростью коррозии и режимами движения потока значительно сильнее [4].

Недавние исследования показали, что щелевая коррозия в трубопроводе, наряду с общей коррозионной активностью, также связана с присутствием механических соединений в составе мультифазных нефтегазоводных смесей.

А при транспортировке газонефтеводяных смесей скорость коррозии трубопроводов превышает 4–5 мм/год. Скорость коррозии может еще увеличится для слоистых режимов течений водонефтяных эмульсий. Фактором, который играет наиболее важную роль, является изменения гидродинамического режима для таких потоков. Поэтому основными причинами щелевой коррозии в трубопроводах являются:

- общая коррозионная активность;

 наличие механических смесей в транспортируемых смесях нефти, газа и воды.

Авторы [4, 5] считают, что одним из методов защиты нефте- и газопроводов от разрушения является выбор гидродинамического режима, позволяющего избежать транспортировки мультифазной смеси в расслоенном виде.

Анализ и наблюдения показывают, что активные разрушения происходят чаще в начале восходящих участков трубопроводов. Большая степень эрозии этих частей обусловлена тем, что на этих местах кроме жидкостей собираются также твердые механические частицы, и происходит их периодическое движения вверх-вниз по потоку. Коррозионные разрушения, наблюдаемые в нижней части труб, для технологических нефтегазопроводов относительно большого диаметра, очень характерны для системы сбора нефти и газа Азербайджанских месторождений [6, 7]. Эти эрозионно-коррозионные трещины могут иметь ширину от 20 до 60 мм и длину от 5 до 20 м. Как происходят разрушения такой длины в очень неактивной коррозионной среде, которая образуется в нижней части, требует своего объяснения. Большинство исследователей коррозии объясняют возникновение таких случаев тем, что процесс коррозии металла происходит в кислой среде. А в общем, действия происходящих гидравлических ударов, вибраций, механическо-химической растворимости не могут быть предсказаны, и эти эффекты не могут быть объяснением локальных коррозионных разрушений, наблюдаемых в нижних частях труб. При небольшой скорости (до 1 м/с) потока образуются слоистые структурные формы газожидкостных смесей и водная фаза, движущаяся по нижней части трубопровода представляет собой отдельную фазу, выше которой движутся нефть, газ или нефтяная эмульсия. Из-за разницы между вязкостями контактирующих фаз образуются волны между жидкими фазами. Между тем, механические смеси (частицы) в водной фазе (карбонаты и сульфиды железа, песок, глина и т.д.) попадают в жидкую каплю фазы и оказывают постоянное гидроэрозионное воздействие на защитный слой карбонатов в нижней части внутренней поверхности труб. Поэтому, происходит очищение покрытия на нижней части трубы, что ускоряет коррозионно-эрозионный процесс. Многолетний опыт и анализ показывают, что использование ингибиторов коррозии не может предотвратить такие процессы.

ПОСТАНОВКА ВОПРОСА

Решение проблемы предотвращения коррозионно-эрозионных процессов в мультифазных трубопроводах требует больших исследований. Эти процессы, происходящие, прежде всего, изза внутренних факторов, требуют учитывать гидравлические особенности мультифазных потоков, в том числе содержащих механические смеси. Прежде всего, необходимо учитывать расчетные значения приведенного диаметра линий сбора нефти и газа на стадии обустройства (или во время их эксплуатации), чтобы обеспечить оптимальный уровень скорости движения смесей нефти, газа и воды, т.е., по крайней мере, нельзя допускать разделения воды из мультифазных смесей. Известно, что разработка нефтяных и газовых месторождений в Азербайджанском секторе Каспийского моря в основном осуществляется на скважинах морских платформ, и транспортировка продукции производится подводными трубопроводами. Протяженность промыслово-технологических трубопроводов для транспортировки нефти и газа достигает от нескольких километров до десятков. В большинстве случаев

Рис. 2. Профилы трассы трубопроводов при различных коэффициентах рельефа ($R_{\rm K} = h_{\rm BOC}/L$).

по этим трубопроводам транспортируются мультифазные и многокомпонентные смеси (нефтьгаз, нефть-газ-вода, газовый конденсат, газконденсат-вода, включая механические смеси), и при этом возникают некоторые трудности и осложнении.

Часть проблем, возникающих при транспортировке мультифазных систем, связана с разнообразием рельефа трубопроводов. Часто встречающие профили трассы для морских подводных трубопроводов Азербайджана с учетом коэффициента рельефа $R_{\rm K}$ (отношение длины восходящих участков к общей длины трубопровода) показаны на рис. 2. Как видно из рис. 2, для морских трубопроводов, основной причиной осложнения, связанных с рельефными условиями является то, что сборные коллекторы с разных платформ имеют спуски в море и подъемы на платформы. Поэтому, при рассмотрении влияния профиля на величину гидравлического сопротивления, следует учесть

Рис. 3. Зависимость оптимальной дальности мультифазных систем сбора от коэффициента релефа при различрых значениях давлении (D = 0.255 м).

особенности мультифазного потока. Среди факторов, влияющих на эффективность функционирования коллекторов нефти и газа, помимо профиля рельефа играет немаловажную роль и вязкость гетерогенной системы. Анализ проведенных нами расчетов показывает, что важно оценить дальность сбора и транспорта мультифазных систем. В табл. 1 приведены значения оптимального расстояния транспорта многофазных систем в зависимости от рельефа трассы и вязкости системы, при различных объемах продукции и диаметрах трубопровода. Для различных диаметров (D = 0.255 и 0.509 м) трубопровода и значений начального давления были построены зависимости опти-

Таблица 1. Изменения оптимального расстояния транспортировки мультифазных систем в зависимости от рельефа трассы и вязкости продукции скважин

Объем продукции т/год	Начальное давление трубопровода, МПа	Внутренний диаметр трубопровода, м	Вязкость продукции скважин (нефть, газ, вода), м ² /с								
			10 ⁻⁵			8×10^{-5}			2×10^{-4}		
			коэффициент рельефа трассы, $R = h/L$, м/км								
			15	30	40	15	30	40	15	30	40
			оптимальное расстояние транспортировки мультифазных систем ($L_{\text{опт}}$), км								
100	1.5	0.255	21.6	11.8	8.3	20.0	11.5	8.2	17.3	10.3	7.3
300		0.357	21.0	11.6	8.2	19.4	11.3	8.0	18.0	10.6	7.4
1000		0.509	19.7	11.3	8.1	17.9	10.8	7.8	16.3	10.0	7.2
100		0.255	36.7	19.6	14.6	34.0	19.0	14.3	29.1	17.0	12.5
300	2.0	0.357	35.7	19.4	14.5	33.3	18.7	14.1	30.0	17.4	12.7
1000		0.509	33.7	18.9	14.2	30.6	18.0	13.7	27.8	16.7	12.4
100		0.255	70.0	38.1	33.8	63.8	37.4	32.0	54.6	31.7	25.0
300	3.0	0.357	66.3	37.9	33.5	64.8	37.0	32.3	56.4	32.6	25.6
1000		0.509	65.5	37.2	32.2	60.0	35.6	31.5	53.5	31.5	25.0

Рис. 4. Зависимость оптимальной дальности мультифазных систем сбора от коэффициента релефа при различрых значениях давлении (D = 0.509 м).

мального расстояния транспортировки мультифазных систем от коэффициента рельефа, которые представлены на рис. 3 и 4. Как видно из рис. 3 и 4, с увеличением давления в трубопроводе, дальность транспортировки увеличивается, а при увеличении коэффициента рельефа она уменьшается.

Результаты расчетов показали, что в отличие от однофазного потока дальность сбора мультифазных газоконденсатных систем не может увеличиваться беспредельно с увеличением диаметра газопровода и в зависимости от объема и давления перекачки, а также от диаметра трубопровода имеет ограничение (максимум) [8].

РЕШЕНИЕ И ОБСУЖДЕНИЕ ПРОБЛЕМЫ

С учетом вышеотмеченных особенностей функционирования технологических трубопроводов были проанализированы некоторые коррозионно-эрозионные проблемы мультифазных систем. Как известно из механики, сила эффекта эрозии — мощность силы трения (*N*) определяется следующим образом [9, 10].

$$N = Fv, \tag{1}$$

где N — мощность силы трения на поверхности труб механических смесей;

F – сила трения частицы;

v — скорость частицы (эта скорость принимается равным скорости течения жидкости в точке, соответствующей центру тяжести частицы).

Во время движения по трубопроводу сила трения для механической частицы определяется следующей зависимостью:

$$F = (\rho_{\rm m.y.} - \rho_{\rm *})g\varphi\pi d^3/6.$$
 (2)

Здесь d – диаметр механической частицы;

ρ_{м.ч.} и ρ_ж – плотность механической частицы и жидкости соответственно;

ф – коэффициент трения частицы о металл.

Для нахождения скорости смещения механической частицы, может быть использовано следующее правило распределения скорости по поперечному сечению трубопровода:

$$v = 2u \left[1 - \left(\frac{2r}{D}\right)^2 \right]. \tag{3}$$

Здесь *и* — можно рассматривать как среднерасходную скорость потока.

r — это расстояние между осями механической частицы и потока.

Учитывая, что
$$r = \frac{D-d}{2}$$
, то имеем:

$$v = \frac{2ud\left(2 - \frac{d}{D}\right)}{D}.$$
(4)

Подставляя выражения *F* и *v* в уравнении (1), получим:

$$N = 10.3(\rho_{\rm M.Y.} - \rho_{\rm *})\varphi u (2 - d/D) d^4/D.$$
 (5)

Последнее уравнение указывает на то, что мощность эрозионного воздействия на трубопровод больше зависит от диаметра механических частиц.

Ниже рассмотрены и проанализированы коррозионные процессы нефте-промысловых технологических трубопроводов на примере месторождений Азербайджане с учетом динамики мультифазных смесей.

История добычи нефти в Азербайджане показывает, что механические смеси в мультифазных потоках системы сбора скважин не только загрязняют технологическое оборудование и трубопроводы сбора и транспортировки, но также подвергают их коррозии и коррозионно-эрозионному воздействию. Наблюдения и исследования на морских месторождениях НГДУ "Абшероннефть", "Нефтяные Камни" и "28 мая" показывают, что каждый литр жидкости содержит механические смеси от 0.5 до 5 г, размером 0.01 до 0.4 мм (в основном песок). Технологическое оборудование, после осадки механических частиц загрязняется в течении короткого времени (несколько недель). Рабочие части насосов разрушаются механическими частицами в течение 3-4 мес., происходят утечки и потери углеводородов, загрязняется окружающая среда. Следует отметить, что в это время много времени и сил уходит на очистку оборудования в основном от донных отложений.

Учитывая, что глубина моря достигает на месторождениях "Апшерон Банкасы" 8–20 м,

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 57 № 1 2021

<u></u>	Их доля	Мощность трения (при различных скоростях течения), N , 10^{-11} Вт									
механических		0.5 м/с		1.0	м/с	1.5	м/с	2.0 м/с			
частиц, мм	вообеме	мощность	доля в объеме	мощность	доля в объеме	мощность	доля в объеме	мощность	доля в объеме		
2.00	0.01	16350.00	0.72	32690.00	0.72	49040.00	0.72	65390.00	0.72		
1.50	0.02	5179.00	0.23	10360.00	0.23	15540.00	0.23	20710.00	0.23		
1.00	0.03	1024.00	0.05	2048.00	0.05	3073.00	0.05	4097.00	0.05		
0.50	0.05	64.09	0.00	128.20	0.00	192.30	0.00	256.40	0.00		
0.30	0.25	8.31	0.00	16.62	0.00	24.93	0.00	33.24	0.00		
0.20	0.16	1.64	0.00	3.28	0.00	4.93	0.00	6.57	0.00		
0.10	0.15	0.10	0.00	0.21	0.00	0.31	0.00	0.41	0.00		
0.08	0.05	0.04	0.00	0.08	0.00	0.12	0.00	0.17	0.00		
0.06	0.03	0.01	0.00	0.03	0.00	0.04	0.00	0.05	0.00		
0.04	0.06	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00		
0.02	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0.01	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
			1.00		1.00		1.00		1.00		

Таблица 2. Зависимость мощности трения от размеров механических примесей в промыслово-транспорных трубопроводах при различных значениях скорости потока

"Нефтяные камни" 15—50 м и "Гюнешли" 80—150 м, то при транспортировке продукции скважин между платформами на местах соединения труб восходящего потока (от морского дна до поверхности воды) в связи с осадкой механических загрязнений, парафина и соли уменьшается рабочий диаметр трубопровода. Любая остановка транспортных трубопроводов может быть причиной накопления загрязнений на дне трубопровода и возникновения пробок. В результате воздействия давлений потока нефти и газа скважин высокого давления на линии скважин низкого давления рабочий режим этих скважин нарушается.

Учитывая тот факт, что залежи нефти в этих месторождениях в основном представляют собой песок, песчаник и алевролиты, то относительное распределение отдельных фракций по их средним размерам и влиянию на трубы можно рассматривать, как показано в табл. 2. Согласно данным табл. 2, мощность эффекта эрозии на трубопроводе была рассчитана по выражению (5). Расчеты были основаны на следующих предварительных данных:

$$D = 200 \text{ MM} = 0.2 \text{ M};$$

$$\rho_{\text{m.u.}} = 1800 \text{ Kr/m}^{3};$$

$$\rho_{\text{w}} = 800 \text{ Kr/m}^{3};$$

$$v = 0.5; 1.0; 1.5; 2.0 \text{ M/c}.$$

Результаты расчетов приведены в табл. 2 и на рис. 5. Как видно из табл. 2, доля почти 100% фрикционных частиц приходится в основном на частицы размером d > 0.5 мм. Интересно, что подавляющее большинство эффектов эрозии (95%) создают фракции с наибольшим диаметром (1–2 мм) и хотя частицы размером от 0.1 до

0.3 мм составляют более половины (56%) от общего объема механических примесей, их доля в общей мощности трения практически не замечена. Как видно из рис. 5, мощность эрозионного воздействия на трубопровод во многом зависит также от скорости потока и с увеличением скорости растет.

Эрозионное воздействие механических частиц основано на силах гравитации. Оно может быть предотвращено или в значительной мере ослаблено силами, имеющими противоположное направление, т.е. силы Бернулли, возникающее в пристенной области градиентно-скоростного поля [11]. Гидродинамическим режимом исключить

Рис. 5. Зависимость мощности трения от размеров механических примесей в промысловых трубопроводах при различных значениях скорости потока.

Рис. 6. Зависимость скорости переноса механических частиц в газовом потоке для различных диаметров газопровода.

контакт воды или механических частиц с поверхности трубопровода невозможно. Поэтому, для защиты трубопровода от эрозии твердыми частицами необходимо обеспечить вынос твердых частиц в ядро потока без контакта с поверхностью трубопровода. Для защиты трубопровода от коррозии при движении мультифазных систем необходимо и достаточно обеспечить эмульсионный режим движения, при котором градиент статического давления в потоке будет больше разности удельных весов механических частиц и нефти (или газа):

$$dP/dr > (\rho_{\rm M, \rm H} - \rho_{\rm r})g. \tag{6}$$

Для определения скорости смеси, обеспечивающий защиту трубопровода (в частности газопровода) от коррозии, можно использовать зависимость (6), решенную относительно скорости. С учетом того, что максимальное значение $(dP/dr)_{\rm M} = 16u^2\rho\alpha(1-d^2)/D$ и подавляющее большинство эффектов эрозии (95%) создает фракция песка в основном размером d > 0.5 мм, тогда при $\alpha = 0.995$ слой с толщиной 0.005D, который остается на дне трубопровода для коррозионно-эрозионного процесса практически никакой опасность не представляет ($\alpha = \frac{r}{R}$ – относительная координата, равная отношению расстояния от оси потока до исследуемой точки, к половине диаметра поперечного сечения потока), для опре-

диаметра поперечного сечения потока), для определения скорости переноса обеспечивающей защиту трубопровода от коррозии-эрозии получим:

$$\vartheta = A_{\sqrt{\left(1 - \frac{\rho_{\rm r}}{\rho_{\rm M.Y.}}\right)}}D,\tag{7}$$

где $A = 7.86 \frac{\sqrt{M}}{c}$.

Согласно уравнению (7) была вычислена скорость переноса механических частиц в газовом потоке для различных диаметров газопровода (рис. 6). Как видно из рис. 6, скорость переноса с увеличением диаметра трубопровода монотонно растет.

ЗАКЛЮЧЕНИЕ

Скорость динамической коррозии мультифазных трубопроводов, которая иногда достигает до 20 мм/год будет определяется мощностью сил трения. величина которой определяется не столько количеством механических примесей, сколько их размером. Для снижения скорости коррозии примерно в 10 раз достаточно удалить из потока всего 1% наиболее крупных (более 1 мм) частиц. Для защиты мультифазных трубопроводов от эрозионно-коррозионных процессов необходимо обеспечить вынос твердых частиц и воды в ядро потока без контакта с поверхностью трубопровода. В частности для мультифазного газопровода была вычислена скорость переноса твердых механических частиц в ядре газового потока. Эффективным способом борьбы с динамической коррозией может стать удаление крупных частиц, поступающих в поток из нефтяных пластов методом фильтрации или гидроциклонной обработки потока в начале нефтегазопроводной сети.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Гужов А.И*. Совместный сбор и транспорт нефти и газа. М.: Недра, 1973. С. 280.
- 2. Сулейманов А.Б., Кулиев Р.П. и др. Эксплуатация морских нефтегазовых месторождений. М.: Недра, 1986. С. 285.
- Лутошкин Г.С. Сбор и подготовка нефти, газа и воды. М.: Недра. 1977. С. 192.
- Маричев Ф.Н., Гетманский М.Д., Тетерина О.П. и др. // ВНИИОЕНГ, Коррозия и зашита в нефтегазовой промышленности. 1981. № 8. С. 44.

- 5. Бабенко А.П., Стрелец И.В. // Строительство уникальных зданий и сооружений. 2013. Т. 6. С. 11.
- Искендеров Э.Х. // Сборник материалов Международной научно-практической конференции "Достижения, проблемы и перспективы развития нефтегазовой отрасли". Т. 1. 25–28 октября 2017. Альметьевск, С. 443–447.
- Ismayilov G.G., Iskandarov E.K. // Proceedings of the International Conference dedicated to the 90th anniversary of Academician Azad Khalil oglu Mirzajanzade, December 13–14, 2018. Baku, p. 444–446.
- Нурмамедова Р.Г., Исмайылова Ф.Б. // Трубопроводный транспорт [теория и практика]. 2015. Т. 48. № 2. С. 22.
- 9. Манжосов В.К., Новикова О.Д., Новиков А.А. Теоретическая механика. Часть II. Динамика. Аналитическая механика / Ульяновский государственный технический университет. Ульяновск, 2011. С. 194.
- 10. Пустовойт Б.В. Механика движения жидкостей в трубах. М.: Недра, 1980. С. 160.
- 11. Лебедева Е.В., Ситенков В.Т. // Технология масел и топлив. 1999. № 1. С. 17–18.