НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 541.124:542.952.6:547.313

ФИЗИКО-ХИМИЧЕСКИЕ И БИОЦИДНЫЕ СВОЙСТВА ПОКРЫТИЙ НИКЕЛЬ–ОЛОВО И НИКЕЛЬ–ОЛОВО–ДИОКСИД ТИТАНА

© 2021 г. А. В. Пянко^{1,} *, И. В. Макарова¹, Д. С. Харитонов², И. С. Макеева³, Л. С. Сергиевич¹, А. А. Черник¹

¹Белорусский государственный технологический университет, ул. Свердлова, 13а, Минск, 220006 Беларусь ²Jerzy Haber Institute of Catalysis and Surface Chemistry of Polish Academy of Sciences, Niezapominajek, 8, Krakow, 30-239 Poland ³Kueвский национальный университет технологий и дизайна, ул. Немировича-Данченко, 2, Киев, 01011 Украина *e-mail: hanna.pianka@mail.ru Поступила в редакцию 12.05.2020 г. После доработки 01.06.2020 г. Принята к публикации 08.06.2020 г.

Методами сканирующей электронной микроскопии и элементного анализа изучены морфология и состав покрытий Ni–Sn и Ni–Sn–TiO₂. Изучено электрохимическое поведение полученных покрытий в 3% растворе NaCl. Показано влияние включения диоксида титана в состав покрытия Sn–Ni на механические и антибактериальные свойства. Установлены зависимости влияния времени инкубирования и воздействия ультрафиолетового излучения на концентрацию жизнеспособных клеток на поверхности покрытия Ni–Sn–TiO₂. На образцах покрытий Ni–Sn–TiO₂, осажденных в электролите с содержанием TiO₂ в количестве 2 г/дм³ концентрация жизнеспособных клеток *Staphylococcus aureus* уменьшается с 130 до 90 КОЕ/мл и с 70 до 30 КОЕ/мл без и при воздействии УФ излучения соответственно.

Ключевые слова: сплав никель—олово, диоксид титана, коррозия, биоцидные свойства **DOI:** 10.31857/S0044185621010162

введение

По данным Всемирной организации здравоохранения [1, 2], ежегодно в мире переносят инфекционные заболевания свыше 1 млрд человек, из которых, из-за вызванных осложнений умирает от 290 до 650 тыс. человек. Скорость распространения инфекционных заболеваний зависит от многих факторов [3–5]. Наиболее значимыми являются эпидемиологическая ситуация в стране, степень контагиозности заболевания и климатические условия. Степень контагиозности в свою очередь зависит от пути передачи заболевания, одним из которых является контактный путь [6, 7]. В данном случае возбудитель передается через кожные покровы при непосредственном соприкосновении или через поверхности общего пользования (поручни, ручки дверей и т.д.) [1-14]. Таким образом разработка нового класса металлических композиционных материалов, обладающих антибактериальными свойствами, является перспективным направлением в области материаловедения.

В качестве металлической основы для антибактериальных покрытий могут использоваться композиционные материалы на основе Си [15– 18], Ni [19–23], Fe [19, 20]. Сплав никель-олово обладает высокой коррозионной стойкостью и не оказывает раздражающего действия на кожу человека [10–14]. В предыдущей работе [24] описаны механизм формирования сплава никель– олово, структура и морфология формирующегося покрытия. Данный сплав применяется в промышленности в качестве защитно-декоративного покрытия для изделий из меди и стали [25, 26].

В качестве инертной фазы для композиционных покрытий могут использоваться наночастицы TiO_2 [27–29], SiC [30, 31], Ag [32, 33]. Композиционные покрытия с внедрением таких наночастиц проявляют высокую эффективность против резистентных бактерий [13, 34–36] за счет подавления жизнедеятельности возбудителя инфекционной болезни в результате угнетения специфичного для микроорганизмов метаболического процесса [7].

Ввиду уникальных свойств наноразмерный TiO₂ широко используется в качестве фотокатализатора для разложения органических загрязнителей и ингибиторов [37], модифицирующих микроорганизмы [38]. Широкое использование TiO₂ основано на его эффективной фотокаталитической активности [39-41] и высокой химической стабильности [42-44]. В работах [42-48] изучена его антибактериальная эффективность под действием УФ-излучения. Следует отметить, что оксид титана, который встречается в природе в различных модификациях (анатаз, рутил, брукит), как правило, не является фотокатализатором. Для придания фотокаталитических свойств TiO₂ должен быть синтезирован в определенных условиях и иметь наноразмерную структуру. В работах [39-41] отмечено, что наибольшей фотокаталитической активностью обладают частицы TiO₂ размером от 10 до 50 нм.

Таким образом, электрохимически сформированный сплав никель—олово обладает рядом преимуществ по сравнению с покрытиями индивидуальными металлами. Введение наноразмерного диоксида титана в структуру сплава позволит придать металлической поверхности ряд уникальных свойств. В связи с этим, целью данной работы являлось исследование механических, трибологических, коррозионных и антибактериальных свойств покрытий никель—олово и никель—олово—диоксид титана.

МЕТОДИКА ЭКСПЕРИМЕНТА

Покрытия никель—олово и никель—олово диоксид титана электрохимически осаждали из электролитов в соответствии с методикой [24]. В качестве анодов использовали оловянные и никелевые пластины с соотношением площадей 1 : 5. Покрытия осаждали на медные и стальные пластины, предварительно подготовленные согласно ГОСТ 9.305—84.

Наноразмерный диоксид титана синтезировали прямым окислением порошкообразного металлического титана по методике [49]. В результате получали смесь двух полиморфных модификаций диоксида титана — анатаза и рутила, с размером частиц 30—50 нм [50].

Электрохимические измерения проводили с помощью потенциостата Autolab PGSTAT 302N в трехэлектродной ячейке с насыщенным хлоридсеребряным электродом сравнения и платиновым вспомогательным электродом. В качестве коррозионной среды использовали 3% раствор NaCl. Поляризационные кривые снимали при скорости развертки потенциала 1 мB/с через 30 мин после опускания рабочего электрода в раствор хлорида натрия для установления стационарного потенциала. Спектры электрохимического импеданса регистрировали в диапазоне частот от 10 кГц до 0.01 Гц с амплитудой переменного напряжения 10 мВ. Снятие частотных спектров импеданса проводили через 30 мин после выдерживания образца в исследуемом растворе. Обработку полученных данных проводили с использованием программного обеспечения Nova 2.1.

Морфологию поверхности полученных образцов изучали методом сканирующей электронной микроскопии (СЭМ) на микроскопе JEOL JSM— 5610 LV и методом атомно-силовой микроскопии (ACM) на микроскопе Nanosurf FlexAxiom с контроллером С3000 в прерывисто-контактном режиме "tapping mode" с использованием кремниевого кантиливера "*n*-тип" с радиусом острия иглы в пределах 8 нм (HQ:NSC15, MikroMasch). Элементный состав покрытий определяли методом энергодисперсионного рентгеновского микроанализа (EDX) с использованием системы химического микрорентгеноспектрального анализа EDX JED-2201.

Адгезию покрытий Ni–Sn и Ni–Sn–TiO₂ к стальной подложке измеряли адгезиметром Defelsko Positest AT, а также испытывали методами нанесения сетки царапин и изгиба.

Микротвердость покрытий толщиной 20 мкм измеряли микротвердомером AFFRI-MVDM8 по ГОСТ 2999-75 при нагрузке на индентор 50 г.

Антибактериальные свойства покрытий изучали по отношению к грамположительным *Staphylococcus aureus* (*S. aureus*, ATCC 6538) и грамотрицательным *Escherichia coli* (*E. coli*, ATCC 8739) бактериям. Перед антибактериальными исследованиями поверхность образцов стерилизовали в этаноле (70%) в течении 2 ч и сушили при комнатной температуре под УФ-облучением.

Тест-бактерии (одну колонию) переносили в пробирку с 2 мл питательного бульона (ПБ) и определяли количество бактерий. Жидкость с бактериями и ПБ разбавляли, чтобы полученный раствор содержал от 5.5 × 10⁵ до 2.5 × 10⁶ КОЕ/мл бактерий. Данный раствор использовали в качестве испытательной жидкости с бактериями. Жидкость объемом 0.1 мл высевали на испытуемый образец, накрывали пленкой, слегка прижимали, чтобы жидкость распределялась по всей поверхности. Облучение образца проводили в течение 1 ч при интенсивности ультрафиолетового излучения ~0.01 мBт/см² и температуре $20 \pm 1^{\circ}$ C. Затем образцы промывали в стерильных полиэтиленовых упаковках содержащих 10 мл физиологического раствора и Тритон Х-100 (концентрация 0.1%) в течение 10 мин. Смытую жидкость немедленно высевали на питательный агар. Отбирали стерильной пипеткой 0.1 мл смытой жидкости и вносили в чашку Петри. Втирали раствор в агаризованную среду, накрывали чашки крышкой и оставляли при комнатной температуре на 5 мин. Засеянные чашки помещали в термостат, где инкубировали их в течении 48 ч при температуре $30 \pm 1^{\circ}$ С. Далее производили подсчет коли-

Рис. 1. Микрофотографии сканирующей электронной микроскопии и элементный анализ покрытия Ni–Sn (a) и Ni–Sn–TiO₂ (б).

чества образовавшихся колоний в чашках и устанавливали концентрацию бактерий в промывной жидкости.

Оценку антибактериальной активности проводили по показателю *K*₁ и *K*₂:

$$K_1 = 100 \times (C_{\text{конт}} - C_{\text{обр}}) / C_{\text{конт}}, \tag{1}$$

$$K_2 = \lg(C_{\text{конт}} / C_{\text{обр}}), \qquad (2)$$

где $C_{\text{конт}}$ — концентрация клеток после инкубирования на контрольном образце (КОЕ/мл); $C_{\text{обр}}$ — концентрация клеток после инкубирования на опытном образце (КОЕ/мл).

Оценку антибактериальной активности самих пластинок с нанесенным покрытием также проводили без воздействия УФ-излучения. Для этого стерильные пластинки помещали в пакетики с 20 мл предварительно разведенной до концентрации 10^5 КОЕ/мл культурой тест-бактерий (*S. aureus* и *E. coli*) и инкубировали в течении 4 и 12 ч при температуре 30°С. Затем проводили высев из соответствующих разведений. Посевы инкубировали в течении 24 ч при температуре 30° С.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Сплавы никель—олово (рис. 1а) и никель—олово—диоксид титана (рис. 1б) осаждаются в виде гладких, блестящих, хорошо сцепленных с основой покрытий с плотной равномерной структурой. Введение в электролит TiO_2 приводит к незначительному изменению характера покрытия, на поверхности наблюдается образование достаточно крупных сфероидов размером 6—8 мкм. По данным элементного анализа полученные покрытия Ni–Sn содержат 68—73 мас. % олова и 26— 31 мас. % никеля. Данные соотношения являются оптимальным, так как в этом случае образуется механическая смесь NiSn₂ и Ni₃Sn₂ [24, 51].

Введение TiO_2 в электролит приводит к изменению структуры поверхности покрытия с укрупнением формирующихся на поверхности кристаллитов. Как следует из данных ACM (рис. 2), увеличение содержания TiO_2 в электролите от 0 до 2 г/дм³ приводит к росту отдельных кристаллитов от 25 до 30 нм.

Рис. 2. АСМ-изображения покрытий Ni–Sn и Ni–Sn–TiO₂: Концентрация TiO₂, г $дм^{-3}$: (a–в) – 0, (г–е) – 1, (ж–и) – 2.

Адгезия и микротвердость сплава Ni–Sn и Ni–Sn– TiO₂ представлены в табл. 1. Микротвердость покрытия Ni–Sn составила 405 *HV*, адгезия — 0.51 МПа/см². Введение в электролит TiO₂ в количестве 2 г/дм⁻³ приводит к росту микротвердости и адгезии до 439 *HV* и 0.65 МПа/см² соответственно.

Поляризационные кривые сплавов, полученные в 3% растворе NaCl представлены на рис. 3. Катодные участки поляризационных кривых практически совпадают, что свидетельствует о незначительном влиянии состава и структуры покрытия на катодный процесс.

На анодных участках поляризационных кривых наблюдается значительное отклонение в электроположительную сторону при введении в электролит TiO_2 . Так, начало анодного процесса для образцов без и с TiO_2 наблюдается в диапазоне -50 и -25 мВ соответственно, при этом образцы сплава с TiO_2 обладают более положительным стационарным потенциалом. По мере сдвига потенциала в электроположительную область до значения +50 мВ для сплава никель—олово наблюдается область относительной пассивации в диапазоне потенциалов 50-300 мВ с углом накло-

Рис. 3. Потенциодинамические поляризационные кривые сплавов Ni–Sn и Ni–Sn–TiO₂, полученные в 3% растворе NaCl.

Таблица 1. Свойства покрытий Ni–Sn и Ni–Sn–TiO₂

	Ni-Sn	Ni–Sn–TiO ₂
Микротвердость, <i>HV</i>	405	439
Адгезия, МПа/см ²	0.51	0.65

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 57 № 1 2021

	b _a , B	<i>a</i> _a , B	$ b_k , \mathbf{B}$	a_k , B	$i_{\rm kop}, {\rm A/cm^2}$
Sn-Ni	0.0363	0.2072	0.0345	-0.3073	5.41×10^{-8}
Sn–Ni–TiO ₂	0.0354	0.221	0.0278	-0.2604	2.41×10^{-8}

Таблица 2. Характеристики коррозионного процесса сплава Ni–Sn и Ni–Sn–TiO₂ (TiO₂ 2 г дм⁻³), полученные из анализа потенциодинамических поляризационных кривых

на приблизительно 0.4 В. Введение в электролит TiO₂ приводит к активации поверхности в диапазоне потенциалов 0-0.2 В. На этом участке поляризационных кривых угол наклона составляет приблизительно 0.06 В. При потенциалах положительнее 0.2 В наблюдается область пассивации шириной 0.2-0.4 В. При этом плотность тока пассивации составляет 3.2×10^{-4} А/см². Область потенциалов положительнее 0.4 В характеризуются достаточно активным протеканием анодного процесса как для образцов Ni-Sn, так и для образцов Ni-Sn-TiO₂. Как следует из поляризационных кривых, ввеление лиоксила титана в состав сплава Ni-Sn приводит к депассивации покрытия и способствует увеличению скорости анодного процесса.

Характеристики коррозионных процессов в 3% растворе хлорида натрия рассчитаны из поляризационных кривых и представлены в табл. 2. Плотность тока коррозии образцов, полученных из электролита с содержанием TiO₂ 2 г/дм³ уменьшается до 2.41 × 10⁻⁸ по сравнению с 5.41 × 10⁻⁸ А/см² для покрытия без диоксида титана.

Данные электрохимической импедансной спектроскопии (рис. 4) также свидетельствуют о большей коррозионной стойкости покрытий Ni– Sn–TiO₂. Диаграммы Найквиста, полученные для обоих типов покрытий в среде NaCl (рис. 4а), характеризуются емкостной полуокружностью в области высоких и средних частот, которая характерна для процессов с лимитирующей стадией переноса заряда на границе раздела электрод-электролит [52—57].

На диаграммах Боде для фазового угла в области средних частот присутствует широкий пик, что свидетельствует об относительно высоких значениях емкостного сопротивления и стойкости покрытия к коррозии. На диаграммах для модуля импеданса (рис. 46) видно, что сопротивление переноса заряда покрытий, полученных в присутствии TiO₂ (область низких частот) увеличивается от 3.30×10^4 до 8.95×10^4 Ом см².

Для количественного анализа параметров полученных спектров использовалась эквивалентная схема, представленная на рис. 4. В использованной схеме R_s соответствует сопротивлению коррозионной среды, контур R_1 СРЕ₁ описывает параметры процесса коррозии в дефектах покрытия, а контур R_2 СРЕ₂ – сопротивление переноса заряда и емкость двойного электрического слоя на границе электрод-электролит. Вместо элемента конденсатора *C*, в схемах использовался элемент постоянной фазы СРЕ, учитывающий шероховатость поверхности. Результаты подбора параметров эквивалентных схем спектров импеданса представлены в табл. 3. Для покрытия

Рис. 4. Диграммы Найквиста (а) и Боде (б) сплава Ni-Sn (1) и Ni-Sn-TiO₂ (2), полученные в 3% растворе NaCl.

Покрытие	$R_{\rm s}$, Ом см ²	R_1 , Ом см ²	$Y_1,$ Om ⁻¹ cm ⁻² c ⁿ	<i>n</i> ₁	R_2 , Ом см ²	$Y_2,$ Ом ⁻¹ см ⁻² с ⁿ	<i>n</i> ₂
Ni–Sn	62.87	3.30×10^4	5.06×10^{-5}	0.42	3.32×10^{4}	2.0×10^{-5}	1
Ni–Sn–TiO ₂	29.78	8.95×10^4	1.63×10^{-5}	0.56	5.36×10^{4}	9.16×10^{-6}	1

Таблица 3. Параметры эквивалентных схем спектров импеданса для покрытий Ni–Sn и Ni–Sn–TiO₂, полученных в 3% NaCl

Таблица 4. Концентрация жизнеспособных клеток *Staphylococcus aureus* на поверхности образцов (исходная концентрация: 5.6×10^{5} KOE/мл)

Условия опыта	Концентрация ТіО ₂ в электролите, г/дм ³	Концентрация, КОЕ/мл	$K_1, \%$
	0	1.3×10^{2}	-
Без обработки УФ	1	1.0×10^{2}	23.08
	2	9.0×10^{1}	30.76
После обработки УФ излучением (I ~ 0.01 мВт/см ² , 1 ч)	0	7.0×10^{1}	—
	1	2.0×10^{1}	71.43
	2	3.0×10^{1}	57.14

Ni-Sn-TiO₂ значения параметров R_1 и R_2 были выше, а параметров Y_1 и Y_2 – ниже, чем для покрытия Ni-Sn, что свидетельствует о большей

Рис. 5. Микрофотографии образцов колоний тестбактерий (*St. aureus* и *E. coli*) после облучения УФ-излучением интенсивностью 0.01 мВ/м² течение 4 ч: (а) контрольного образца с покрытием Ni–Sn и тестбактерией *St. aureus*; (б) образца покрытия Ni–Sn– TiO₂ после бактерицидного анализа тест-бактерией *St. aureus*; (в) контрольного образца с покрытием Ni– Sn и тест-бактерией *E. coli*; (г) образца покрытия Ni– Sn–TiO₂ после бактерицидного анализа тест-бактерией *E. coli*; (г) образца ст. бактерией *E. coli*; (г) образца тест-бактерией *E. coli*; (г) образца тест-бактерией

коррозионной устойчивости полученных композитов. Значения параметра n_1 для обоих покрытий близки к 0.5, что может свидетельствовать о протекании диффузионных процессов, вероятно, на дефектных участках покрытий.

Результаты исследований антибактериальных свойств полученных покрытий Ni-Sn и Ni-Sn-TiO₂ по отношению к бактериям S. aureus и E. coli представлены на рис. 5. Как следует из представленных данных присутствие в покрытии диоксида титана значительно уменьшает количество бактериальных колоний на поверхности образцов. Данная тенденция наблюдается как для S. aureus, так и для E. coli. Концентрация жизнеспособных бактерий S. aureus на поверхности образцов при облучении УФ-излучением интенсивностью 0.01 мВ/м² в течении 1 ч уменьшается от 130 до 70 КОЕ/мл (табл. 4). При облучении покрытий, полученных из электролита с 1 г/дм³ диоксида титана количество клеток уменьшается от 100 и до 20 КОЕ/мл. Это указывает на наличие антибактериального действия диоксида титана особенно при воздействии УФ. Для образцов, полученных в электролитах с 2 г/дм³ диоксида титана антибактериальный эффект увеличивается в 1.5 раза по сравнению с контрольным образцом.

Такое поведение образцов обусловлено, по всей видимости, фотокаталитической антибактериальной активностью композиционного электрохимичекого покрытия $Ni-Sn-TiO_2$ в присутствии УФ-излучения [43—45] за счет повреждения клеточных мембран бактерий из-за поглощения излучения внутриклеточными хромофорами.

Концентрация ТіО ₂ в электролите, г/дм ³	S. aureus				E. coli			
	12 ч		4 ч		12 ч		4 ч	
	КОЕ/мл	<i>K</i> ₂						
0	2.9×10^{7}	1.96	2.6×10^{4}	1.33	2.8×10^{7}	1.51	2.4×10^{4}	1.40
1	1.6×10^{7}	2.23	2.0×10^4	1.44	2.1×10^{7}	1.64	1.9×10^{4}	1.50
2	9.8×10^{6}	2.44	1.0×10^4	1.74	1.3×10^{7}	1.84	2.1×10^{4}	1.29
Контр. образец	2.7×10^{9}	_	5.6×10^{5}	_	9.2×10^{8}	_	6.1×10^{5}	—

Таблица 5. Антибактериальная активность образцов по отношению к тест-бактериям при их инкубации в течении 4 и 12 ч

Антибактериальная активность образцов по отношению к тест-бактериям при инкубации в течение 4 и 12 ч увеличивается с ростом содержания диоксида титана в покрытии как для *S. aureus*, так и для *E. coli* (табл. 5).

Показатель антибактериальной активности K_2 увеличивается от 1.4 до 1.5 для *E. coli* и от 1.33 до 1.7 для *S. aureus* при времени инкубирования 4 ч. С увеличением времени инкубирования K_2 также возрастает, достигая значения 1.84 для *E. coli* и 2.44 для *S. aureus* при концентрации диоксида титана в электролите 2 г/дм³.

ЗАКЛЮЧЕНИЕ

Таким образом, проведенные исследования показали, что введение наноразмерного диоксида титана в структуру сплава никель—олово позволяет получать покрытия с повышенной твердостью, адгезией и коррозионной стойкостью. Микротвердость и адгезия покрытий Ni–Sn–TiO₂ составили 439 *HV* и 0.65 МПа/см² соответственно, а плотность тока коррозии уменьшилась до 2.41×10^{-8} A/см². Полученное композиционное покрытие характеризуется высокой биоцидной активностью по отношению к бактериям *S. aureus* и *E. coli*.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследования выполнены при финансовой поддержке Министерства образования Республики Беларусь (грант "Электрохимические композиционные покрытия с фотокаталитическими свойствами на основе сплавов олова").

СПИСОК ЛИТЕРАТУРЫ

1. *Кайгородова Т.В., Зимина Е.И., Иванов А.В.* // Здравоохранение РФ. 2009. № 1. С. 23.

- 2. World Health Organization World health statistics 2018: monitoring health for the SDGs, sustainable development goals / Geneva: 2018. P. 64.
- Beamer Paloma I., Plotkin Kevin R., Gerba Charles P. et al. // J. Occup. Environ. Hyg. 2015. V. 12. № 4. P. 266.
- Julian T.R.A.O., Canales R.A.O., Leckie J.O. et al. // Risk Anal. 2009. V. 29. P. 617.
- *Nicas M., Best D.* // J. Occup. Environ. Hyg. 2008. V. 5. P. 347.
- 6. Lopez G.U.P.H., Gerba C.P.H., Tamimi A.H. et al. // J. Appl. Environ. Microbiol. 2013. V. 79. P. 307.
- 7. Бартлетт Дж. Инфекции дыхательных путей / Пер. с англ. М.: Бином, 2000. С. 192.
- Зайцев А.А., Клочков О.И., Миронов М.Б. и др. Острые респираторные вирусные инфекции: этиология, диагностика, лечение и профилактика / Пособие для врачей. Москва, 2008. С. 37.
- 9. *Биличенко Т.Н., Чучалин А.Г.* // Терапевт. арх. Т. 90. № 1. С. 22.
- 10. Woods J.B. // Biol. Weapons Def. N.J. 2005. P. 285.
- 11. *Fluit A.C., Visser M.R., Schmitz F.* // Clin. Microbiol. Rev. 2001. V. 14. № 4. P. 836.
- Yim G., Wang H.H., Davies J. // Phil. Trans. R. Soc. B. 2007. V. 362. P. 1195.
- 13. Белобородов В.Б. // Con. Med. 2004. V. 6. № 1. Р. 18.
- 14. Каркищенко Н.Н. // Биомедицина. 2009. № 1. С. 5.
- 15. Бабушкина И.В., Бородулин В.Б., Коршунов Г.В. и др. // Сарат. науч.-мед. журн. 2010. Т. 6, № 1. С. 11.
- Зотова Е.С. // Дис. ... канд. техн. наук: 05.02.01. М.: Моск. гос. вечер. металлург. ин-т, 2008. 114 с.
- 17. *Yin M., Wu C.K., Lou Y. et al.* // J. Am. Chem. Soc. 2005. V. 127. № 26. P. 9506.
- Reisse J., Francois H., Vandercammen J. et al. // Electrochim. Acta. 1994. № 39. P. 37.
- 19. *Ероклинцев В.Н., Лукьянова В.О.* // Тенд. развития науки и образования. 2017. № 28-2. С. 17.
- 20. Бабушкина И.В., Бородулин В.Б., Коршунов Г.В. // Клин. лаб. диагностика. 2008. № 9. С. 85.
- 21. Бабушкина И.В., Бородулин В.Б., Коршунов Г.В. и др. // Сарат. науч.-мед. журн. 2010. Т. 6. № 1. С. 11.
- 22. Makarova I.V., Kharitonov D.S., Dobryden' I.B. et al. // Russ. J. Appl. Chem. 2018. V. 91. P. 1441.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ

- 23. *Makarova I., Dobryden' I., Kharitonov D. et al.* // Surf. Coat. Technol. 2019. V. 380. P. 125063.
- 24. Пянко А.В., Макарова И.В., Харитонов Д.С. и др. // Неорг. матер. 2019. Т. 55. № 6. С. 609.
- Kuznetsov B.V., Vorobyova T.N., Glibin V.P. // Met. Finish. 2013. V. 111. № 3. P. 38.
- 26. Шеханов Р.Ф. // Изв. вузов. Химия и хим. технология. 2017. Т. 60. № 10. С. 75.
- 27. Wagner V. Übersichtsstudie Wasserknappheit & Technologie. Dusseldorf, 2004. P. 194.
- 28. Park N.-G., Van de Lagemaat J., Frank A.J. // J. Phys. Chem. 2000. V. 104. № 38. P. 8989.
- 29. Smestad G., Bignozzi C., Smestad R.A. // Sol. Energy Mater. Sol. Cells. 1994. V. 32. Iss. 3. P. 259.
- Mills A., Le Hunte S. // J. Photochem. Photobiol. A Chem. 1997. 108. P. 1.
- 31. *Kikuchi Y., Sunada K., Iyoda T. et al.* // J. Photochem. Photobiol. A Chem. 1997. V. 106. P. 51.
- Hoffmann M.R., Martin S.T., Choi W. et al. // Chem. Rev. 1995. V. 95. P. 69.
- 33. *Matsunaga T., Tomoda R., Nakajima T. et al.* // Appl. Environ. Microbiol. 1988. V. 54. P. 1330.
- 34. Woods J.B. // Biol. Weapons Def. N.J. 2005. P. 285.
- Fluit A.C., Visser M.R., Schmitz F. // Clin. Microbiol. Rev. 2001. V. 14. № 4. P. 836.
- Ollis D.F., Al-Ekabi H. // Open J. Inorg. Chem. 1993. P. 511.
- Xu M., Huang N., Xiao Z. et al. // Supramol. Sci. 1998.
 № 5. P. 449.
- 38. Freitas R.A., Jr. // Int. J. Surg. 2005. № 3. P. 243.
- Murashkevich A.N., Alisienok O.A., Zharskiy I.M. et al. // J. Sol-Gel Sci. Technol. 2019. V. 92. P. 254.
- Kutuzau M., Shumskaya A., Kaniukov E. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2019. V. 460. P. 212.

- Murashkevich A.N., Chechura K.M., Novitskaya M.S. et al. // Inorg Mater. 2018. V. 54. P. 1223.
- 42. Кузьмичева Г.М., Савинкина Е.В., Оболенская Л.Н. и др. // Кристаллография. 2010. Т. 55. № 5. С. 919.
- 43. *Ismagilov Z.R., Tsikoza L.T., Shikina N.V. et al.* // Russ. Chem. Rev. 2009. V. 78. P. 873.
- 44. Герасименко Ю.В., Логачева В.А., Ховив А.М. // Конденсированные среды и межфазные границы. 2010. Т. 12. № 2. С. 113.
- 45. *Kim B., Kim D., Cho D. et al.* // Chemosphere. 2003. V. 52. P. 277.
- 46. Modesa T., Scheffela B., Metznera Chr. et al. // Surf. Coat. Technol. 2005. V. 200. P. 306.
- 47. *Kleiman A., Mrquez A., Lamas D.G.* // Surf. Coat. Technol. 2007. V. 201. P. 86.
- 48. Nishimoto S., Ohtani B., Kaijiwara H. et al. // J. Chem. Soc., Faraday Trans. I. 1985. V. 81. P. 61.
- 49. Коваленко И.В., Черненко Л.В., Хайнаков С.А. и др. // Укр. хим. журн. 2008. Т. 74. № 3-4. С. 52.
- 50. *Коваленко И.В.* / Дис. ... канд. хим. наук: 02.00.01. Киев, 2009. 130 с.
- 51. *Kuznetsov B.V., Vorobyova T.N., Glibin V.P.* // Met. Finish. 2013. V. 111. № 3. P. 38.
- 52. Антихович И.В., Харитонов Д.С., Черник А.А. и др. // Журн. прикл. химии. 2017. Т. 90. № 4. С. 469.
- 53. Winiarski J., Niciejewska A., Ryl J. et al. // Materials. 2020. V. 13. P. 924.
- 54. *Wysocka I., Kowalska E., Ryl J. et al.* // Nanomaterials. 2019. V. 9. P. 1129.
- 55. *Miszczyk A., Darowicki K. //* Anti-Corros. Methods Mater. 2011. V. 58. № 1. P. 13–21.
- Rudoy V.M., Ostanin N.I., Ostanina T.N. et al. // Russ. J. Non-ferrous Metals. 2019. V. 60. P. 632–638.
- 57. Nikitin V.S., Rudoi V.M., Ostanina T.N. et al. // J. Anal. Chem. 2017. V. 72. P. 390–395.

2021

№ 1

том 57