ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ, 2021, том 57, № 2, с. 141–152

__ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ _____

УДК 541.12+536.77

ТРИ ВИДА ДВУХФАЗНЫХ ПОВЕРХНОСТНЫХ НАТЯЖЕНИЙ РАССЛАИВАЮЩИХСЯ ПАРА И ЖИДКОСТИ ВНУТРИ ЩЕЛЕВИДНОЙ ПОРЫ С ШЕРОХОВАТЫМИ СТЕНКАМИ

© 2021 г. Е. С. Зайцева¹, Ю. К. Товбин^{1, *}

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Ленинский просп., 31, Москва, 119991 Россия *e-mail: tovbinyk@mail.ru Поступила в редакцию 13.02.2020 г. После доработки 20.02.2020 г. Принята к публикации 27.02.2020 г.

Рассмотрены три вида двухфазных границ раздела: пар-жидкость, твердое тело-пар и твердое тело-жидкость, в системе "мениск пара и жидкости" внутри щелевидной поры с шероховатыми стенками. Дано унифицированное описание этих поверхностей раздела фаз на базе модели решеточного газа, которая обеспечивает равноточный расчет распределений молекул в неоднородных распределенных моделях переходных областей границ раздела. Недеформируемые стенки пор создают внешнее поле, влияющее на распределение молекул и формирующее адсорбционные пленки, обусловленные потенциалом взаимодействия адсорбат-адсорбент. Поверхностные натяжения (ПН) рассчитываются через избыток свободной энергии границы раздела фаз (по Гиббсу) на каждой из трех видов двухфазных границ раздела. ПН для границы твердое-флюид относится к поверхности, проходящей между контактирующими фазами, т.е. по связям между адсорбатом и адсорбентом. Со-химического потенциала, исключающему появление метастабильных состояний. Отличия, вносимые шероховатостью стенок, наиболее сильно наблюдаются для узких пор, и они уменьшаются по мере увеличения ширины поры. Шероховатость стенок меняет критические параметры расслаивания флюида на жидкость и пар. Рассчитанные величины ПН сопоставлены с аналогичными значениями для плоских стенок щелевидной поры. Получено, что ПН твердое-жидкость и твердое-пар близки друг к другу (их разница меньше на шероховатой поверхности, чем на плоской) и также примерно на порядок больше (по модулю) ПН жидкость-пар в центре поры. Локальные значения ПН пар-жидкость немонотонно меняются по мере удаления от стенки.

Ключевые слова: молекулярная теория, адсорбция, щелевидная пора, шероховатая стенка, расслаивание пар—жидкость, поверхностное натяжение пар—жидкость, поверхностное натяжение твердое—пар, поверхностное натяжение твердое—жидкость

DOI: 10.31857/S004418562102011X

введение

Изучение характера распределения адсорбата внутри пор адсорбента играет важную роль как в интерпретации измеряемых равновесных характеристик адсорбции, так и при изучении динамических процессов переноса адсорбата [1–12]. В порах при температурах T ниже критической температуры T_c , зависящей от характерного размера поры, происходит расслаивание флюида [6]. В таких системах отсутствует влияние сил гравитации, а роль внешних сил играют потенциалы стенок пор. В работах [6, 13, 14] было показано, что характер состояния стенок пор играет важную роль в распределении адсорбата, и, главное, влияет на критические условия расслаивания паржидкость и все термодинамические характеристики.

В работе [15] было начато детальное исследование свойств расслаивающегося флюида в узкой щелевидной поре с образованием мениска между сосуществующими фазами "пар в поре" и "жидкость в поре". В щелевидных порах критическая температура расслаивания $T_c(H)$ зависит от ширины поры H. В системе связанных щелевидных пор (при наличии химического равновесия вещества внутри всей поровой системы) форма мениска зависит от локальных свойств трех фаз. В силу эквивалентности стенок поры мениск является симметричным относительно ее плоскости в центре [6, 16, 17]. При реализации расслаивания происходит переход от двухагрегатной системы к трехагрегатной системе с формированием границы раздела фаз в виде мениска [3–6]. В работе [18] авторами были впервые рассчитаны поверхностные натяжения (ПН) трех двухфазных систем, которые реализуются в данных условиях. Это ПН на границах раздела пар—жидкость, твердое—пар и твердое—жидкость, в системе "мениск пара и жидкости" внутри щелевидной поры.

Следует подчеркнуть, что сама характеристика ПН твердое-флюид (пар или жидкость) в порах разного размера до настояшего времени практически не исследовалась. Традиционное микроскопическое описание процессов адсорбции проводится с учетом взаимодействия адсорбата со стенками поры без привлечения понятий о ПН между адсорбентом и адсорбатом — это молекулярные теории на основе атом-атомных потенциалов [6, 19–21]. Уравнения определяющие ПН твердое тело-мобильная фаза были получены в работе [22-24]. Они получены в рамках модели решеточного газа (МРГ), которая единственная позволяет рассматривать три агрегатных состояния вещества, и обеспечивает равноточный расчет распределений молекул в неоднородных распределенных моделях переходных областей границ раздела фаз [6, 25-27].

Недеформируемые стенки пор, которые являются заведомо неравновесными, создают внешнее поле, влияющее на равновесное распределение молекул и формирующее адсорбционные пленки, обусловленные потенциалом взаимодействия адсорбат-адсорбент. Обычно этот случай трактуется как формирование адсорбционной пленки адсорбата на поверхности твердого тела/адсорбента под влиянием потенциала стенки. Изменение состояния адсорбата в поре (пар или жидкость) соответственно меняет и состояние адсорбционной пленки. Состояние сосуществующих фаз "пар в поре" и "жидкость в поре" должно удовлетворять равенству химического потенциала, исключающему появление метастабильных состояний. Уравнения для локальных значений ПН пар-жидкость в сечениях пор разной геометрии, включая и щелевидные, на базе МРГ были построены в [28].

В данной работе рассмотрены вопросы расчета ПН на трех видах двухфазных границ раздела: пар—жидкость, твердое—пар и твердое—жидкость для щелевидных пор, имеющих шероховатые стенки. Этот фактор вносит изменения во все характеристики адсорбционной системы, в том числе и для всех трех ПН.

УРАВНЕНИЯ МОДЕЛИ

В МРГ объем поры разбивается на отдельные элементарные ячейки со стороной равной диаметру молекулы λ. Ячейкам присваивается по-

рядковый номер f и координаты положения поперек $1 \le h \le H$ и вдоль $1 \le q \le L$ поры, где H – ширина поры, L - длина транслируемого вдоль порыучастка (координатам (h, q) отвечает порядковый номер *f*). Внутри переходной области поры ячейка с номером f характеризуется числом связей z_{fg} с соседними ячейками д из ближайшего окружения $f, g \in G(f)$ — области вокруг центрального узла f[15]. В работе использовалась примитивная кубическая решетка с координационным числом z = 6. По одной из осей пространства типы узлов f транслируются постоянными, а по двум другим выделяется участок сечения поры шириной Н и длиной *L* с полным разбиением узлов по типам *f*. Таким образом, каждый узел f имеет два соседних узла того же типа $z_{ff} = 2$ и четыре соседних узла, различных по типу между собой и с центральным узлом $f, z_{fg} = 1, g \neq f$.

Уравнения МРГ для локальных распределений молекул в сильно неоднородных системах публиковались неоднократно [6, 13–18, 25]. Поэтому здесь упор сделан на особенностях, связанных с шероховатыми стенками поры.

Локальные плотности адсорбента *A* в переходной области шероховатой стенки между сосуществующими фазами, состоящей из к монослоев: $1 \le q \le \kappa$, определяются при фиксированных плотностях фаз θ_L^A и θ_V^A и общем для системы давлении P_A^0 по уравнениям (объемные состояния двухфазной системы находятся стандартным образом [6, 25]):

$$\beta v_0 a_q P_A = \theta_q^A \Lambda_q / (1 - \theta_q^A),$$

$$\Lambda_q = \prod_{p=q-1}^{q+1} \left[1 + t_{qp}^{AA} x_{AA} \right]^{z_{qp}},$$
(1)

где соседние монослои под номерами p = 0 и к + 1 относятся к жидкости и пару соответственно; z_{qp} – числа пар, образуемых узлом q с узлами из монослоя p на плоской решетке; t_{qp}^{AA} – это условные вероятности, рассчитываемые как $t_{qp}^{AA} = 2\theta_p^A / [\delta_{qp} + b_{qp}], \qquad \delta_{qp} = 1 + x_{AA}(1 - \theta_q^A - \theta_p^A),$ $b_{qp} = \left\{ [\delta_{qp}]^2 + 4x_{AA}\theta_q^A \theta_p^A \right\}^{1/2}, \qquad x_{AA} = \exp\{-\beta_1 \varepsilon_{AA}\} - 1.$ Ширина переходной области к является функцией от ($\beta_1 \varepsilon_{AA}$), $\beta_1 = 1/(RT_1), R$ – газовая постоянная.

Итогом первого этапа задачи является определение внутри переходной области концентрационного профиля частиц $A \left\{\theta_q^A\right\}_{q=1}^{\kappa}$ и вакансий $V \left\{\theta_q^V\right\}_{q=1}^{\kappa}$, $\theta_q^V = 1 - \theta_q^A$, а также профиль условных вероятностей $\left\{t_{qp}^{ij}\right\}_{q,p=1}^{\kappa}$, i, j = A, V, связанных друг с

другом через нормировки $\sum_{j=A,V} t_{qp}^{ij} = \theta_q^i$ и соотношения $\theta_q^i t_{qp}^{ij} = \theta_p^j t_{pq}^{ji}$.

Данные функции позволяют определить структуру адсорбента А с неоднородной поверхностью. Для этого вводятся вероятности того, что узел из монослоя q свободен для адсорбции и в его ближайшем окружении имеется $\{m_{qp}\}$ частиц ад-сорбента в соседних монослоях $p = q, q \pm 1$, $\Theta_q^V(\{m_{qp}\}),$ и вероятности того, что пара соседних узлов из монослоев q и h свободны для адсорбции и в их ближайшем окружении имеется {*m*} частиц адсорбента в соседних монослоях $p = q, q \pm 1$ и k = h, $h \pm 1, \Theta_{qh}^{VV}(\{m\})$ [29, 30]. Они описывают структуру шероховатой поверхности капли и зависят от ее радиуса и температуры, при которой она была получена. Функции $\Theta_q^V(\{m_{qp}\})$ и $\Theta_{qh}^{VV}(\{m\})$ описывают полное распределение узлов, доступных для адсорбции В, по их положению в пространстве и относительно частиц А, но не учитывают распределения по типам окружающих центральный узел других доступных для адсорбции В узлов.

В данной работе, чтобы сократить размерность решаемой задачи, будем использовать усредненную модель по константе Генри внутри каждого монослоя [30]. В этой модели шероховатой поверхности капли каждый тип узла, доступный для адсорбции, определяется только номером монослоя q, который однозначно задает множество чисел A в окружении узла по монослоям $\{\hat{m}_{qp}\}$, усредненных по монослою q для каждого соседа p в отдельности:

$$\hat{m}_{qp} = \sum_{\{m_{qp}\}} m_{qp} \Theta_q \left(\{m_{qp}\}\right) / \sum_q \sum_{\{m_{qp}\}} \Theta_q \left(\{m_{qp}\}\right).$$
(2)

При переходе к задаче на адсорбцию молекул *B* на шероховатой поверхности *A* в щелевидной поре полученные значения $\{\hat{m}_{qp}\}$ входят в выражение на связь локальных числовых плотностей θ_q^B адсорбата *B* в монослоях $q \leq H/2$ с давлением P^B газа *B* следующими уравнениями

$$a_{0}P^{B} = \frac{\theta_{q}^{B}}{1 - \theta_{q}^{B}} \frac{\prod_{p} \left[1 + t_{qp}^{BB} x_{BB} \right]^{z_{qp} - \hat{m}_{qp}}}{\exp\{\beta_{2}Q_{q}\}},$$
(3)

где $Q_q = \varepsilon_{BA} \sum_{p=q-1}^{q+1} \hat{m}_{qp}$; t_{qp}^{BB} — это условные вероятности, рассчитываемые по аналогии с t_{qp}^{AA} .

Число уравнений (3) равно числу монослоев в щелевидной поре, имеющих разное расположение относительно стенок пор, $1 \le q \le H/2$. Из них независимых уравнений (H/2 - 1). Неизвестными

в уравнениях (3) являются локальные числовые плотности θ_q , сумма которых с учетом их равных весов монослоев на плоской решетке дает среднюю числовую плотность *B* в поре: $\hat{\theta}^B = \frac{2}{H} \sum_{q=1}^{H/2} \theta_q^B$. Данный материальный баланс замыкает систему уравнений (3). Таким образом, всего независимых уравнений в системе *H*/2.

Поверхностное натяжение. ПН рассчитываются через избыток свободной энергии границы раздела фаз (по Гиббсу) на каждой из трех видах двухфазных границ раздела. Для границы твердое – флюид в литературе очень часто допускается [31], что разделяющая поверхность находится между атомами твердого тела и первым монослоем флюида, т.е. разделяющая поверхностность относится к поверхности, проходящей между контактирующими фазами. В этом случае ПН запишется как [18]:

$$\sigma A = \sum_{h=1}^{H/2} \left[\mu_{h,q}^{V} - \mu_{H/2,q}^{V} \right], \tag{4}$$

где A — площадь единичной поверхности; у функции $\mu_{h,q}^V$ индекс q = 1 для границы твердое тело жидкость и q = L для границы твердое тело—пар и

$$\mu_{h,q}^{V} = \mu_{f}^{V} = -\beta^{-1} \ln \theta_{f}^{V} - \frac{1}{2}\beta^{-1} \sum_{g \in G(f)} \ln \left(\frac{\theta_{fg}^{VV}}{\theta_{f}^{V} \theta_{g}^{V}}\right).$$
(5)

При таком определении ПН весь концентрационный профиль флюида дает вклад в адсорбционный избыток, определяющий величину ПН.

Выражение на локальное значение ПН паржидкость σ_h в монослое *h* параллельном поверхности стенки поры имеет вид [28]:

$$\sigma_h A = \sum_{q=2}^{\rho_h} \left[\mu_{h,q}^V - \mu_{h,1}^V \right] + \sum_{h=\rho_h+1}^{L-1} \left[\mu_{h,q}^V - \mu_{h,L}^V \right], \quad (6)$$

где ρ_h — положение эквимолекулярной границы в монослое *h*.

За границу раздела фаз принимается традиционная для термодинамики эквимолекулярная поверхность [27, 31], которая строится на основе профилей плотностей $\{\theta_f^A\}$ в переходной области щелевидной поры [28]. Положение каждой точки ρ_h эквимолекулярной поверхности определяется по материальному балансу в монослое *h*:

$$\sum_{q=1}^{p_h} F_{q|h}(\theta_{h,1} - \theta_{h,q}) = \sum_{q=p_h+1}^{L} F_{q|h}(\theta_{h,q} - \theta_{h,L}),$$
(7)

где $F_{q|h}$ – доля узлов q в монослое h, $\theta_{h,q}$ – плотность в ячейке с координатами (h,q).

Усредненное по ширине поры значение ПН жидкость—пар будет равно [18]:

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 57 № 2 2021

Рис. 1. Вероятность P_h образования в переходной области между фазами столбика высотой h и среднее число адцентров S_h на столбике высотой h.

$$\sigma_{lv} = \sum_{h=1}^{H/2} F_h \sigma_h, \qquad (8)$$

где F_h — доля узлов в монослое h от общего числа узлов в поре.

Шероховатая поверхность. В переходной области на поверхности твердого тела А образуются столбцы разной высоты $h, 1 \le h \le \kappa$. Вероятность образования столбца высотой h составляет [32]:

$$P_{h} = \theta_{1}^{A} \prod_{q=1}^{h-1} t_{qq+1}^{AA} t_{hh+1}^{AV} \prod_{q=h+1}^{\kappa-1} t_{qq+1}^{VV}, \qquad (9)$$

где первый множитель θ_1^A определяет вероятность, что в первом монослое переходной области q = 1, т.е. в основании столбца, есть частица A; следующий знак произведения дает вероятность того, что и на всех узлах выше основания столбца вплоть до q = h также находится частица A; множитель t_{hh+1}^{AV} и последующий знак произведения определяют вероятность того, что на всех узлах выше монослоя q = h располагаются вакансии.

Среднее число адцентров на столбце высотой *h* в переходной области шириной к составляет:

$$S_h = \sum_{q=1}^h z_{qq} t_{qq}^{AV} + 1, \tag{10}$$

где знак суммы дает сумму вероятностей того, что на площадке из монослоя q столбика высотой hрасполагается вакансия, т.е. она доступна для адсорбции; единица в конце выражения (10) дает еще один адцентр на вершине столбца, вероятность свободы которого от частиц A задается в общей вероятности столбца высотой h, P_h .

Степень шероховатости на плоской поверхности зависит от температуры образования T_1 , которую будем задавать величиной $\beta_1 \varepsilon_{AA}$. На рис. 1 показаны зависимости от высоты столбика *h* в перехолной области шероховатой поверхности вероятности его образования P_h (рис. 1a) и среднее число адцентров S_h (рис. 16) на столбике при соотношении энергии взаимодействия ε_{AA} и температуры T_1 : $\beta_1 \epsilon_{AA} = 2.16$ (кривая 1), 1.98 (2), 1.83 (3) и 1.7 (4). Увеличение температуры увеличивает ширину переходной области А: кривая 1 определена в области трех монослоев, кривые 2 и 3 – в области 4-х, а кривая 4 – в области 5-и. Рисунок 1а показывает, что для шероховатости в 3 монослоях $(\kappa = 3)$ (кривая *1* на рис. 1а) наиболее вероятно образование столбиков с высотой h = 3, для $\kappa = 4$ (кривые 2 и 3 на рис. 1а) – с высотой *h* = 2, а для $\kappa = 5$ (кривая 4 на рис. 1а) — практически равновероятны столбики высотой h = 2 и 3. Высота h = 1для всех вариантов наименее вероятна. Наибольшие высоты $h = \kappa$ также маловероятны, так как мала вероятность наличия частиц А в монослоях переходной области со стороны пара.

Рисунок 16 демонстрирует увеличение среднего числа адцентров S_h на столбике с ростом его высоты *h*. Согласно рис. 16 рост температуры с ростом ширины переходной области в несколько раз меняет величину S_h столбиков разной высоты *h*, при этом S_h может как увеличиваться, так и уменьшаться, а при постоянной ширине переходной области (кривые 2 и 3 на рис. 16) уменьшается S_h только у высоких столбиков, а у маленьких увеличивается.

В целом по переходной области поверхность адсорбции будем характеризовать через числа адцентров S_n на поверхности адсорбента, приходящиеся на единицу поверхности раздела фаз (полная формула приведена в [32]). Ниже в табл. 1 приведены значения S_n для рассмотренных на рис. 1 величин $\beta_1 \varepsilon_{AA}$ и значения ПН жидкость—твердое тело σ_{st} в поре ши-

$\beta_1 \epsilon_{AA}$	2.16	1.98	1.83	1.7	Гладкая
S _n	8.5	10.5	11.6	15.6	1.0
σ_{sl}	-71.8	-50.5	-98.1	-49.3	-60.0
$\sigma_{_{SV}}$	-71.2	-50.4	-97.5	-49.2	-59.4

Таблица 1. Зависимость ПН на границе с твердым телом от степени шероховатости поверхности стенок пор

риной H = 60 с шероховатыми стенками, полученными при соответствующей температуре, с энергией $\varepsilon_{BA} = 1.83$. В последнем столбце для сравнения приведены значения S_n , σ_{sl} и σ_{sv} для гладкой поверхности пор шириной H = 60 и потенциалом $Q_{h=1} = 5$.

Таблица 1 показывает, что с ростом температуры образования шероховатой поверхности $\beta_1 \epsilon_{AA}$ увеличивается число адцентров S_n вследствие роста пористости структуры: с ростом температуры в 1.3 раза от $\beta_1 \epsilon_{AA} = 2.16$ до 1.7 число адцентров возросло почти в два раза. Значения ПН на границе с твердым телом имеют близкие значения как для жидкости, σ_{sl} , так и для пара, σ_{sv} , для всех рассмотренных случаев.

Согласно табл. 1 рост температуры T_1 с ростом ширины переходной области заметно уменьшает по модулю значения ПН с твердым телом, а при постоянной ширине переходной области (при $\beta_1 \varepsilon_{AA} = 1.98$ и 1.83 имеем общее значение $\kappa = 4$) увеличивает по модулю σ_{sl} и σ_{sv} . Значения ПН с гладкой поверхностью стенок попадают в область значений, которые охватывают σ_{sl} и σ_{sv} для шероховатой поверхности при вариации температуры T_1 , и относительно близки к значениям σ_{sl} и σ_{sv} для варианта шероховатой поверхности при $\beta_1 \varepsilon_{AA} = 1.98$, результаты которого далее будут подробно рассмотрены и сопоставлены с результатами для гладкой поверхности с $Q_{h=1} = 5$.

УСЛОВИЯ РАСЧЕТА

Пусть шероховатая поверхность стенок щелевидной поры состоит из вещества A, взаимодействия частиц AA описываются энергетическим параметром ε_{AA} . Молекулярные распределения Aшероховатости рассчитываются как равновесные распределения при температуры T_1 , которую будем задавать величиной $\beta_1 \varepsilon_{AA}$. Степень шероховатости на поверхности описывается следующими величинами: вероятностями образования в области шероховатости шириной к столбика высотой h, P_h , и числом адцентров S_h на столбике высотой h и числом адцентров S_n на поверхности, приходящимся на единицу поверхности раздела фаз.

Рассматривается равновесное распределение атомов аргона (частиц *B*) в паро-жидкостном равновесии внутри щелевидной поры (образованной

частицами A) шириной H с шероховатой структурой на стенках поры шириной κ , включенной в общую ширину поры H (тогда ширина центральной области поры, свободной от частиц A составляет ($H - 2\kappa$)). Частицы адсорбента A взаимодействуют с адсорбатом B только в первой координационной сфере с энергией ε_{AB} . Пусть температура адсорбции в системе $T_2 = 126$ К, это относительная высокая температура, но вне критической области расслаивания.

Исследуется влияние температуры образования шероховатости $\beta_1 \varepsilon_{AA}$ на степень шероховатости и на значения ПН на трех типах границ. Проводится варьирование ширины поры *H* для определения влияния ограниченности системы на критические параметры флюида в поре и значения ПН на трех типах границ. Также варьируется энергия взаимодействия адсорбента с адсорбатом ε_{BA} с целью выявления влияния природы стенок поры на значения ПН на трех типах границ.

Результаты сопоставлены с ранее полученными результатами [15] для аналогичной задачи в щелевидной поре с гладкими стенками поры с потенциалом в первом монослое, примыкающем к стенке, $Q_{h=1}$ и в последующих монослоях вплоть до монослоя $h^* = 9 : Q_{2 \le h \le h^*} = Q_{h = 1}/h^3$, $Q_{h > h^*} = 0$ [15]. Сравнение проводится между гладкими стенками с потенциалом $Q_{h=1}$ и шероховатыми стенками с такой величиной энергии ε_{BA} , которая давала бы ту же плотность в первом монослое при стенке, что и задаваемая $Q_{h=1}$ для плоских стенок: для $Q_{h=1} = 3, 4, 5, 7$ и 9.24 имеем $\varepsilon_{BA} = 1.40, 1.60, 1.83, 2.09$ и 2.40 соответственно. Потенциалы Q_h и энергия взаимодействия адсорбента с адсорбатом ε_{BA} задаются, будучи нормированными на энергию взаимодействия адсорбата ε_{*вв*}.

В табл. 2 приведены критические температура T_{cr} , давление P_{cr} и плотность θ_{cr} флюида в поре с шероховатыми стенками с $\varepsilon_{BA} = 1.83$ и в скобках к ним значения критических параметров для плоских стенок с $Q_{h=1} = 5$ при варьировании ширины поры *H*. Значения критических параметров T_{cr} , P_{cr} и θ_{cr} нормированы на аналогичные критические

параметры газа в объеме T_{cr}^0 , P_{cr}^0 и θ_{cr}^0 .

С уменьшением ширины поры *H* критические давление и температура убывают, а критическая

Н	30	40	60	100	160
T_{cr}/T_{cr}^0	0.9866 (0.9809)	0.9925 (0.9902)	0.9967 (0.9961)	0.9988 (0.9987)	0.9992 (0.9994)
P_{cr}/P_{cr}^0	0.9638 (0.9484)	0.9803 (0.9741)	0.9916 (0.9899)	0.9970 (0.9967)	0.9981 (0.9986)
$\theta_{cr} / \theta_{cr}^0$	1.230 (1.340)	1.192 (1.280)	1.146 (1.208)	1.102 (1.142)	1.078 (1.102)

Таблица 2. Критические параметры флюида в щелевидной поре с шероховатыми и гладкими (указано в скобках) стенками

плотность растет вследствие уменьшения объема системы, причем, чем меньше ширина поры *H*, тем больше разница между критическими параметрами флюида в порах с шероховатыми и плоскими стенками, так как увеличивается доля пристеночных областей и растет влияние стенок на физико-химические свойства флюида в поре.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Анализ молекулярных распределений флюида В в щелевидной поре А позволил выделить следующую типовую структуру фазовых состояний адсорбата внутри щелевидной поры. С учетом пленки адсорбата у стенок поры вся рассматриваемая область пространства внутри поры разбивается на следующие области (см. рис. 2): в центре поры (1) жидкость и (2) пар и (3) переходная область между ними жидкость-пар; у стенок поры переходная область (4) жидкость-твердое тело и (5) партвердое тело; и между ними область трех фаз (6) жидкость-пар-твердое тело. Выделение двухфазных областей осуществляется на основе значений ширины переходных областей жидкостьтвердое тело κ_{liq} , пар-твердое тело κ_{vap} и жидкость-пар L. Структура областей подобна структуре в случае пор с плоскими стенками, рассмотренных в [15].

На рис. 2 жирные линии ограничивают фазы жидкость и пар в поре от переходных областей

Рис. 2. Области фаз в щелевидной поре и переходные области между сосуществующими фазами и стенкой.

между фазами. Пунктирные линии — эквимолекулярные поверхности раздела фаз. Точки *A** и *B** точки на пересечении с переходными областями границ областей пара и жидкости соответственно (эти точки соединены жирной линией). Отрезок *AB* построен по эквимолекулярным границам пар—твердое тело и жидкость—твердое тело, проходящим через точки *A* и *B* соответственно.

Каждая из границ раздела характеризуется постоянным значением ширины переходной области, в которых имеется градиент плотности между соседними фазами: жидкость—пар, твердое—жидкость и твердое—пар. Критерием на выделение отдельных двухфазных областей является информация о постоянстве ширины переходных областей, рассчитываемая с заданной точностью [15]. Изменение величины ширины переходной области указывает на смещение вглубь трехфазного контакта. Интерполяция границ твердого тела с жидкостью (точка *B** на рис. 2) к пару (точка *A** на рис. 2) отделяет область жидкость—пар от области трех фаз жидкость—пар—твердое.

Для иллюстрации различий между строго равновесными и неравновесными концентрационными профилями на рис. 3 приведены профили плотности вблизи плоской границы раздел: кривая 1 – профиль плотностей в переходной области жидкость—пар при температуре, близкой к тройной точке; кривая 2 – профиль плотностей в переходной области твердое тело—пар при температуре, близкой к тройной точке; кривая 3 – профиль плотностей в переходной области от гладкой стенки с потенциалом $Q_{h=1} = 5$ к пару; кривые 4 и 5 – профили плотностей в переходной области от шероховатой стенки с $\varepsilon_{BA} = 1.83$ и 2.40 соответственно к пару.

Концентрационные профили *1* и *2*, построенные при равновесных условиях, имеют симметричный вид с большим градиентом плотности в центре переходной области и с пологими участками вблизи фаз. На кривой *3*, построенной при неравновесных условиях, обусловленных большим потенциалом стенки $Q_{h=1} = 5$, отсутствует пологий участок на концентрационном профиле со стороны плотной фазы — вместо него участок с существенным градиентом плотности, идущим от стенки. Происходит это потому, что первый мо-

Рис. 3. Равновесные и неравновесные концентрационные профили.

Рис. 4. Зависимость ПН твердое тело-жидкость и твердое тело-пар (а) от потенциала стенки поры $Q_{h=1}$ и (б) от ширины поры H.

нослой q = 1 (пристеночный), контактируя со стенкой адсорбента, практически полностью заполняется адсорбатом, т.е. высокая плотность обусловлена исключительно действием потенциала стенки, в последующих монослоях $2 \le q \le 3$, где потенциал поля стенки существенно ниже, плотность быстро снижается до значений в монослоях $3 \le q \le 6$, определяемых уже, кроме слабого потенциала стенки, также и температурой адсорбции T_2 . Однако на кривых 4 и 5, построенных также при неравновесных условиях с шероховатыми стенками с $\varepsilon_{BA} = 1.83$ и 2.40, снова имеется пологий участок со стороны плотной фазы, так как в первых поверхностных монослоях $q \leq \kappa$ наблюдается высокая концентрация частиц адсорбента, создающих сильное потенциальное поле в монослоях таким образом, что частицы адсорбата с высокой вероятностью встраиваются в решетку адсорбента, далее за пределами шероховатости $q > \kappa$ действие потенциала адсорбента отсутствует, и плотность флюида постепенно снижается до парожидкостного равновесия.

Кривая *3* (плоские стенки с $Q_{h=1} = 5$) и кривая *4* (шероховатые стенки с $\varepsilon_{BA} = 1.83$) имеют одинаковые плотности адсорбата в первом монослое. Сравнение показывает, что у шероховатой стенки (кривая *4*) высокая плотность, близкая к единице, сохраняется дольше, примерно в области *q* < 4, чем у гладкой поверхности (кривая *3*), где плотность после первого монослоя сразу идет на снижение. В последующих монослоях плотность флюида в поре с шероховатыми стенками (кривая *4*) быстро снижается в то время, как в поре с гладкими стенками плотность флюида поддерживается на уровне примерно $\theta_q = 0.9$, благодаря дальнему действию потенциала поля $h^* = 9$.

На рис. 4 представлены графики по зависимости ПН аргона на границе жидкости σ_{sl} (кривые *1* и *3*) и пара σ_{sv} (кривые *2* и *4*) с твердым телом (а) от потенциала стенки $Q_{h=1}$ щелевидной поры шириной H = 60 и (б) от ширины щелевидной поры *H* с потенциалом стенки $Q_{h=1} = 5$. Кривые *1* и *2* построены для плоских стенок, а кривые *3* и *4* построены для шероховатых стенок. Для шерохо-

Рис. 5. Зависимость разницы между ПН твердое тело-жидкость и ПН твердое тело-пар (а) от потенциала стенки поры $Q_{h=1}$ и (б) от ширины поры *H*.

ватых стенок принимались такие величины ε_{BA} , которые давали бы ту же плотность в первом монослое при стенке, что и задаваемая $Q_{h=1}$ для плоских стенок: для $Q_{h=1} = 3, 4, 5, 7$ и 9.24 имеем $\varepsilon_{BA} = 1.40, 1.60, 1.83, 2.09$ и 2.40 соответственно.

Согласно рис. 4а разница между значениями ПН твердое тело-жидкость и твердое тело-пар практически не меняется с вариацией єв_А для шероховатой поверхности (кривые 3 и 4) и $Q_{h=1}$ для гладкой поверхности (кривые 1 и 2), и согласно табл. 1, где представлены численные значения σ_{sl} и о_м разница составляет 0.1% для шероховатой поверхности и 1.0% для гладкой поверхности. С уменьшением взаимодействия адсорбента с адсорбатом значения σ_{st} и σ_{sy} для гладкой поверхности (кривые 1 и 2) монотонно возрастают, а для шероховатой поверхности (кривые 3 и 4) на фоне общего возрастания ПН имеется скачек между $\varepsilon_{BA} = 1.60 \; (\dot{Q}_{h=1} = 4)$ и $\varepsilon_{BA} = 1.83 \; (Q_{h=1} = 5),$ являющийся результатом молекулярных перераспределений адсорбата В с уменьшением ширины переходной области твердое тело-флюид κ_{liq} и κ_{vap} .

Рисунок 46 демонстрирует монотонное убывание значений ПН на границе с твердым телом как жидкости σ_{sl} (кривые $l \, u \, 3$), так и пара σ_{sv} (кривые 2 и 4) для шероховатой (кривые $3 \, u \, 4$) и гладкой поверхностей (кривые $l \, u \, 2$) с ростом ширины поры H. При этом разница между σ_{sl} и σ_{sv} сокращается от 0.3% при H = 30 до 0% при H = 160 для шероховатой поверхности (кривые $3 \, u \, 4$) и для гладкой поверхности (кривые $1 \, u \, 2$) от 3.4% при H = 30 до 0.3% при H = 160. В целом, для шероховатой поверхности получены более близкие и высокие значения σ_{sl} и σ_{sv} чем для гладкой поверхности.

Подробно соотношение между ПН твердое тело-жидкость и твердое тело-пар рассмотрено на рис. 5, где разница между этими значениями дана как функция от $Q_{h=1}$ (рис. 5а) при H = 60 и как функция от H (рис. 5б) при $Q_{h=1} = 5$. Кривая 1 построена для плоских стенок, а кривая 2 построена для шероховатых стенок. Для шероховатых стенок принимались такие величины ε_{BA} , которые давали бы ту же плотность в первом монослое при стенке, что и задаваемая $Q_{h=1}$ для плоских стенок.

Рисунок 5 наглядно демонстрирует, что ПН твердое тело-пар больше ПН твердое тело-жид-кость при любых $Q_{h=1}$ и H, так как все кривые 1 и 2 лежат полностью в области положительных значений.

ПН рассчитывается с учетом ориентации сечения внутри ячейки [28]. Для этого локальное значение ПН σ_h в ячейке (h, q) нормировалось на площадь эквимолекулярной поверхности в ячейке (h, q), которая проходит в ней под углом, определяемым координатами соседних точек эквимолекулярной поверхности. На рис. 6 сравниваются профили локальных значений ПН жидкость—пар в монослоях *h* поры шириной H = 60 с корректировкой по углу наклона поверхности раздела в ячейке (кривая I u 3) и без (кривая 2 u 4) для плоских стенок при $Q_{h=1} = 5$ (кривые I u 2) и для шероховатых стенок при $\varepsilon_{BA} = 1.83$ (кривые 3 u 4).

Согласно рис. 6 корректировка по углу наклона поверхности раздела в ячейке уменьшает величину ПН жидкость—пар: кривые *1* и *3* лежат ниже кривых *2* и *4*. Существенная разница между данными кривыми на рис. 6 имеется только при достаточном отдалении как от стенки поры, так и от центра поры (где поверхность раздела фаз проходит практически перпендикулярно стенкам пор, а поэтому корреляционный коэффициент будет равен единице).

На всех кривых рис. 6 вблизи стенки, где крайне малый градиент плотности, локальные значения ПН обращаются в ноль. В промежуточной области между областью стенки (где градиент плотности практически отсутствует) и центральной областью поры (где градиент плотности име-

Рис. 6. Профиль локальных значений ПН жидкость—пар в монослоях *h* с корректировкой по углу наклона поверхности раздела в ячейке и без.

Рис. 7. Зависимость ПН жидкость—пар аргона в щелевидной поре (а) от ширины поры H и (б) от потенциала стенок поры $Q_{h=1}$.

ется только в двух направлениях между разными монослоями h) появляется максимум ПН за счет градиентов как вдоль монослоя h, так и относительно соседних монослоем $h \pm 1$. Это дает дополнительный вклад в локальное ПН, увеличивая его.

Согласно рис. 6 для шероховатой поверхности (кривые 3 и 4) максимальное ПН лежит ближе к стенке поры, чем для гладкой поверхности (кривые 1 и 2), так как мы видели на рис. 1, что резкое падение плотности для шероховатой поверхности начинается раньше, чем для плоской границы с большим дальнодействием потенциала поля $h^* = 9$.

На рис. 7 представлены графики зависимости локального ПН (кривые 1 и 3) жидкость—пар аргона в центре щелевидной поры h = H/2 и усредненного по ширине щелевидной поры значения ПН жидкость — пар аргона (кривые 2 и 4). На рис. 7а показаны зависимости от ширины поры H при $Q_{h=1} = 5$, на рис. 76 — зависимости от потенциала стенки $Q_{h=1}$ при H = 60. Кривые 1 и 2 построены для плоских стенок, а кривые 3 и 4 построена для шероховатых стенок. Для шероховатых стенок

принимались такие величины ε_{BA} , которые давали бы ту же плотность в первом монослое при стенке, что и задаваемая $Q_{h=1}$ для плоских стенок.

С ростом ширины поры H (рис. 7а) локальное значение ПН в центре поры (кривые 1 и 3) и среднее значение ПН (кривые 2 и 4) растут, при этом среднее значение ПН (кривые 2 и 4) всегда больше значения ПН в центре поры (кривые 1 и 3) вследствие возрастания значения локальных величин ПН с приближением монослоя к адсорбционной пленке. Как было показано в статье [15], с ростом ширины поры Н сначала на "объемные' значения (значения в неограниченной системе) выходит ширина переходной области жидкостьпар L, затем плотности сосуществующих фаз и, наконец, величина $\ln(a_0 P)$. Когда величина $ln(a_0 P)$ достигнет своего "объемного" значения, одновременно с ней при том же Н примет "объемное" значение и ПН жидкость-пар. В результате с увеличением Н кривые для шероховатой поверхности (кривые 3 и 4) сближаются с кривыми для гладкой поверхности (кривые 1 и 2), так как влияние структуры стенок на свойства в ценЗАЙЦЕВА, ТОВБИН

Рис. 8. Профиль локальных значений ПН жидкость-пар в монослоях h, идущих поперек поры.

тре поры (кривые 1 и 3) и на усредненные по ширине поры свойства (кривые 2 и 4) становится незначительным.

С ростом потенциала гладкой стенки поры $Q_{h=1}$ (рис. 7б) локальное значение ПН в центре поры (кривая 1) в области $Q_{h=1} < 5$ убывает, после чего резко возрастает при больших $Q_{h=1}$ из-за сильных молекулярных перераспределений в результате сильного потенциала стенок пор. При этом усредненное по ширине поры ПН на гладкой стенке (кривая 2) имеет схожее поведение с ПН в центре поры (кривая 1), отклонения от которого продиктованы вкладами от монослоев вблизи адсорбционной пленки. На кривых шероховатой поверхности (кривые 3 и 4) изменение энергии взаимодействия адсорбента с адсорбатом ε_{BA} слабее действует на свойства флюида в центре поры (кривая 3) и усредненную по ширине поры характеристику (кривая 4) вследствие того, что влияние адсорбента распространяется только на область шероховатости шириной к.

На рис. 8 показаны профили локальных значений ПН жидкость-пар в щелевидной поре с плоскими стенками (кривые 1 и 2) и шероховатыми стенками (кривые 3 и 4) при варьировании потенциала стенки $Q_{h=1} = 3$ (кривые 2 и 4) и 5 (кривые 1 и 3) при H = 60 на рис. 8а и при варьировании ширины поры H = 30 (кривые 2 и 4) и 60 (кривые 1 и 3) при $Q_{h=1} = 5$ на рис. 86.

С ростом ширины поры H (рис. 8б) и потенциала стенок поры $Q_{h=1}$ (рис. 8а) локальные значения ПН в адпленке (до максимума на кривых на рис. 8) уменьшаются, а в последующих монослоях (после максимума на кривых) локальные значения ПН наоборот увеличиваются. Так кривая 1 и 3 с наибольшими H и $Q_{h=1}$ на рис. 8а и 8б до своего максимума лежит ниже, а затем выше кривых 2 и 4. Изменение потенциала стенок пор $Q_{h=1}$ на рис. 8а практически не меняют значение ПН в центре поры: все кривые практически совпадают на правых концах. Уменьшение ширины поры на рис. 86 с H = 60 (кривые 1 и 3) до H = 30 (кривые 2 и 4) почти вдвое уменьшает значение ПН в центре поры (правая крайняя точка на кривых 2 и 4 лежит вдвое ниже, чем на кривых 1 и 3 соответственно).

ЗАКЛЮЧЕНИЕ

Рассмотрены три вида двухфазных границ раздела: пар-жидкость, твердое тело-пар и твердое тело-жидкость, в системе "мениск пара и жидкости" внутри щелевидной поры с шероховатыми стенками. Структура шероховатой поверхности рассчитывается в рамках одной из простейшей модели со средним значением ближайших соседей адсорбента внутри каждого из переходных монослоев между контактирующими фазами адсорбент-адсорбат. Рассчитаны критические параметры флюида в щелевидных порах с шероховатыми и гладкими стенками. Получено, что с уменьшением ширины поры Н критические давление и температура убывают, а критическая плотность растет вследствие уменьшения объема системы, причем, чем меньше ширина поры Н, тем больше разница между критическими параметрами флюида в порах с шероховатыми и плоскими стенками, так как увеличивается доля пристеночных областей и растет влияние стенок на физико-химические свойства флюида в поре.

Выделение трех двухфазных границ флюида в щелевидной поре и их унифицированное описание, в том числе оценка ПН на границе трех указанные выше фаз проводится на основе анализа молекулярных распределений флюида на базе МРГ, которая обеспечивает равноточный расчет распределений молекул в неоднородных распределенных моделях переходных областей границ раздела.

Получено, что рост количества адсорбционных мест на шероховатых стенках при увеличении ширины шероховатости заметно уменьшает по модулю значения ПН флюида с твердым телом, а при постоянной ширине шероховатости увеличивает по модулю значения ПН флюида с твердым телом.

Расчеты ПН на трех типах границ сопоставлены с аналогичными значениями лля плоских стенок щелевидной поры. Получено, что разница между значениями ПН твердое тело-жидкость σ_{st} и твердое тело-пар σ_{sv} практически не меняется с вариацией энергии взаимодействия с адсорбентом как для шероховатой поверхности, так и для гладкой поверхности, и разница составляет 0.1% для шероховатой поверхности и 1.0% для гладкой поверхности. При вариации ширины поры Н от 30 до 160 монослоев получено, что для шероховатой поверхности разница между σ_{sl} и σ_{sv} сокращается от 0.3% до нуля, а для гладкой поверхности от 3.4 до 0.3%. В целом, значения σ_{sl} и σ_{sv} для шероховатой поверхности более близкие между собой и высокие по модулю, чем для гладкой поверхности.

Построены размерные зависимости локальных значений ПН пар—жидкость σ_{lv} по мере удаления локального участка границы от стенок поры: с приближением к стенке ПН меняется через максимум и у стенки ПН обращается в ноль. Нулевое значение ПН у стенки следует из крайне малого градиента плотности у стенки, максимальные значения ПН в последующих монослоях связаны с наличием градиента плотности в двух направлениях в то время, как в монослоях в центре поры градиент плотности имеется только вдоль самой поры.

Получено, что с ростом ширины поры H локальное значение ПН σ_{lv} в центре поры и среднее по ширине поры значение ПН σ_{lv} растут и сближаются друг с другом, стремясь к значению σ_{lv} в объеме, как для шероховатых стенок, так и для гладких. В результате с увеличением H значения ПН σ_{lv} для шероховатой поверхности сближаются с ПН σ_{lv} для гладкой поверхности, так как влияние структуры стенок на свойства в центре поры и на усредненные по ширине поры свойства становится незначительным.

Работа выполнена при поддержке РФФИ (код проекта 18-03-00030а).

СПИСОК ЛИТЕРАТУРЫ

1. Лыков А.В. Явления переноса в капиллярно-пористых телах. М.: ГИТТЛ, 1954.

- 2. *Carman P.C.* Flow of gases through porous media. London: Butterworths, 1956.
- 3. *Хейфец Л.И., Неймарк А.В.* Многофазные процессы в пористых телах. М.: Химия, 1982. 320 с.
- 4. *Грег С., Синг К.* Адсорбция, удельная поверхность, пористость. М.: Мир, 1984.
- 5. *Тимофеев Д.П.* Кинетика адсорбции. М.: изд-во АН СССР, 1962. 252 с.
- Товбин Ю.К. Молекулярная теория адсорбции в пористых телах. М.: Физматлит, 2012 624 с. (*Tovbin Yu.K.* Molecular theory of adsorption in porous solids, CRC Press, Boca Raton, Fl, 2017.)
- Рачинский В.В. Введение в общую теорию динамики адсорбции и хроматографии. М.: Наука, 1964. 134 с.
- 8. *Радушкевич Л.В.* // Основные проблемы теории физической адсорбции. М.: Наука, 1970. 270 с.
- 9. *Чизмаджев Ю.А. и др.* Макрокинетика процессов в пористых средах. М.: Наука, 1971. 364 с.
- 10. *Саттерфильд Ч.Н.* Массопередача в гетерогенном катализе. М.: Химия, 1976, 240 с.
- 11. *Ruthven D.M.* Principles of Adsorption and Adsorption Processes. N.Y.: J. Willey & Sons, 1984.
- 12. *Мэйсон Э., Малинаускас А*. Перенос в пористых средах: модель запыленного газа. М.: Мир. 1986. 200 с.
- 13. Вотяков Е.В., Товбин Ю.К. // ЖФХ. 1994. Т. 68. № 2. С. 287.
- Товбин Ю.К., Зайцева Е.С., Рабинович А.Б. // ЖФХ. 2016. Т. 90. № 1. С. 138.
- 15. Зайцева Е.С., Товбин Ю.К. // ЖФХ. 2020. Т. 94. В печати.
- 16. *Товбин Ю.К., Рабинович А.Б.* // Докл. Акад. наук. Сер. Физич. химия. 2008. Т. 422. № 1. С. 59.
- 17. *Товбин Ю.К., Рабинович А.Б.* // Известия АН, сер. химич., 2008. № 6. С. 1118.
- 18. Зайцева Е.С., Товбин Ю.К. // ЖФХ. 2020. Т. 94. В печати.
- 19. *Steele W.A.* The Interactions of Gases with Solid Surfaces. N.Y.: Pergamon. 1974.
- 20. Авгуль Н.Н., Киселев А.В., Пошкус Д.П. Адсорбция газов и паров на однородных поверхностях. М.: Химия, 1975. 284 с.
- 21. Киселев А.В., Пошкус Д.П., Яшин Я.И. Молекулярные основы адсорбционной хроматографии. М.: Химия, 1986. 269 с.
- 22. Товбин Ю.К. // ЖФХ. 1992. Т. 66. № 5. С. 1395.
- 23. Товбин Ю.К. // ЖФХ. 2018. Т. 92. № 12. С. 1902.
- 24. Товбин Ю.К. // ЖФХ. 2019. Т. 93. № 9. С. 1311.
- Товбин Ю.К. Теория физико-химических процессов на границе газ-твердое тело. М.: Наука, 1990.
 288 с. (*Tovbin Yu.K.* Theory of physical chemistry processes at a gas-solid surface processes, CRC Press, Boca Raton, Fl, 1991.)
- 26. Товбин Ю.К. // ЖФХ. 2006. Т. 80. № 10. С. 1753.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 57 № 2 2021

ЗАЙЦЕВА, ТОВБИН

- 27. *Товбин Ю.К.* Малые системы и основы термодинамики. М.: Физматлит, 2018. 408 с. (*Tovbin Yu.K.* Small systems and fundamentals of thermodynamics, CRC Press, Boca Raton, Fl, 2018.)
- 28. *Товбин Ю.К., Еремич Д.В., Комаров В.Н., Гвоздева Е.Е. //* Химическая физика, 2007. Т. 26. № 9. С. 98.
- 29. Товбин Ю.К., Зайцева Е.С., Рабинович А.Б. // ЖФХ. 2018. Т. 92. № 3. С. 473.
- 30. Зайцева Е.С., Товбин Ю.К. // ЖФХ. 2019. Т. 93. № 4. С. 50.
- Адамсон А. Физическая химия поверхностей. М.: Мир, 1979. (Adamson A.W. Physical chemistry of surfaces. Third edition. New-York-London-Sydney-Toronto: Wiley, 1975.)
- 32. Зайцева Е.С., Товбин Ю.К. // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 5. С. 451.