_____ НАНОРАЗМЕРНЫЕ И НАНОСТРУКТУРИРОВАННЫЕ _____ Материалы и покрытия

ЭФФЕКТ ОКСИДА ЦИНКА НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЭЛАСТИЧНЫХ ПОЛИМЕРОВ

© 2021 г. Т. Р. Асламазова^{1, *}, В. А. Котенев¹, Н. Ю. Ломовская¹, В. А. Ломовской¹, А. Ю. Цивадзе¹

¹Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский просп., 31, корп. 4, Москва, 119071 Россия *e-mail: t.aslamazova@yandex.ru Поступила в редакцию 20.10.2020 г. После доработки 10.12.2020 г. Принята к публикации 12.01.2021 г.

Методом внутреннего трения исследованы области локальной неупругости в латексных эластичных полимерах, не наполненных и наполненных порошком оксида цинка в сопоставлении с металлическим цинком. Исследования проведены в широком температурном интервале от -150 до 50° С методом свободно затухающих крутильных колебаний. На спектрах внутреннего трения полимеров обнаружено несколько диссипативных потерь разной интенсивности, расположенных в разных температурных областях. Установлено снижение интенсивности процесса α -релаксации при наполнении в обоих случаях. При этом в присутствии порошка цинка обнаружено расширение области температуры стеклования за счет положительных температур, а в присутствии оксида цинка – сужение этой области – за счет низкотемпературного участка. Кроме α -релаксации, обнаружен еще один менее интенсивности. Получены температурные зависимости частоты колебательного процесса, на основании которых установлены области неупругости и их изменение при наполнении. Проведен теоретический анализ влияния наполнителей на физико-механические характеристики процессов релаксации. При отрицательных температурах выявлено несколько процессов μ -релаксации, интенсивности и иле зависимости и наполнении.

Ключевые слова: релаксация, полимер, температура стеклования, локальные диссипативные процессы, неупругость, порошок окиси цинка

DOI: 10.31857/S0044185621030062

ВВЕДЕНИЕ

Композиционные материалы обычно состоят из матрицы, армированной наполнителями. Наполнитель определяет прочность, жесткость и деформируемость материала, а матрица обеспечивает монолитность материала, передачу напряжения в наполнителе и стойкость к различным внешним воздействиям.

Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств каждого из его составляющих. Варьируя состав матрицы и наполнителя, их соотношение, ориентацию наполнителя, получают широкий спектр материалов с требуемым набором свойств. Многие композиты превосходят традиционные материалы и сплавы по своим механическим свойствам и в то же время они легче. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик. В качестве наполнителей полимерных композиционных материалов используется множество различных веществ, в т.ч. металлы, керамика, стекла, пластмассы, углерод и т.п. Нерастворимые минеральные наполнители в большинстве случаев вводятся в лакокрасочные материалы (ЛКМ) для экономии пигментов и для придания этим материалам особых свойств, например повышенной прочности, кислотостойкости, огнестойкости и т.д., т.е. несут целевую нагрузку [1].

В качестве неорганического наполнителя широко используются оксид цинка, нерастворимый в дисперсионной среде и способный образовывать с пленкообразователями защитные, декоративные и декоративно-защитные покрытия. Оксид цинка не токсичен и входит в состав многих лакокрасочных материалов как белый пигмент [1].

Интерес к оксиду цинка вызван также тем, что он является прямозонным полупроводником с шириной запрещенной зоны 3.36 эВ. Его теплопроводность составляет 54 Вт/(м К). Естественное смещение стехиометрического отношения в сторону обогащения кислородом придает ему электронный тип проводимости. При нагревании оксид цинка меняет цвет: белый при комнатной температуре, оксид цинка становится желтым. Это объясняется уменьшением ширины запрещенной зоны и сдвигом края в спектре поглощения из УФ-области в синюю область видимого спектра [2].

Актуально использование оксида цинка в качестве защиты от вредного воздействия УФ лучей. И хотя этот аспект в большей степени относится к медико-биологическим вопросам, возможно применение композиционных пленкообразующих систем с участием оксида цинка для модифицирования тканей для камуфляжей и покрытий типа "стелс", невидимых в широком диапазоне частиц [3, 4].

Как и другие цинковые неорганические пигменты, оксид цинка способствует уменьшению или предотвращению коррозии металлов. Лакокрасочное покрытие, в составе которого присутствует оксид цинка, устойчиво к воздействию влаги, а также нефтепродуктов и органических растворителей. Цинковую краску можно наносить непосредственно на ржавчину, причем без предварительной обработки металла. Такая краска обладает высокой прочностью к истиранию и повышенной стойкостью к механическим воздействиям [5–7].

Фотокаталитическая активность оксида цинка широко используется для создания самоочищающихся поверхностей, бактерицидных композиционных покрытий для стен и потолков в больницах и др. [8].

Полимерное связующее в таких композиционных составах должно отвечать ряду эксплуатационных механических и прочностных характеристик, обеспечивающих требуемое качество покрытия и снижающих отрицательный эффект минерального наполнителя на его прочность, сопровождающееся растрескиванием и отслаиванием краски от поверхностей.

Хорошо известно об использовании акрилатных полимерных материалов в качестве связующего в композиционных покрытиях. В связи с этим важным аспектом исследования и разработки новых композиционных полимерных материалов является анализ эффекта неорганического наполнителя (в частности, оксида цинка) на физико-химические свойства эластичных полимеров, введение которого может изменить его пленкообразующей способности [9].

В работах [10–13] рассматривается метод динамической механической релаксационной спектроскопии для исследования эластичных свойств алкил(мета)акриловых полимеров, в основе которого лежит анализ изменения его релаксационного поведения при введении наполнителя.

Ранее в работах [14–16] была показана возможность анализа изменения релаксационного поведения эластичных полимеров в присутствии и при введении металлических порошков железа [14, 15, 17] и цинка [18, 19] с привлечением метода динамической механической релаксационной спектроскопии [10–13]. При исследовании спектров внутреннего трения и температурной зависимости частоты колебательного процесса показано изменение температуры стеклования и неупругости полимерного материала при наполнении порошками в зависимости от эластичности и функциональности полимера.

В данной работе проводится исследование влияния оксида цинка и высокодисперсного порошка цинка на физико-механические свойства акриловых эластомеров с целью установления областей их локальной неупругости.

Для достижения поставленной цели изучено изменение интенсивности и положения максимумов диссипативных потерь процессов α -, β - и µ-релаксации, протекающих в ненаполненных и наполненных системах в интервале температур от -150 до $+50^{\circ}$ C с привлечением метода динамической механической релаксационной спектроскопии [10–13]. С учетом спектров внутреннего трения и температурной зависимости частоты колебательного процесса проведен теоретический анализ диссипативных процессов релаксации, на основе которого установлены области неупругости композитных полимеров в сопоставлении с ненаполненными полимерами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследования эффекта порошка оксида цинка на свойства полимера был использован алкил(мет)акрилатный латексный полимер с температурой стеклования ($T_{\rm cr}$) 5°С, далее именуемый как AK1. Для сопоставления с эффектом порошка металлического цинка использован карбоксилсодержащий стирол-акрилатный латексный сополимер с температурой стеклования ($T_{\rm cr}$) 10°С, далее именуемый как ЭКО1. Концентрация латексов, измеренная гравиометрически, составила ~30 и 50%, соответственно.

Средний размер частиц латексов и распределение частиц по размеру оценивали с использованием анализатора размеров частиц методом динамического рассеяния света Zeta sizer Nano-Zs (Malvern). Их размер варьируется от 10 до 100 нм.

Значение pH латексов, измеренное с использованием pH-метра MP220 (Mettler Toledo), составило примерно 7.5.

Порошок оксида цинка марки Ч ГОСТ10262-73 вводился при концентрации 1 мас. %. Размер ча-

стиц порошка оценивали на микроскопе Олимпус SZX16 с увеличением в 300 раз с фотографированием его индивидуальных частиц на фоне калибрационной решетки с шагом 10 мкм. Минимальный размер оценивается в 20 мкм с последующий их агрегацией.

Мелкозернистый порошок цинка (пудра) фирмы ООО "Индустрия" марки ПЦ1 с размером частиц от 0.1 до 8 мкм вводился при концентрации 1 мас. %. Размер частиц порошка подтвержден данными электронных микрофотографий наполненной полимерной пленки, полученной с привлечением сканирующего электронного микроскопа Quanta650.

Пленки готовили отливом до и после наполнения полимерной дисперсии на тефлоновой подложке: формирование пленок на основе ЭКО1 проводили при предварительном разбавлении латекса до концентрации латекса AK1.

Оценка модуля сдвига и дефекта модуля проведена на основе анализа температурной зависимости частоты колебательного процесса в температурном интервале от -150 до $+50^{\circ}$ С в режиме свободных затухающих крутильных колебаний на горизонтальном крутильном маятнике с привлечением метода динамической релаксационной спектроскопии [10–13].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Эффект порошка оксида цинка изучен с учетом общих представлений о релаксационной структуре полимера.

При сопоставлении микроскопических данных на рис. la и lб обнаруживается гораздо больший размер частиц оксида цинка, причем при рассмотрении его под микроскопом обнаруживается значительное стремление к агрегации частиц на поверхности подложки (в).

Известно, что особенность строения полимера обусловлена наличием двух видов структурных элементов (звеньев цепей и самих цепей), значительно различающихся подвижностью. В случае высокоэластичного полимера это проявляется в перегруппировке звеньев, т.е. изменении конформации цепей при изменении температуры. Анализ релаксационной подвижности звеньев цепей и/или самих цепей с привлечением метода релаксационной спектроскопии, основанного на анализе реакции отдельных структурно-кинетических элементов полимерных систем на внешнее воздействие, выводящее их или всю систему из состояния механического и термодинамического равновесия [20, 21], может дать представление о структуре образующихся частиц и полимера. Вследствие больших размеров подвижность полимерной цепи невелика. Поэтому изменение температуры вызывает в случае высокоэластич-

Рис. 1. Спектры внутреннего трения в полимерных композитах AK1-оксид цинка (а) и $\Im KO1$ -порошок цинка (б) в отсутствии (кривые *I*) и присутствии наполнителей: кривые *2*(1%), кривая *3*(2%).

ного полимера главным образом перегруппировку звеньев, т.е. изменение конформации цепей. Отсюда следует, что введение активных к функциональным группам полимера ингредиентов композиционной системы может вызвать изменение конформации полимерных цепей.

На рис. 1 представлены спектры внутреннего трения в области температуры стеклования при температурах -25 до 50°С в полимерах, не наполненных и наполненных порошками оксида цинка и металлического цинка. Из спектров внутреннего трения (рис. 1а, 1б) следует, что интенсивность диссипативных процессов α -релаксации в обоих случаях снижается в наполненных полимерах. Это может явиться следствием нарушения межмолекулярных связей в наполненных полимерах и образования новых релаксационных структур с участием поверхности как оксида цинка, так и металлического порошка, и поверхностных групп полимера.

Аналогичные данные были получены ранее при изучении эффекта металлических порошков железа на диссипативные процессы в высокоэластичных акриловых полимерах [14–16].

На рис. 1а видно сужение области температуры стеклования AK1 за счет низкотемпературного участка от -15 до 3°C и незначительное повышение температуры T_g в ряду 11.2; 12.0 и 11.4°C,

соответствующей наполнению оксидом цинка в ряду 0; 1 и 2%. Столь незначительное увеличение температуры стеклования $T_{\rm g}$ можно связать с высокой эластичностью полимера, которая в некоторой степени компенсирует эффект нарушения межмолекулярных связей в присутствии наполнителя при температурах от 3 до 25°С. Даже столь слабое увеличение температуры стеклования $T_{\rm g}$ свидетельствует о снижении температуры стеклования $T_{\rm g}$ свидетельствует о снижении немпературы стеклования наполния.

В случае высокоэластичного полимера AK1 обнаружен процесс β -релаксации в узком температурном интервале, при температурах от -6 до 3°C обусловленный сегментальной подвижностью макроцепей высокоэластичного полимера. При наполнении полимера оксидом цинка интенсивность процесса β -релаксации снижается, сдвигаясь в область положительных температур от -2 до 4°C, что подтверждает нарушение межсегментального взаимодействия макромолекул.

Как следует из рис. 16, в присутствии порошка цинка наблюдается очевидное расширение области эластичности полимера в направлении положительных температур. При наполнении системы наблюдается ощутимое смещение температуры стеклования от 14.6 до 19.6°С, свидетельствуя о увеличении области неупругости (эластичности) полимера ЭКО1 в присутствии порошка цинка. Увеличение температуры стеклования можно связать с возникновением релаксационных структур в результате взаимодействия карбоксильных групп полимера и поверхностных групп окисной пленки высокодисперсных порошков металла [14, 16–18].

Аналогичное смещение области температуры стеклования на спектрах внутреннего трения акрилатных полимеров при наполнении системы высокодисперсным порошком железа в высокотемпературную область обнаружено в работах [14, 15, 17].

Таким образом, основываясь на экспериментальных данных можно говорить о различном механизме взаимодействий в системе полимер-наполнитель, соответствующим формированию новых релаксационных структур на основе взаимодействия компонентов композита, с одной стороны, и с другой, нарушения межмолекулярных взаимодействий в полимере. При наполнении эластичных полимеров оксидом цинка и высокодисперсным металлическим цинком удается обнаружить особенности эффектов в обоих случаях.

На спектрах внутреннего трения в области температур выше температуры стеклования T_g характер зависимостей различается в присутствии оксида цинка и порошка цинка. Это проявляется в виде максимумов локальных локальных диссипативных процессов релаксации в случае оксида

цинка и их отсутствии — в случае металлического порошка. Природа локальных процессов при этих температурах в настоящее время недостаточно изучена. Однако наблюдаемые на спектре максимумы в присутствии оксида цинка (кривая *3*) подтверждают возможность нарушения межмолекулярных взаимодействий в этом случае, сопровождающееся формированием другой релаксационной структуры.

Таким образом в области температур стеклования от -25 до 50° С различие в механизме взаимодействия поверхностей оксида цинка и металлического наполнителя проявляется в особенностях протекания диссипативных процессов α - и β -релаксации.

На рис. 2а, 2в представлены температурные зависимости частоты колебательного процесса свободных затухающих крутильных колебаний в полимерах AK1 и ЭКО1, не наполненных и наполненных оксидом цинка и порошком цинка, при температурах от -50 до 50° C.

Из рис. 2 следует, что диссипативный процесс внутреннего трения в ненаполненных и наполненных полимерах имеет релаксационный механизм, о чем свидетельствует резкое падение модуля сдвига G в обоих случаях. Резкое падение модуля сдвига G в области температуры стеклования, так называемый дефект модуля материала ΔG [5– 7], характеризует степень неупругости полимера.

Так как модуль сдвига системы $G = \rho v^2 (\rho - плотность полимерной системы), то можно сопо$ ставить величину модуля для ненаполненных(кривые*I*) и наполненных систем (кривые*2*,*3*).С повышением температуры вплоть до температуры стеклования, соответствующей процессу $<math>\alpha$ -релаксации, имеет место резкое снижение модуля сдвига, указывающее на разрушение сшивки релаксационной структуры и существенное изменение дефекта модуля ΔG , который оценивается по отрезку, отсекаемому касательными к кривой температурной зависимости частоты колебательного процесса.

Наличие дефекта модуля ΔG проявляется в виде резкого скачкообразного снижения модуля сдвига при повышении температуры исследуемой латексной полимерной системы. Величина дефекта модуля ΔG позволяет характеризовать упругие свойства системы. При меньших значениях ΔG полимерная система характеризуется более высокими упругими свойствами, соответствуя уменьшению диссипативных потерь на спектре внутреннего трения.

В качестве примера на рис. 26, 2г представлена оценка дефекта модуля ΔG по отрезку, отсекаемому касательными к кривой зависимости при более детальном масштабировании ординаты частоты. Величина ΔG пропорциональна соотношению $(v_2 - v_1)/(T_2 - T_1)$, где v_1, v_2 – значения ча-

Рис. 2. Температурно-частотные зависимости в полимерных композитах AK1—оксид цинка (а, б) и $\Im KO1$ —порошок цинка (в, г) в отсутствии (кривые *1*) и присутствии наполнителей: кривые *2* (1%), кривая *3* (2%).

стоты колебательного процесса, соответствующие окончанию и началу спада кривых зависимости при температурах T_1 и T_2 .

Как следует из рис. 2г, дефект модуля наполненного высокодисперсным порошком цинка полимера ЭКО1 ΔG_2 (кривые 2) несколько ниже, чем ненаполненного полимера ΔG_1 (кривые 1). С учетом экспериментальных данных о соотношении $\Delta v/\Delta T$ установлено, что снижение дефекта модуля полимера ΔG пропорционально в ряду: ненаполненный полимер – полимер с порошком цинка примерно в соотношении 0.45 : 0.31 соответственно.

Дальнейший рост температуры приводит к одинаковому значению модуля сдвига. Температурно-частотные зависимости, полученные для полимера ЭКО1, подтверждают возникновение молекулярных связей полимера с поверхностью порошка цинка, свидетельствуя о его снижении в присутствии наполнителя.

Что касается температурно-частотных зависимостей для полимера AK1 (рис. 2б), то при масштабировании ординаты частоты, соответствующим рис. 2г, кривые зависимости для ненаполненного и наполненного порошком оксида цинка (1 и 2%) соответствуют данным по спектрам на рис. 1. Хотя значения дефекта модуля во всех трех случаях достаточно близки, его графическая оценка позволяет рассматривать соотношение дефектов модуля $\Delta G1 > \Delta G2 > \Delta G3$, соответствующее кривым зависимостей для полимера АК1 в присутствии различных концентраций оксида. Это указывает на то, что в его присутствии формирование релаксационных структур также протекает с нарушением межмолекулярных взаимодействий в присутствии наполнителя и образованием новых релаксационных структур в результате взаимодействия полимер-наполнитель. Различие в проявлении эффекта в этом случае можно связать, помимо большей эластичностью полимера, с одной стороны, и, с другой, с более высоким размером частиц минерального наполнителя по сравнению с высокодисперсным порошком цинка.

Таким образом, полученные результаты свидетельствуют о возможностях применения метода динамической релаксационной спектроскопии для описания протекания диссипативных процессов α-релаксации, дают понимание причин изменения дефекта модуля материала (расшире-

Рис. 3. Спектры внутреннего трения в полимерах AK1 (a) и ЭКО1 (б) при температурах от –150 до –25°С в отсутствии (кривые *I*) и присутствии наполнителей: 2(a) (1%), 3(a) (2%) – оксид цинка; 2(б) (1%) – порошок цинка.

ния или сжатия области эластичности) и изменения области неупругости полимерной системы.

На рис. 3 представлены спектры внутреннего трения при температурах -150 до -25° С в полимерах, не наполненных и наполненных порошками оксида цинка (рис. 3а) и цинка (рис. 3б).

Видно, что интенсивность локальных диссипативных процессов μ -релаксации при отрицательных температурах в обоих случаях значительно ниже интенсивности процесса α -релаксации. Проведенное масштабирование оси внутренних потерь λ позволяет сопоставить характер проявления локальных процессов, протекающих в обоих полимерах в присутствии порошка оксида цинка и металлического порошка.

Как следует из рис. 36, ощутимого эффекта порошка цинка при концентрации 1% на интенсивность процесса μ -релаксации в полимере ЭКО1 не обнаружено. Хотя значения внутреннего трения в ненаполненном и наполненном полимере близки по интенсивности, можно отметить их большее значение в присутствии порошка цинка. Это может указывать на некоторое усиление релаксационных μ -процессов при замораживании наполненной полимерной системы.

Изображение локальных процессов µ-релаксации, протекающих в высокоэластичном полимере AK1 при отрицательных температурах, представлен на рис. За. В отличие от ЭКО1, характеризующегося более высокой температурой стеклования, усиление релаксационных µ-процессов в присутствии оксида цинка при концентрации 1% не обнаружено, что выражается в положении кривых 1 и 2 при его концентрации 0 и 1% соответственно. При увеличении концентрации оксида цинка до 2%, становится очевидным изменение релаксационной структуры композита, сопровождающееся ростом интенсивности диссипативных процессов μ -релаксации. Можно выделить, по крайней мере, четыре максимума локальных процессов μ -релаксации при температурах –113, –105, –72 и –45°С, соответственно, которые представлены на рис. как μ_1 -, μ_2 -, μ_3 - и μ_4 -максимумы.

Литературные данные о наличии в структуре полимера (в частности, гидрофильных латексных полакрилатных пленок и покрытий) определенного количества связанной молекулярной воды [22–24] позволяют объяснить природу локальных диссипативных процессов µ-релаксации, обнаруживаемых на спектрах внутреннего трения при отрицательных температурах.

Исследование возможных кластерных форм воды показало [25], что при температуре ниже 273 К вода может присутствовать в структуре полимера в воде нескольких форм: гексагональной кристаллической формы J_h; кубической кристаллической формы $J_{\rm c}$ и аморфной или стеклообразной фазы J_{LDA}. Кристаллическая кластерная $J_{\rm h}$ -форма воды является относительно термостабильной, тогда как J_c и J_{LDA} являются термодинамически нестабильными. При пониженных температурах их трансформация в более термодинамически стабильную фазу кинетически затруднено. Кубический лед J_c образуется при температурах от -140 до -120°С и при повышении температуры до интервала от -120 до -70°C *J*_с-фаза трансформируется в гексагональную кристаллическую $J_{\rm h}$ -фазу. Кроме $J_{\rm c}$ -фазы в J_{h} -фазу превращается и аморфная Ј_{LDA}-фаза в области температур от -120 до -110°С.

Как следует из рис. За, для высокоэластичного полимера AK1, наполненного порошком оксида цинка, можно выделить области проявления локальных диссипативных процессов μ_c -, μ_{LDA} - и μ_h -процессов релаксации, соответствующие образованию всех трех форм воды при упомянутых выше температурах –113, –105, –72 и –45°С.

Возрастание интенсивности всех трех процессов μ_c , μ_{LDA} и μ_h при наполнении полимера указывает на нарушение межмолекулярных связей в полимере в присутствии наполнителя при отрицательных температурах. Это также соответствует повышению частоты v свободных затухающих крутильных колебаний на рис. 2a, возбуждаемых в исследуемой системе и переводящих систему из равновесного в неравновесное механическое и термодинамическое состояние.

Полимер	Релаксационный процесс	λ_{max}	T, °C	τ_{max} , c	<i>U</i> , кДж/моль
AK1**	α _{max1}	0.56	11.3	5	65.2***
	α_{max2}	0.27	11.8	5	67.3
	α _{max3}	0.22	11.4	5	67.1
	β_{max1}	0.27	-1-2	5	67.2***
	μ_{max2-1}	0.062	-140	5	21.4
	μ_{max3-1}	0.069	-115.0	0.01	28.1
	μ_{max3-2}	0.094	-105.7	0.01	29.8
	μ_{max3-3}	0.095	-71.5	0.01	35.9
	μ_{max3-4}	0.120	-28.5	0.01	43.6
ЭКОІ	α _{max1}	1.88	14.6	5	66.3
	α_{max2}	1.72	20.1	5	67.2
	μ_{max1}	0.043	-87	0.01	32.0
	μ_{max2}	0.054	-83	0.01	32.7

Таблица 1. Физико-химические и механические характеристики диссипативных процессов*, протекающих в ненаполненном (1) и наполненном (2) полимере**

* Обозначение индекса: 1 — без наполнителя; 2, 3 — с наполнителем; ** формирование пленок проводили без разбавления латексного связующего; *** Значение *U* процессов α- и β-релаксации в разбавленном латексном связующим равно соответственно 55.8 и 50 кДж/моль при -83°C [18].

Выделить области проявления процессов μ_c -, μ_{LDA} - и μ_h -релаксации в ненаполненном и наполненном полимере ЭКО1 нет возможности из-за низкой интенсивности процессов. Наличие металлического наполнителя может приводить к разрушению релаксационной структуры, что проявляется в виде широкой области повышения интенсивности максимумов локальных диссипативных μ -процессов релаксации при температурах от -102 до -56° С, более выраженного по сравнению с ненаполненной системой, указывая на большую активность макроцепей в присутствии высокодисперсного порошка цинка.

В табл. 1 представлены физико-химические и физико-механические характеристики всех диссипативных процессов, на основании которых произведен расчет их энергии активации.

Расчет энергии активации релаксационных процессов основан на их теоретическом анализе, проведенном с привлечением феноменологических представлений модели стандартного линейного тела и температурно-частотного соотношения Деборы для каждого максимума диссипативных потерь на спектре внутреннего трения [12, 13]. Для этого случая должно выполняться соотношение:

$$\omega \tau = 1, \tag{1}$$

где τ — время релаксации в максимуме диссипативных потерь (то есть — при значениях λ_{max} для всех процессов), с; ω — циклическая частота, с⁻¹.

Время релаксации рассчитывается по уравнению Аррениуса (2):

$$\tau = \tau_0 \exp(U/RT), \qquad (2)$$

где τ_0 — предъэкспоненциальный коэффициент, U — энергия активации, кДж/моль.

Из соотношений (1) и (2) следует соотношение (3):

$$\omega \tau_0 \exp(U/RT) = 1, \tag{3}$$

преобразование которого приводит к соотношению 4 расчета энергии активации:

$$U = RT \ln(1/\omega\tau_0). \tag{4}$$

Учитывая связь коэффициента τ_0 и частоты колебательного процесса кинетического элемента на дне потенциальной ямы

$$\tau_0 = 1/v, \qquad (5)$$

и температурную зависимость энергии колебаний

$$h\mathbf{v} = kT,\tag{6}$$

где h — постоянная Планка, Дж/с; k — постоянная Больцмана, Дж/К), получаем окончательную форму для расчета энергии активации процессов, имеющих релаксационную природу (α , β , μ):

$$U = RT \ln \left(kT/hv \right). \tag{7}$$

Как следует из таблицы, значения энергии активации релаксационных процессов (α , β , μ), обнаруженные на спектре внутреннего трения исследуемой системы, коррелируют с температурным положением максимумов этих процессов. Дефект модуля коррелирует с интенсивностью диссипативных потерь на спектрах внутреннего трения и при гораздо меньшей интенсивности характеризуется малой величиной, не оказывающей практического влияния на упругость всей системы в целом.

Теоретический расчет показывает, что энергия активации α - и β -релаксации процесса выше, чем μ -процесса, подтверждая участие звеньев цепей и/или самих цепей в α -релаксации и сегментов макромолекул в β -релаксации, тогда как в случае μ -релаксации участвуют функциональные (на-пример, гидрокси- или карбокси-) группы полимера. Наблюдается также некоторое увеличение энергии активации α -релаксации в наполненных системах, что можно связать с образованием релаксационных структур с участием поверхности металла.

Сопоставление энергии активации процесса α -релаксации в ненаполненном высокоэластичном латексном полимере AK1, пленку которого формировали без разбавления (U), с процессом в латексе при его разбавлении (U_p), [18], показывает необходимость более высокой энергетической работы для его протекания в неразбавленном полимере.

Высокоэластичность полимера определяет особенности протекания диссипативных процессов не только при температуре стеклования, но и при отрицательных температурах, что проявляется в характере кривых спектров внутреннего трения при отрицательных температурах.

Как также следует из табл. 1, при формировании пленок из неразбавленного высокоэластичного латексного полимера AK1 и разбавленного до концентрации первого латексного полимера ЭКО1 значения энергии активации α-релаксации характеризуются достаточно близкими значения, что можно объяснить природой полиакрилатов с идентичной подвижностью звеньев цепей и/или самих цепей.

ЗАКЛЮЧЕНИЕ

Из полученных результатов следует, что с привлечением анализа спектров внутреннего трения удается установить и сопоставить области релаксационной активности в широком диапазоне температур от -150 до $+50^{\circ}$ С в акриловых полимерах, не наполненных и наполненных оксидом цинка и высокодисперсным порошком цинка.

Для латексных систем феноменологический механизм локальных диссипативных потерь достаточно хорошо описывается характером температурно-частотной зависимости колебательного процесса.

Наблюдаемые экспериментальные данные свидетельствуют о том, что α-процессы характеризуются релаксационным механизмом внутреннего трения, а локальные диссипативные μ-процессы — фазовым.

Показано снижение интенсивности процессов α-релаксации в наполненных системах по сравнению с ненаполненными системами, что может указывать на нарушение межмолекулярных связей в их присутствии.

Одновременно обнаружено различие в проявлении эффекта порошка оксида цинка и высокодисперсного порошка цинка как на процесс α -релаксации в области температуры стеклования, так и μ -релаксации при отрицательных температурах.

В присутствии высокодисперсного порошка цинка на спектрах внутреннего трения обнаружен рост температуры стеклования при переходе от ненаполненного к наполненному полимеру. Сдвиг максимума интенсивности диссипативного процесса α-релаксации в положительную температурную область свидетельствует об образовании новых релаксационных структур с участием поверхности цинка.

В случае оксида цинка, характеризующегося большим размером частиц по сравнению с высокодисперсным порошком цинка, существенного сдвига максимума интенсивности процесса α -релаксации в высокоэластичном полимере при той же концентрации не наблюдалось. Однако обнаружено сужение области температуры стеклования, соответствующего процессу α -релаксации, на температурном участке от -20 до -6° С. Это может указывать на изменение характера релаксационных структур в этом интервале температур.

В случае высокоэластичного полимера AK1 обнаружен процесс β-релаксации, обусловленный сегментальной подвижностью макроцепей эластичного полимера. При его наполнении порошком оксида цинка интенсивность процесса β-релаксации существенно снижается, сдвигаясь в область положительных температур, свидетельствуя о нарушении межсегментальных молеку-

лярных взаимодействий, аналогично смещению области α-релаксации в полимере ЭКО1 в направлении положительных температур.

Наблюдаемые проявления эффектов наполнителей подтверждаются значениями энергии активации, рассчитанными на основе теоретического анализа, проведенного с привлечением феноменологических представлений молели стандартного линейного тела и температурночастотного соотношения Деборы для каждого максимума диссипативных потерь на спектре внутреннего трения. Значения энергии активации α- и β-процесса выше, чем μ-процесса, что указывает на участие в релаксации сегментов макроцепей большего размера, тогда как в случае μ-релаксации участвуют функциональные группы эластомера. В случае порошка цинка имеет место некоторое увеличение энергии активации α-релаксации в наполненной системе, т.е. наполнитель может оказывать влияние на диссипативный процесс, который связан с подвижностью структурных элементов, вызывающих появление α-процесса на спектре внутреннего трения. Это можно объяснить нарушением межмолекулярных связей и нехимическим взаимодействием между латексной полимерной системой и наполнителем.

Для латексных систем феноменологический механизм локальных диссипативных потерь достаточно хорошо описывается характером температурно-частотной зависимости колебательного процесса. Отрицательный наклон кривой этой зависимости характеризует диссипативный процесс α -релаксации как релаксационный. Установлено, что при использованных концентрациях наполнителей существенного изменения упругих характеристик до температур процесса α -релаксации не обнаруживается.

В случае порошка цинка неупругость полимера возрастает при температурах выше температуры стеклования в ряду от ненаполненного полимера к наполненному полимеру за счет расширения пика α-релаксации в положительную температурную область. Это вызывает расширение температурной области эластичности (неупругости).

В присутствии оксида цинка картина отличается. Дефект модуля снижается незначительно с увеличением концентрации наполнителя, что соответствует данным на спектрах внутреннего трения и можно объяснить высокими эластичными свойствами полимера и большим размером частиц наполнителя.

Экспериментальные данные позволяют объяснить также локальные диссипативные процессы µ-релаксации, обнаруживаемые при отрицательных температурах, наличием в полимере (в большей степени в более гидрофильном AK1) определенного количества связанной молекулярной воды, замерзающей при температурах от –150 до 0°С. Это сопровождается разрушением межмолекулярных связей, более выраженным в присутствии высокодисперсного металлического наполнителя.

Графическая оценка дефекта модуля в обоих случаях приводит к заключению о формировании различных релаксационных структур в присутствии оксида цинка и высокодисперсного порошка цинка. В присутствии оксида цинка формируются другие релаксационные структуры, что, по-видимому, связано с отсутствием функциональных групп полимера. Возможен также эффект большего размера частиц минерального наполнителя по сравнению с высокодисперсным порошком цинка.

Таким образом, полученные результаты позволяют объяснить расширение температурного интервала неупругости (эластичности) полимера в присутствии цинкового порошка и снижение области эластичности более гидрофильного полимера в присутствии оксида цинка как результат нарушения межмолекулярных взаимодействий и формирования новых релаксационных структур, различающихся в исследуемых композитных системах. Это сопровождается изменением физико-механических характеристик, как отдельных диссипативных процессов, так и всей системы в целом.

Наполнение системы оксидом цинка вызывает снижение неупругих свойств системы в низкотемпературной области температуры стеклования, тогда как введение цинкового порошка повышает неупругость (эластичность) полимера ее расширением в низкотемпературном направлении.

Работа выполнена при финансовой поддержке РАН. Госзадание: "Физикохимия функциональных материалов на основе архитектурных ансамблей металл — оксидных наноструктур, многослойных наночастиц и пленочных нанокомпозитов". Регистрационный номер НИОКТР АААА-А19-119031490082-6.

ОБОЗНАЧЕНИЕ

- α, μ Релаксационные процессы
- С Фазовый процесс
- *d* Диаметр частиц
- *Т* Температура
- λ Внутреннее трение
- V Частота колебательного процесса
- *G* Модуль сдвига
- ΔG Дефект модуля
 - Плотность полимерной системы

ρ

- время релаксации в максимуме диссипативных потерь
- ω Циклическая частота
- τ₀ Предъэкспоненциальный коэффициент
- *U* Энергия активации
- *h* Постоянная Планка
- *k* Постоянная Больцмана

ИНДЕКСЫ

ст	Стеклование
α_{max}	Максимальные значения внутреннего
βmax	трения и температуры, соответствую-
μ_{max}	щие α- и μ-релаксационным процессам

СПИСОК ЛИТЕРАТУРЫ

- Толмачев И.А., Петренко Н.А. Пигменты и их применение в красках. Москва: Пэйнт-Медиа, 2012. С. 56. 104 с. ISBN 978-5-902904-10-6.
- Каверинский В.С., Каверинский Д.В. // Лакокрасочные материалы и их применение: журнал. 2017. № 11. С. 38–42. ISSN 0130-9013.
- Özgür Ü., Alivov Ya.I., Liu C., Teke A., Reshchikov M.A., Doğan S., Avrutin V., Cho S.-J., Morkoç H. // J. Applied Physics. 2005. V. 98. P. 041301. https://doi.org/10.1063/1.1992666
- Semaltianos N.G., Logothetidis S., Hastas N., Perrie W., Romani S., Potter R.J., Dearden G., Watkins K.G., French P., Sharp M. // Chemical Physics Letters. 2010.
 V. 484 (4–6). P. 283–289. https://doi.org/2009.11.054 https://doi.org/10.1016/j.cplett
- Petrunin M.A., Maksaeva L.B., Yurasova T.A., Terekhova E.V., Maleeva M.A., Scherbina A.A., Kotenev V.A., Kablov E.N., Tsivadze A.Y. // Protection of Metals and Physical Chemistry of Surfaces. 2014. Т. 50. № 6. P. 784. [Петрунин М.А., Максаева Л.Б., Терехова Е.В., Малеева М.А., Щербина А.А., Котенев В.А., Каблов Е.Н., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2014. Т. 50. № 6. С. 657.]
- Petrunin M.A., Maksaeva L.B., Yurasova T.A., Terekhova E.V., Maleeva M.A., Kotenev V.A., Kablov E.N., Tsivadze A.Y. // Protection of Metals and Physical Chemistry of Surfaces. 2015. V. 51. № 6. Р. 1010. [Петрунин М.А., Максаева Л.Б., Юрасова Т.А., Терехова Е.В., Малеева М.А., Котенев В.А., Каблов Е.Н., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2015. Т. 51. № 6. С. 656.]
- Petrunin M.A., Maksaeva L.B., Yurasova T.A., Gladkikh N.A., Terekhova E.V., Kotenev V.A., Kablov E.N., Tsivadze A.Y. // Protection of Metals and Physical Chemistry of Surfaces. 2016. V. 52. № 6. Р. 964. [Петрунин М.А., Максаева Л.Б., Юрасова Т.А., Гладких Н.А., Котенев В.А., Каблов Е.Н., Цивадзе А.Ю. //Физико-

химия поверхности и защита материалов. 2016. Т. 52. № 6. С. 572.]

- Ellmer K. (2011) Transparent Conductive Zinc Oxide and Its Derivatives. In: Ginley D. (eds) Handbook of Transparent Conductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1638-9_7
- Полимеризационные пленкообразователи. Под ред. Елисеевой В.И. Москва: Химия, 1971. С. 84. 214 с. УДК 667.612.64:678.7.
- Бартенев Г.М., Ломовской В.А., Ломовская Н.Ю. // Высокомол. соедин. 1994. Т. 36(9). Р. 1529–1535 [Bartenev G.M., Lomovskoy V.A., Lomovskaya N.Yu. // Polym. Sci., A. 1994. V. 36(9). Р. 1273–1281 (In Russ.)]
- Тагер А.А. Физикохимия полимеров (Физическая химия полимеров). М.: Научный мир, 2007, 545 с. [*Tager A.A.* Fizikokhimiya polimerov (Physical Chemistry of Polymers), Moscow: Nauchnyi Mir, 2007, 545 p. (In Russ.)]
- Ломовской В.А., Абатурова Н.А., Ломовская Н.Ю., Хлебникова О.В., Галушко Т.В. // Материаловедение. 2010. № 1. С. 29–34 [Lomovskoy V.A., Abaturova N.A., Lomovskaya N.Yu., Khlebnikova O.V., Galushko T.B. // Materialovedenie. 2010. № 1. Р. 29–34. (In Russ.)]
- Валишин А.А., Горшков А.А., Ломовской В.А. // Известия РАН. Механика твердого тела. 2011. Т. 46. № 2. С. 299–310. [Valishin A.A., Gorshkov A.A., Lomovskoy V.A. // Izvestiya RAN. Mekhanika tverdogo tela (Mechanics of solids). 2011. V. 46. № 2. Р. 299–310 (In Russ.)]
- Асламазова Т.Р., Котенев В.А., Ломовская Н.Ю, Ломовской В.А., Цивадзе А.Ю. // Теоретические основы химической технологии. 2019. Т. 52(3). Р. 246– 256. [Aslamazova T.R., Kotenev V.A., Lomovskaya N.Yu., Lomovskoi V.A., Tsivadze A.Yu. // Theoretical foundations of chemical engineering. 2019. V. 52(3). Р. 346– 354. (In Russ.)] https://doi.org/10.1134/S0040579519030023
- Асламазова Т.Р., Высоцкий В.В., Золотаревсекий В.И., Котенев В.А., Ломовская Н.Ю, Ломовской В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2021, в печати.
- Асламазова Т.Р., Золотаревский В.И., Котенев В.А., Цивадзе А.Ю. // Измерительная техника. 2019. Т. 62(8). С. 20–23. [Aslamazova T.R., Zolotarevskii V.I., Kotenev V.A., Tsivadze A.Yu. // Measurement Techniques, pub. in Instrument Society of America (United States). 2019. V. 62(8). P. 20–23. https://doi.org/10.1007/s11018-019-01678-y]
- 17. Aslamazova T.R., Kotenev V.A., Lomovskoi V.A., and Tsivadze A.Yu. // Protection of Metals and Physical Chemistry of Surfaces. 2021, in press.
- Асламазова Т.Р., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Теоретические основы химической технологии. 2020. Т. 54. № 6. С. 695–705 [Aslamazova T.R., Kotenev V.A., Lomovskaya N.Yu., Lomovskoi V.A., Tsivadze A.Yu. // Theoretical

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 57 № 3 2021

Foundations of Chemical Engineering. 2020. V. 54. \mathbb{N} 6. P. 1205–1214].

- 19. Aslamazova T.R., Kotenev V.A., Lomovskoi V.A., Tsivadze A. Yu. // Protection of Metals and Physical Chemistry of Surfaces. 2021, in press.
- Бартенев Г.М., Ломовской В.А., Ломовская Н.Ю. // Высокомол. соедин. 1994. Т. 36(9). С. 1529–1535 [Bartenev G.M., Lomovskoy V.A., Lomovskaya N.Yu. // Polym. Sci. A. 1994. V. 36(9). Р. 1273–1281 (In Russ.)].
- Ломовской В.А. // Научное приборостроение. 2019. Т. 29(1). С. 33–46 [Lomovskoy V.A. // Nauchnoe priborostroenie. 2019. V. 29(1). Р. 33–46]. https://doi.org/10.18358 / np-29-1-i3346 (In Russ/)]
- 22. Michael E. Wieser, Norman Holden, Tyler B. Coplen et al. // Pure and Applied Chemistry. 2013. V. 85. № 5. P. 1047–1078. https://doi.org/10.1351/PAC-REP-13-03-02
- 23. Warren S.G. // J. Applied Optics. 1984. V. 23(8). P. 1206–1211. https://doi.org/10.1364/AO.23.001206
- 24. *Murray B.J., Bertram A.K.* // J. Physical Chemistry Chemical Physics. 2006. V. 110. P. 136–145. https://pubs.rsc.org/en/content/articlelanding/2008/cp/ b802216j#!divAbstract
- Gillan M.J., Alfê D., Bartók A.P., Csányi G. // J. Chemical Physics. 2013. V. 139(24). P. 244–252. https://doi.org/10.1063/1.4852182