_ НАНОРАЗМЕРНЫЕ И НАНОСТРУКТУРИРОВАННЫЕ ____ МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 544.77.051.5;544.478-03

СИНТЕЗ В ОБРАТНЫХ МИЦЕЛЛАХ БИМЕТАЛЛИЧЕСКИХ НАНОЧАСТИЦ РdNi И НАНОКОМПОЗИТОВ НА ИХ ОСНОВЕ

© 2021 г. М. О. Сергеев^{1, *}, А. А. Ревина^{1, 2}, О. В. Суворова¹

¹Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский просп., 31, корп. 4, Москва, 119071 Россия ²Российский химико-технологический университет им. Д.И. Менделеева, Миусская пл., 9, Москва, 125047 Россия *e-mail: mihail-ol-sergeev@yandex.ru Поступила в редакцию 12.10.2020 г. После доработки 22.12.2020 г. Принята к публикации 12.01.2021 г.

В работе представлены результаты синтеза биметаллических наночастиц (НЧ) на основе переходных металлов Pd, Ni, Fe, восстановленных кверцетином в обратномицеллярном растворе (ОМР) H₂O/AOT/изооктан. Методом флуоресцентной спектроскопии показана возможность формирования биметаллической структуры НЧ Pd_{ядр}Ni_{обол}, в спектрах плазмонного резонанса которых в диапазонах длин волн, характерных для НЧ монометаллов, выявлено синергетическое усиление оптического поглощения. Исследование процесса адсорбции биметаллических НЧ на поверхность гамма-оксида алюминия доказало преимущество палладий-содержащих частиц со структурой Fe_{ядро}/Pd_{обл}, полученной в результате целенаправленного восстановления в ОМР на поверхности крупных НЧ Fe атомов палладия, проявившееся в повышении эффективности адсорбции такой структуры за счет более прочного связывания с поверхностью носителя. Использование данного приема позволяет уменьшить количество дорогостоящего металла при производстве палладиевых нанокомпозитов, существенно снижая производственные затраты.

Ключевые слова: обратные мицеллы, палладий, никель, железо, биметаллические наночастицы, кверцетин

DOI: 10.31857/S0044185621030219

введение

За последнее десятилетие были разработаны различные метолы синтеза биметаллических наночастиц и изучены их свойства. Биметаллические НЧ находят широкое применение в фотохимических, электрохимических и каталитических процессах [1, 2]. Повышение характеристик фотохимических процессов связано с наличием локализованных поверхностных плазмонов у НЧ и их влиянием на оптические и электрооптические свойства других веществ, что позволяет их применять в фотоэлектрохимических ячейках. Повышение эксплуатационных характеристик сенсорных устройств основано на особых электрохимических свойствах и энергетических характеристиках НЧ. Использование биметаллических НЧ помогает сократить расход дорогостоящего металла в катализаторах, повысить их стабильность работы, а также усилить каталитическую активность, обусловленную синергетическим эффектом [3].

В данной работе в качестве основного металла был выбран Ni, обладающий хорошей способно-

стью к разрыву С–С и С–Н связей, а в качестве синергетической добавки благородный металл Pd, играющий важную роль в каталитических процессах с участием водорода и позволяющий уменьшить деактивацию основного металла. Немаловажной проблемой также является эффективность методов синтеза соответствующих нанокомпозитов, повышение которой снижает затраты на извлечение дорогостоящих металлов из использованных растворов и их дальнейшую переработку.

Целью данной работы является разработка эффективного синтеза биметаллических HЧ PdNi и нанокомпозитов на их основе, которые могут быть потенциально использованы в топливных ячейках конверсии этанола [4], а также в процессах дегидрирования углеводородов. Также рассматривается возможность использования крупных HЧ Fe как транспортных частиц для HЧ палладия в виде биметалла Fe_{ядро}/Pd_{обл} в процессах адсорбционного синтеза нанокомпозитов. Данный выбор обусловлен дешевизной металла и

Образец	ω	Концентрация металла в водном пуле, моль дм ⁻³			Концентрация металла в ОМР, мкмоль дм ⁻³			Концентрация ионов металла в ОМР, мг дм ⁻³		
		Pd ²⁺	Fe ²⁺	Ni ²⁺	Pd ²⁺	Fe ²⁺	Ni ²⁺	Pd ²⁺	Fe ²⁺	Ni ²⁺
НЧ Pd OMP	5	0.015	_	_	202	_	_	21.55	_	_
НЧ Ni ОМР	5	_	_	0.015	_	_	202	_	_	11.89
НЧ Fe OMP	5	_	0.300	_	_	4050	_	_	226.2	_
HЧ PdNi OMP	5	0.0075	_	0.0075	101	_	101	10.78	_	5.94
HЧ Fe/Pd OMP	8.7	0.0064	0.172	_	150	4010	—	15.80	224.0	—

Таблица 1. Содержание ионов металлов в обратномицеллярных системах

легкостью вытравливания железа после нанесения при необходимости.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы. В работе использовались соли никеля NiCl₂ · 6H₂O, (ч. д. а., 98 мас. %, Химреактив), палладия PdCl₂ (99.9 мас. %, Aldrich), железа FeSO₄ · (NH₄)₂SO₄ · 6H₂O (х. ч.), дигидрат кверцетина $C_{15}H_{10}O_7 \cdot 2H_2O$ (Qr) (98 мас. %, Merck), бис(2-этилгексил)сульфосукцинат натрия $C_{20}H_{37}NaO_7S$ (AOT) (96 мас. %, Acros organics), изооктан (99.95 мас. %, Эталонный-1, Компонент-реактив), н-гептан (х. ч.), дистиллированная вода и γ -Al₂O₃ (порошок) как основа для нанокомпозитов. Все реагенты использованы без дополнительной очистки.

Химический синтез наночастиц металлов в обратных мицеллах. Синтез НЧ металлов [5] проводился в соответствии с методикой [6] в базовом обратномицеллярном растворе 0.15 моль дм⁻³ АОТ в изооктане в присутствии 150 мкмоль дм⁻³ Qr и молекулярного кислорода. Коэффициент солюбилизации (ω) (1) для обратномицеллярных растворов (ОМР) составлял 5.0, в случае НЧ FePd – 8.7.

$$\omega = \frac{[H_2O]}{[AOT]}.$$
 (1)

Концентрации солей и мольное отношение металлов (M_1/M_2) в ОМР приведены в табл. 1.

Концентрация ионов металлов в водном пуле мицеллы ($c_{M_i}^{\text{в.п.}}$) в начале синтеза монометаллических наночастиц составляла 0.015 моль дм⁻³, биметаллических PdNi — по 0.0075 моль дм⁻³ каждого металла, FePd: железа — 0.172 моль дм⁻³, палладия — 0.0064 моль дм⁻³. Данные концентрации рассчитывалась по уравнению:

$$c_{M_i}^{\text{B.II.}} = \frac{c_{M_i} x_i v_i}{v_1 + v_2},\tag{2}$$

где c_{M_i} — мольная концентрация ионов *i*-того металла в исходном водном растворе соответствующей соли, моль дм⁻³;

 x_i — число атомов металла в эмпирической формуле соли соответствующего *i*-ого металла (для использованных солей $x_i = 1$);

 v_i — объем водного раствора *i*-той соли, добавленного в базовый ОМР, дм³. В знаменателе стоит суммарный объем воды в ОМР.

При синтезе биметаллических НЧ PdNi соотношения металлов составляло 1 : 1 (моль), для НЧ Fe/Pd — 27 : 1 (моль).

Количества ионов металлов, приходящихся на объем ОМР, рассчитывались по уравнению:

$$c_{M_i}^{\rm OMP} = \frac{c_{M_i} x_i v_i}{v},\tag{3}$$

где V— объем обратномицеллярного раствора, дм³, а остальные параметры такие, как и в уравнении (2).

Мольные концентрации ионов металлов в OMP (3) $[Ni]_{omp}$ и $[Pd]_{omp}$ при получении монометаллических HЧ были равны 202 мкмоль дм⁻³, в случае биметаллических HЧ PdNi – по 101 мкмоль дм⁻³, для HЧ Fe/Pd – концентрация $[Fe]_{omp} = 4010$ мкмоль дм⁻³, а $[Pd]_{omp} = 150$ мкмоль дм⁻³.

Биметаллические НЧ PdNi готовились методом совместного восстановления ионов металлов в OMP при одновременном смешивании солей никеля и палладия (1 : 1 по молям) с ожидаемой внутренней структурой типа "сплав". Наночастицы Fe/Pd со структурой ядро/оболочка Fe_{ядр}Pd_{обол} получены добавлением 10 мкл водного раствора соли палладия концентрации 0.015 М к 1 мл OMP со стабильными (более 25 мес.) НЧ Fe ω = 5.0, полученными из водного раствора соли железа с концентрацией 0.3 М. Характерный для НЧ Fe спектр оптического поглощения (рис. 1) имеет пики при $\lambda \sim 240$, ~274 и 307 нм.

Температура окружающей среды во время синтеза и инструментальных измерений находилась в интервале 20–25°С. Процесс осуществлялся на воздухе в конических колбах на 25 см³ с при-

тертыми пробками из стекла марки TC, а для HЧ Fe/Pd — в полипропиленовой микроцентрифужной пробирке типа Eppendorf объемом 1.5 мл.

Приготовление нанокомпозитов. НЧ металлов наносились на поверхность носителя γ -Al₂O₃ из OMP методом "пропитки". Для приготовления каждого нанокомпозита бралось по 3 мл каждого OMP на 1.00 г γ -Al₂O₃, для НЧ Fe/Pd – 1 мл на 0.50 г оксида алюминия. Время адсорбции наночастиц составляло 90 мин, а для НЧ Fe/Pd – 5 сут.

Для удаления остатков органики после адсорбции образцы нанокомпозитов трехкратно промывались н-гептаном (по 1 мл) и высушивались на воздухе в течение 24 ч.

Приборы и инструменты. Процессы образования наночастиц при синтезе и их адсорбции на носитель контролировались методом электронной абсорбционной спектрофотометрии при использовании прибора Hitachi U-3310 в диапазоне длин волн 190-800 нм и кварцевых кювет с длиной оптического пути 1 мм. Сканирование проводилось от длинных волн к коротким. В качестве образца сравнения использовался раствор 0.15 моль дм⁻³ АОТ в изооктане. Параметром, характеризующим интенсивность прошедшего пучка света через раствор, было выбрано оптическое поглощение (ОП) вместо ослабления, так как для данных образцов рассеянием света можно пренебречь, а влияние на форму спектра, вызываемое флуоресценцией образца, исключалось сканированием спектра от длинных волн к коротким.

Синтез НЧ также контролировался методом флуоресцентной спектроскопии при использовании прибора Hitachi F-7000. Спектры испускания снимались в режиме сканирования по длинам волн при возбуждении образца электромагнитным излучением с длиной волны 255 нм. Сканирование проводилось в диапазоне от 250 до 600 нм со скоростью развертки 1200 нм/мин и шагом сбора данных 1 нм. Ширины спектральных шелей для потоков возбуждения и испускания составляли по 5 нм. Спектр испускания регистрировался под углом 90° к пучку возбуждения. Напряжение на фотоэлектронном умножителе составляло 700 В, постоянная отклика 0.5 с. Спектры сняты без коррекции линейных характеристик источника возбуждения и системы детектирования. Для устранения в записываемых спектрах пика рэлеевского рассеяния, а также его второй гармоники, на линии пучка испускания устанавливался фильтр UV-29 с границей отсечения ультрафиолетового диапазона ~290 нм. Образец помещался в кварцевую кювету из синтетического (нефлулоресцирующего) кварца с внутренней шириной 10 мм.

Размеры НЧ определялись методом атомносиловой микроскопии (ACM) с использованием прибора MultiMode (Bruker) с кремниевыми кантилеверами NSG-01 (NT-MDT) в полуконтакт-

Рис. 1. Спектры поглощения ОМР $\omega = 5.0$ с исходными НЧ Fe. Qr – спектр системы Qr/AOT/изооктан.

ном режиме. Разрешение по высоте составляло ± 0.1 нм, по латерали — ± 12 нм. Растворы НЧ наносились на подложку атомарно гладкого слоя слюды. После чего высушивались на воздухе, промывались водой и сушились повторно. Перед измерением образцы оставляли в помещении атомно-силового микроскопа для выравнивания их температур, что исключало искажения результатов, вызываемые температурным дрейфом. Обработка изображений осуществлялась в ПО WSxM 5.0 [7]. За размер частиц принималась их высота (*Z*-параметр).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез наночастиц металлов. Электронная спектрофотометрия

На рис. 2 представлены спектры НЧ Pd (а), Ni (б), PdNi (в) и Fe/Pd (г) с исходным спектром кверцетина (Or). Образование наночастиц палладия характеризуется падением интенсивности поглощения в области 218 нм в первые 60 мин, после чего происходит ее рост в течение последующих 7 дн.; на 67 день синтеза также отмечаются изменения спектра особенно в длинноволновой его части, что говорит о наличии продолжительных изменений в выбранной системе синтеза. Наночастицы Pd (рис. 2a) характеризуются пиками с максимумами $\lambda \sim 220$, ~272 и ~327 нм, что согласуется с ранее полученными данными для HЧ Pd, синтезированных радиационно-химическим способом [8–10], а также теоретическими расчетами и данными, полученных другими методами [11-13]. Как и НЧ палладия, НЧ Ni (рис. 2б) характеризуются поглощением в УФ-области 210-220 нм [14], обусловленным поверхностным плазмонным резонансом, но имеет несколько большую ширину пика, что связано с наличием второго близко расположенного, но менее интенсивного

Рис. 2. Спектры поглощения ОМР ω = 5.0 (а) НЧ Рd; (б) НЧ Ni; (в) НЧ PdNi; (г) исходные НЧ Fe и сформированные НЧ Fe/Pd (2 дн.): ______ – 3 мин, ______ – 15 мин, ______ – 30 мин, ______ – 60 мин, ______ – 90 мин, ______ – 7 дн., ______ – 67 дн. после начала синтеза. Qr (_____) – спектр раствора Qr/AOT/изооктан.

пика. Следует обратить внимание на то, что в отличие от НЧ палладия, НЧ Ni формируются иначе: на это указывает остаточное содержание кверцетина в ОМР с НЧ металла на 7-е сутки после начала химического синтеза с характерными пиками в области 365—390 нм, соответствующими поглощению В-кольца циннамоильной системы кверцетина. Но на 67 сутки интенсивность в области поглощения кверцетина падает приблизительно в 2 раза, а интенсивность поглощения НЧ возрастает на 40%.

Спектр ОМР биметаллических НЧ PdNi (рис. 2в) с ожидаемой структурой гомогенного сплава характеризуется суперпозицией отдельных полос поглощения плазмонных резонансов никеля и палладия, которая выше алгебраической суммы спектров каждого металла. Таким образом проявляется синергизм в спектральных характеристиках сформированных НЧ PdNi и подтверждается возникновением биметаллической структуры, которое завершается на 7 сут после начала синтеза. В отличие от монометаллических НЧ в ходе этого синтеза не отмечается падения интенсивности поглощения в области дальнего ультрафиолета. На спектре отмечен максимум λ на ~218 нм, сопоставимый с максимумом поглощения НЧ Pd, но более широкий за счет вклада поглощения НЧ Ni. Последние два пика обусловлены наличием атомов палладия в наночастице, а первый имеет максимум сопоставимый с максимумом для монометаллических НЧ Pd, но более широкий, как у НЧ Ni.

За время синтеза обратномицеллярные растворы изменяют свою окраску от прозрачной бесцветной до светло-желтой.

Наночастицы железа (рис. 1) имеют характерные пики в УФ-области с максимумами на 240, 274 и 307 нм, что согласуется с литературными данными [6]. После добавления палладия и формирования биметаллических НЧ Fe/Pd отмечается сильное увеличение интенсивности оптического поглощения в области λ ~ 220 нм и менее выраженные в области от 250 до 320 нм (рис. 2г). На основе этих данных можно сделать предположение о формировании слоя из более мелких НЧ Рd на поверхности НЧ Fe.

Флуоресцентная спектроскопия

Спектр флуоресценции мицеллярного раствора АОТ/изооктан (рис. 3а, АОТ) характеризуется пиками при 314 и 453 нм. При добавлении кверцетина (рис. 3а, Qr) к данному раствору интенсивность флуоресценции последнего уменьшается, но неравномерно в разных областях, приводя к смещению максимумов пиков. Это можно объяснить, например, акцепторным связыванием ионов примесей металлов кверцетином. Экспериментально наблюдается смещение полос оптического поглощения за счет образующихся комплексов по связи ионов Ме с разными группами –OH Qr. Также появляются пики флуоресценции кверцетина на 549 и 416 нм.

После добавления ионов никеля к системе Qr/AOT/изооктан (рис. 3a, Ni) интенсивность пика флуоресценции Or (549 нм) снижается в 3.8 раза. Кверцетин лишь частично связывает ионы никеля в данных условиях (сами по себе ионы никеля уменьшают интенсивность кверцетина при образовании комплекса Qr : Ni = 1 : 2 в условиях насыщения [15]), но при более низкой концентрации ионов никеля формируются комплексы с соотношением 1:1 [16]. Наличие пика кверцетина на 67 день после синтеза говорит о медленной скорости восстановления ионов никеля в данных условиях. Пик с высокой интенсивностью при 338 нм может принадлежать как первичным промежуточным продуктам окисления кверцетина, так и их комплексам с никелем.

Важно отметить, что добавление ионов палладия к системе Qr/AOT/изооктан (рис. 36, Pd) приводит к полному исчезновению пика кверцетина уже в первый день синтеза. Палладий должен тушить флуоресценцию кверцетина сильнее, чем никель. Вначале образуются комплексы с мольным отношением 1 : 1, которые несколько более стабильны, чем комплексы с никелем [16]. Отмечается усиление пика при $\lambda \sim 450$ нм, который можно приписать комплексу ионов палладия с кверцетином и молекулярным кислородом.

При совместном добавлении ионов никеля и палладия (концентрации в 2 раза меньше, чем в предыдущих случаях) (рис. 3в, PdNi) форма спектра в основном близка к форме спектра для палладия, что говорит о преимущественной роли ионов палладия в образовании комплексов и, возможно, в дальнейшем до их восстановления и формирования НЧ. Скорость исчезновения свободного кверцетина в этом случае максимальна. Такое изменение спектров может указывать на

Рис. 3. Спектры флуоресценции растворов ОМР с (а) НЧ Ni; (б) НЧ Pd; (в) НЧ PdNi в день синтеза и через 67 дн.

формирование наночастиц типа ядро/оболочка, где ядром служат НЧ Pd, а оболочка из никеля.

Размеры наночастиц

Размеры наночастиц металлов определялись после их формирования и выдерживания в течение 7 дн., непосредственно перед адсорбцией на носитель. Результаты представлены в табл. 2. В качестве примера рис. 4 представлены топографическое изображение подложки слюды с нанесенными НЧ Pd и их гистограмма распределения по размерам. Можно отметить достаточно узкий разброс НЧ по размерам, характерный для данного метода синтеза при малых значениях коэффициента солюбилизации. НЧ Ni имеют схожие характеристики, а биметаллические НЧ PdNi представлены в виде агрегатов из более мелких наночастиц (в табл. 2 для них указаны только размеры агрегатов, т.к. размеры отдельных НЧ невозможно установить). В табл. 2 приведены оценочные данные по среднему количеству атомов в

OMP	Средний диаметр, нм	Число атомов в НЧ	Концентрация НЧ, нч дм ⁻³
Ni $\omega = 5.0$	1.1	63	1.8×10^{18}
Pd $\omega = 5.0$	1.3	78	1.5×10^{18}
$PdNi \omega = 5.0$	4.4	—	—

Таблица 2. Параметры НЧ

монометаллической наночастице, предполагая, что все ионы восстановлены, а форма частиц сферическая, что рассчитывалось по формуле [17]:

$$N_{\rm ar} = \frac{V_{\rm H} {\rm u}}{V_{\rm a}} = \left(\frac{d_{\rm H} {\rm u}/2}{r_{\rm B3}}\right)^3, \tag{4}$$

где $d_{\rm HY}$ — средний диаметр НЧ, найденный методом ACM, нм, $r_{\rm B3}$ — радиус ячейки Вигнера—Зейтца, нм. Для Pd $r_{\rm B3}$ = 0.152 нм, Ni — 0.138 нм [18]. $N_{\rm ar}$ среднее число атомов металла в одной наночастице.

Средняя концентрация НЧ в растворе, которая удобна для оценки количества каталитических центров нанокомпозита, рассчитывалась по уравнению:

$$c_{\rm HY}(Me) = \frac{c_M^{\rm OMP}(Me)N_{\rm A}}{N_{\rm ar}(Me)},\tag{5}$$

где $c_M^{\text{OMP}}(Me)$ – количество ионов металла Ме, приходящееся на объем ОМР, моль дм⁻³; $N_{\text{ат}}(Me)$ – среднее число атомов в одной НЧ, рассчитанное из данных по АСМ; N_A – число Авогадро.

Приготовление нанокомпозитов

В ходе приготовления нанокомпозитов на основе γ -Al₂O₃ по результатам спектрофотометрического контроля адсорбции НЧ из обратномицеллярного раствора зафиксировано приблизительно двукратное снижение интенсивности поглощения в области локализованного поверхностного плазмонного резонанса НЧ металлов Pd, Ni и биметаллов PdNi (рис. 5). Оптическое поглощение ОМР НЧ Fe/Pd после завершения адсорбции на у-Al₂O₃ снижается до нулевых значений в видимом диапазоне длин волн начиная с $\lambda \sim 250$ нм. Резкое изменение интенсивности ОП ланного образца в области спектра от 190 до 250 нм и ее снижение ниже нулевого значения можно связать с адсорбцией носителем не только НЧ Fe/Pd, но и AOT, полоса поглощения которого также находится в этой же области спектра [8]. При этом интенсивность ОП АОТ в 0.15 М системе состава АОТ/изооктан ниже, чем оптическое поглощение ОМР НЧ Fe/Pd в данном диапазоне длин волн, что позволяет говорить о полной адсорбции НЧ Fe/Pd, зарегистрированных в УФобласти спектра. При адсорбции Ni и PdNi отмечается увеличение интенсивности оптического поглощения на при $\Delta t = 60$ мин для Ni и $\Delta t = 10$ мин для PdNi, а также более быстрое завершение этого процесса по сравнению с Pd.

Теоретическое возможное содержание металла в нанокомпозитах не превышает: 36 мкг/г (3.9×10^{15} нч/г) для Ni/ γ -Al₂O₃, 65 мкг/г (3.6×10^{15} нч/г) Pd/ γ -Al₂O₃ и, соответственно, по 32 и 18 мкг/г палладия и никеля для PdNi/ γ -Al₂O₃, 32 мкг/г пал-

Рис. 4. АСМ-изображение и гистограмма распределения частиц по размерам для НЧ Рd.

ладия и 452 мкг/г железа для Fe/Pd/ γ -Al₂O₃. Об эффективности адсорбции и максимально возможном расчетном содержании НЧ металла в нанокомпозитах можно судить по данным, приведенным в табл. 3. Отметим эффективность использования в процессах адсорбции на носитель достаточно крупных НЧ Fe как транспортных частиц для НЧ палладия, сформированных на их поверхности. Концентрации палладия в исходных растворах монометаллических и биметаллических НЧ сравнимы друг с другом — 21.55 и 12.80 мг дм⁻³ соответственно, а эффективность адсорбции (по доле адсорбированных частиц) в случае биметаллических НЧ Fe/Pd выше в 2 раза.

Определение качественной характеристики удерживания НЧ металлов на поверхности носителя и одновременное удаление лишней органики осуществлялось отмывкой нанокомпозитов нгептаном. На рис. 6 в качестве примера представлены спектры трех последовательных смывов с поверхности адсорбента НЧ Ni и Pd. Отмечается достаточно сильное удерживание наночастиц никеля на поверхности γ -Al₂O₃ и слабое удерживание на нем частиц палладия, что отражается на остаточном содержании HЧ Pd в готовом катализаторе. Нанокомпозит состава PdNi/ γ -Al₂O₃ (рис. 7) проявляет схожие свойства удерживания HЧ с композитом Ni/ γ -Al₂O₃, отличаясь немного сниженной степенью удерживания, а самым сильным удерживанием HЧ из всех рассмотренных обладает образец Fe/Pd/ γ -Al₂O₃ (рис. 7).

ЗАКЛЮЧЕНИЕ

Формирование биметаллической структуры НЧ PdNi подтверждается синергетическим характером усиления оптического поглощения их раствора по сравнению с ОП растворов индивидуальных монометаллических НЧ. Анализ спектров флуоресценции указывает на возможное формирование структуры типа ядро/оболочка, где ядром служит Pd. Использование крупных частиц позволяет повысить эффективность адсорб-

Рис. 6. Спектры смывов с нанокомпозитов на основе НЧ Ni и НЧ Pd. Соответственно *1* – первый смыв, *2* – второй смыв и *3* – третий смыв.

Рис. 7. Спектры смывов с нанокомпозита на основе НЧ PdNi и НЧ Fe/Pd. Соответственно *1* – первый смыв, *2* – второй смыв и *3* – третий смыв.

ции НЧ Pd в форме биметалла Fe/Pd поверхностью гамма-оксида алюминия за счет более сильного связывания. Это увеличивает степень извлечения металлов из растворов [19] поверхностью носителя, что позволяет уменьшить количество используемого дорогостоящего металла, тем самым снизив затраты на производство наноком-

Образец	α, %	Сод в наноко	сержание мета омпозите, мкг	лла /г (ppm)	Содержание металла в нанокомпозите, мкмоль/г			
		Pd	Fe	Ni	Pd	Fe	Ni	
НЧ Pd OMP	43	28	_	_	0.26	_	_	
НЧ Ni ОМР	56	_	_	20	_	_	0.34	
HЧ PdNi OMP	48	15	—	9	0.14	_	0.15	
HH Fe/Pd OMP	93	30	420	_	0.28	7.53	_	

Таблица 3. Расчетное содержание металла в нанокомпозитах

 α – доля адсорбированных НЧ (соответствует проценту падения интенсивности ОП после адсорбции).

позитных материалов на основе рассматриваемых переходных металлов.

БЛАГОДАРНОСТИ

Измерения размеров наночастиц металлов выполнены при использовании оборудования Центра коллективного пользования физическими методами исследования (ЦКП ФМИ) Института физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН).

СПИСОК ЛИТЕРАТУРЫ

- Walther A., Müller A.H.E. // Chemical Reviews. 2013. V. 113(7). P. 5194–5261. https://doi.org/10.1021/cr300089t
- Gilroy K.D., Ruditskiy A., Peng H.-C. et al. // Chemical Reviews. 2016. V. 116(18). P. 10414–10472. https://doi.org/10.1021/acs.chemrev.6b00211
- 3. Сергеев М.О., Ревина А.А., Боева О.А., Жаворонкова К.Н., Золотаревский В.И. // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 1. С. 58-70.
- 4. Chagas C.A., Manfro R.L., Toniolo F.S. // Catal. Lett. 2020. https://doi.org/10.1007/s10562-020-03257-1
- 5. Ревина А.А. Патент РФ № 2312741. Препарат нано-
- размерных частиц металлов и способ его получения. Бюл. Изобр. № 35. 20.12.2007.
- Ревина А.А., Суворова О.В., Павлов Ю.С., Тытик Д.Л. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 5. С. 531–537.
- Horcas I., Fernandez R., Gomez-Rodriguez J.M. et al. // Rev. Sci. Instrum. 2007. V. 78. P.013705. https://doi.org/10.1063/1.2432410

- 8. Патент РФ 2322327. Препарат наноструктурных частиц металлов и способ его получения (2008).
- Ревина А.А., Белякова Л.Д., Паркаева С.А., Суворова О.В., Сергеев М.О., Золотаревский В.И. // Физикохимия поверхности и защита материалов. 2010. Т. 46. № 6. С. 578–583. https://doi.org/10.1134/S2070205110060043
- Sergeev M.O., Revina A.A., Busev S.A., Zolotarevskiy V.I., Zhavoronkova K.N., Boeva O.A. // Nanotechnol. Rev. 2014. V. 3(5). P. 515–525. https://doi.org/10.1515/ntrev-2014-0011
- Creighton A.J., Eadon D.G. // J. Chem. Soc., Faraday Trans. 1991. V. 87(24). P. 3881–3891. https://doi.org/10.1039/FT9918703881
- Teranishi T., Miyake M. // Chem. Mater. 1998. V. 10. P. 594–600. https://doi.org/10.1021/cm9705808
- Shaochun Tang, Sascha Vongehr, Zhou Zheng, Hua Ren, Xiangkang Meng // Nanotechnology. 2012. V. 23. P. 255606. https://doi.org/10.1088/0957-4484/23/25/255606
- 14. Ревина А.А., Магомедбеков Э.П., Веретенникова Г.В. //
- 14. Ревина А.А., магомеобеков Э.П., Веретенникова Г.Б. // Радиохимия. 2018. Т. 60. № 1. С. 60–65.
- 15. Kiana Kakavand, Vahid Niknam, Farnoush Faridbod, Hassan Ebrahimzadeh, Assiyeh Hamidipour // Anal. Bioanal. Electrochem. 2012. V. 4. № 6. P. 635–645.
- Malesev D., Kuntic V. // J. Serb. Chem. Soc. 2007. V. 72. № 10. P. 921–939. https://doi.org/10.2298/JSC0710921M
- Мазалова В.Л., Кравцова А.Н., Солдатов А.В. Нанокластеры: рентгеноспектральные исследования и компьютерное моделирование. М.: Физматлит, 2013. 184 с. ISBN 978-5-9221-1457-8.
- Fengzhang Ren, Ke Cao, Jiangzhuo Ren et al. // J. Comput. Theor. Nanosci. 2014. V. 11. № 2. P. 344–347. https://doi.org/10.1166/jctn.2014.3358
- 19. Цивадзе А.Ю. // Вестн. РАН. 2020. Т. 90. № 4. С. 20-30.