— ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ НА МЕЖФАЗНЫХ ГРАНИЦАХ —

АДСОРБЦИОННЫЕ СВОЙСТВА ФУНКЦИОНАЛЬНОГО ПОРИСТОГО МАТЕРИАЛА НА ОСНОВЕ МЕТАЛЛ-ОРГАНИЧЕСКОЙ СТРУКТУРЫ Zn-BTB

© 2022 г. М. К. Князева^{1,} *, А. А. Фомкин¹, А. В. Школин¹, И. Е. Меньщиков¹, А. Е. Гринченко¹, О. В. Соловцова¹, А. Л. Пулин¹

¹ФГБУН Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский проспект, 31, стр. 4, Москва, 119071 Россия *e-mail: knyazeva.mk@phyche.ac.ru Поступила в редакцию 20.07.2021 г. После доработки 20.09.2021 г. Принята к публикации 29.09.2021 г.

Методом сольвотермального синтеза синтезирована металл-органическая каркасная структура Zn-BTB, обладающая объем микропор $W_0 = 0.67 \text{ см}^3/\text{г}$, эффективным радиусом микропор $x_0 = 0.67 \text{ нм}$, стандартной характеристической энергией адсорбции бензола $E_0 = 18.0 \text{ кДж/моль}$. На основе Терии объемного заполнения микропор проведены расчета адсорбции метана на синтезированном образце Zn-BTB при температурах от 243 до 313 К и давлениях до 35 МПа, а также рассчитаны дифференциальные мольные изостерические теплоты адсорбции. Максимальная адсорбция метана составляет около ~14.5 ммоль/г при давлении 8 МПа и температуре 243 К.

Ключевые слова: металл-органическая каркасная структура, адсорбция, метан, цинк, MOF, Zn, BTB, MOF-177

DOI: 10.31857/S0044185622010119

введение

Метан — основной компонент природного газа (ПГ) является одним из наиболее энергоэффективных источником топлива на сегодняшний день. Преимуществами ПГ являются высокий коэффициент полезного действия, высокая удельная теплота сгорания, экологичность по сравнению с продуктами нефтепереработки и углем, а также относительно низкая стоимость. Часто хранение и транспортировку энергетических газов, в том числе CH_4 осуществляют в сжатом или сжиженном состояниях. Однако такие способы являются небезопасными и требуют определенных условий: высоких давлений или низких температур.

Одним из наиболее энергоэффективных и безопасных способов хранения метана является применение энергонасыщенных адсорбционных систем (ЭНАС). Современными материалами, применяемыми в качестве адсорбентов в ЭНАС могут служить металл-органические каркасные структуры (МОКС или МОГ) [1].

Пористая структура МОКС образуется за счет координирования катионов или кластеров металлов с органическими лигандами, в результате чего возможно получение теоретически бесконечного числа различных материалов с развитой пористой структурой. При этом свойства и текстурные характеристики МОКС адсорбентов зависят во многом от выбора строительных блоков, то есть реагирующих веществ.

Задача аккумулирования метана является одной из наиболее релевантных в области создания и использования новых МОКС. В частности, для этой задачи в ряде работ рассматриваются каркасные пористые структуры на основе двух- или трехвалентных металлов, таких как Cu, Al, Fe [2–4].

Не менее перспективным представляются функциональные пористые материалы с использованием цинка (Zn), которые по данным [5], обладают высокоразвитой структурой для адсорбции метана с объемом микропор $W_0 \sim 0.5 - 0.8$ и высокой удельной площадью поверхности $S_{\rm БЭТ} \sim 1600 \text{ м}^2/\text{г}.$

Наиболее известной структурой на основе Zn и двумерных лигандов на сегодняшний день является MOF-5, с химической формулой Zn₄O(BDC) (где BDC – 1,4-бензолдикарбоксилат) имеющий 2D многоуровневую структуру. МОКС состава Zn-BDC имеет пористую структуру, применяемую для адсорбции энергетических газов, в частности водорода [6].

Однако сочетание в структурах МОГ дидентатных органических лигандов и кластеров двухвалентных металлов не обеспечивает образование развитой трехмерной микропористой структуры, важной для систем аккумулирования газов, например, метана [7]. Следовательно, для решения этой задачи необходима разработка материалов на основе тридентатных лигандов. Среди наиболее известных представителей МОКС на основе Zn и трехмерного лиганда ВТВ, является МОF-177 и MOF-39, каркасы которых имеют различную топологию (геометрию) в зависимости от условий проведения синтеза [8, 9]. Синтез МОКС осуществляют сольвотермальным методом, в котором для координирования органических и неорганических структурных единиц используют растворитель. Следует отметить, что при синтезе МОКС также важную роль играет природа растворителя, от которого зависит топология и прочность синтезируемого каркаса пористого адсорбента. В работе [8] МОF-39 синтезировали с использованием смешанного растворителя DMF/EtOH/H₂O (DMF - N,N'-диметилформамид), а MOF-177 на основе растворителя DMF и N.N'-диэтилформамида (DEF). В работе [9], согласно данным термогравиметрического анализа синтезированная структура MOF-177 на основе DEF показывает термическую стабильность при температуре меньше 100°С. Именно поэтому для повышения термической стабильности каркаса MOF-177, наиболее предпочтительным для синтеза является органический растворитель N,N'диметилформамид.

Структура МОF-177 состоит из октаэдрического карбоксилата цинка и тригонального плоского линкера ВТВ. По данным работы [10] МОF-177 обладает топологией *ant*, стабильной после удаления растворителя трехмерной преимущественно микропористой структурой со структурными параметрами: объемом пор W = 1.89 см³/г, $S_{\rm БЭT} = ~4700$ м²/г, что делает его перспективным для технологии адсорбированного природного газа (АПГ).

Максимальная теоретическая адсорбционная активность МОF-177 по метану при температуре кипения $T_b = 111.66$ К составляет 250–300 л(нтд)/л системы хранения. Эта адсорбционная емкость МОF-177 существенно превосходит требование DOE (Министерство энергетики США) [11] к коммерчески эффективному адсорбенту для энергетических установок транспортных средств.

Несмотря на перспективность применения данного материала, на сегодняшний день его адсорбционные свойства по отношению к метану экспериментально и теоретически изучены слабо. Оценки его адсорбционной активности могут быть сделаны с использованием Теории объемного заполнения микропор (TO3M), что позволяет с высокой точностью оценивать адсорбционные характеристики адсорбентов к газам и парам в широких термодинамических интервалах без проведения трудоемкого эксперимента [12–15]. Поэтому целью данной работы является синтез пористого материала Zn-BTB, на основе неорганической соли цинка, 1,3,5-трис(4-карбоксифенил) бензола (H₃BTB) и органического растворителя DMF, а также теоретическая оценка его адсорбционных свойств по метану с применением TO3M.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Синтез и структурно-энергетические характеристики Zn-BTB

В работе для синтеза МОГ Zn-BTB использовали:

а) 1,3,5-три(4-карбоксифенил)бензол ($H_3BTB - 1,3,5$ -tri(4-carboxyphenyl)benzene), с содержанием основного компонента 97%, производитель Alfa Aesar;

б) гексагидрат нитрата цинка $(Zn(NO_3)_2 \cdot 6H_2O,$ zinc nitrate, hexahydrate), с содержанием основного компонента 98%, производитель Acros Organics;

в) N,N'-диметилформамид (DMF, N,N'-dimethylformamide), с содержанием основного компонента 99.9%, производитель Scharlau.

В лабораторных условиях использовали сольвотермальный метод синтеза: 1,3,5-три(4-карбоксифенил)бензол (Н₃ВТВ) массой 0.3495 г и гексагидрат нитрата цинка Zn(NO₃)₂·6H₂O массой 0.3567 г растворяли отдельно в соотношении 1:1 в органическом растворителе объемом 64 мл. В качестве растворителя использовали N,N'-диметилформамид (ДМФА). Затем раствор тримезиновой кислоты приливали к раствору нитрата алюминия со скоростью ~2 мл/мин. Синтез вели при интенсивном перемешивании (~400 об./мин) на магнитной мешалке при температуре (Т~100-110°С) в течение 4 ч. Полученный раствор бледножелтого цвета помещали в аналитический автоклав с фторопластовым вкладышем и выдерживали в печи при температуре синтеза 110°С в течение 72 ч. Образующийся осадок отделяли от маметодом точного раствора вакуумного фильтрования, многократно промывая подогретым до ~40°С растворителем ДМФА объемом 150 мл. Образцы сушили в вентилируемом сушильном шкафу при комнатной температуре в течение суток, а затем при температуре синтеза 110°С в течение 30 ч.

2.2. Экспериментальные методы исследования

Синтезированные образцы исследовали следующими методами:

Рис. 1. Изотерма сорбции десорбции азота на образце Zn-BTB при 77 К. Светлые символы – адсорбция, темные – десорбция. Сплошные линии – аппроксимация.

Адсорбцию азота на Zn-BTB измеряли с помощью газоанализатора Quantochrome *i*Q. Перед измерением проводили регенерацию образца Zn-BTB при температуре 110°С. Структурно-энергетические характеристики полученного образца определяли по изотерме стандартного пара азота при 77 К. Для определения удельной поверхности $S_{\rm БЭT}$ использовании метод БЭТ [12]; для анализа микропористой структуры — теорию объемного заполнения микропор [12].

Исследование фазового состава проводили методом дифракции рентгеновских лучей на порошковом дифрактометре *Empyrean* фирмы *Panalytical* в диапазоне углов 2θ от 0° до 25°; при этом использовали геометрию фокусировки Брэгга— Брентано и Ni-фильтрацию рентгеновского излучения CuKα.

Исследования элементного состава поверхности адсорбентов, а также их морфологию проводили на сканирующем электронном микроскопе *Quanta* 650 FEG фирмы FEI (США). Исследуемый образец перед измерениями измельчали путем раздавливания исходных гранул, имевших характерные размеры 1–5 мм.

Термогравиметрический анализ осуществляли на термовесах фирмы *TA Instruments* (модель TGA Q500) в потоке инертного газа аргона. Исходный материал в количестве до 100 мг укладывали в лабораторный керамический тигель, подвешивали на специальную тягу весов и опускали в трубчатую печь ТГА, после чего повышали температуру до 800°С. Скорость подъема температуры составляла 10 град/мин.

Рис. 2. Распределение объема пор по их размерам $dW_0/dD = f(D)$ (символы – кружки). Зависимость кумулятивного объема порового пространства от диаметра микропор $W_0 = f(D)$ (символы – треугольники). Расчет методом DFT в модели цилиндрических пор.

2.3. Адсорбтив

В работе использовали метан (CH₄) марки ОСЧ, чистотой 99.999% со следующими физикохимическими свойствами [16]: молекулярная масса: $\mu = 16.0426$ г/моль; нормальная температура кипения $T_b = 111.66$ К; критическая температура $T_c = 190.77$ К; критическое давление $P_s = 4.626$ МПа.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. Структурно-энергетические характеристики Zn-BTB

На рис. 1 представлена изотерма стандартного пара азота при 77 К для образца Zn-BTB.

Как следует из рис. 1, изотерма адсорбции азота имеет Г-образный вид, адсорбция резко возрастает в начальной области давлений до $P/P_s = 0.1$. Петля адсорбционного гистерезиса практически отсутствует, что указывает на предельно малый объем мезопор в пористой структуре адсорбента.

Результаты анализа пористой структуры для исследуемого адсорбента Zn-BTB методом теории функционала плотности NLDFT, для цилиндрической модели пор, по изотерме адсорбции азота при 77 К представлен на рис. 2.

Из рис. 2 следует, что распределение пор по размерам имеет два близких максимума со средним значением диаметра микропор $D \sim 1.43$ нм, т.е. радиуса $x_0 = 0.71$ нм. Объем микропор составляет ~0.67 см³/г. Характеристики качественно совпадают с результатами определения пористой структуры по ТОЗМ (табл. 1).

АДСОРБЦИОННЫЕ СВОЙСТВА ФУНКЦИОНАЛЬНОГО...

Характеристика, размерность	Значение	
Удельная площадь поверхности, $S_{\text{БЭТ}}$, м ² /г	1550	
Удельный объем микропор, W_0 , см 3 /г	0.67	
Удельный объем мезопор, W_{me} , см ³ /г	0.05	
Суммарный объем пор, W_S , см ³ /г	0.72	
Эффективный радиус микропор, <i>x</i> 0, нм	0.63	
Характеристическая энергия адсорбции стандартного пара бензола, E_0 , кДж/моль	18.0	
Характеристическая энергия адсорбции азота Е, кДж/моль	6.0	

Таблица 1.	Структурно-эне	ргетические хар	актеристики	синтезирова	нного образ	ца Zn-BTB
	12 21		1	1	1	1

Таблица 2.	Химический сос	тав поверхности	образца	Zn-BTB
------------	----------------	-----------------	---------	--------

Элемент	Wt, %	At, %	
Углерод (С)	45.55	67.38	
Кислород (О)	21.12	23.45	
Цинк (Zn)	32.91	8.94	
Примеси	0.41	0.23	
Wt – весовые проценты, At – атомные п	роценты		

3.2. Рентгенофазовый анализ

Фазовый состав и структуру образцов изучали методом порошковой рентгеновской дифракции, результаты представлены на рис. 3.

Основные пики на рис. 3 при $2\theta = 7$, 11, 17 согласуются с литературными данными [10]. Пики при $2\theta \sim 5$ и 10 соответствуют наличию растворителя ДМФА в синтезированном образце. На пунктирной кривой эти пики отсутствуют, так как растворитель, содержащийся в порах исходного образца, удаляется в условиях вакуума.

В топологической структуре тетраэдрические кластеры Zn₄O соединяются с тритопическими лигандами BTB для формирования (6,3)-включе-

 $\begin{array}{c} \text{PLOOHENDHUM}\\ 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 \\ 2\theta \end{array}$

Рис. 3. Дифрактограмма структуры Zn-BTB. Пунктирная кривая – образец при 25°С в вакууме. Сплошная кривая – образец при 25°С на воздухе.

ний в топологии *ant* каркаса с большими каналами, частично заполненными растворителем ДМФА.

3.3. Сканирующая электронная микроскопия (СЭМ)

Снимки синтезированного образца Zn-BTB представлены на рис. 4.

Морфология образцов характеризуется ограненными частицами, которые представляют собой кристаллы размером в основном от 30 до 100 мкм или их сростки.

Химический состав поверхности образца Zn-BTB, определенный по результатам сканирующей электронной микроскопии, представлен в табл. 2.

Наибольшее содержание в образце элемента – С (углерода) достигает ~67% Аt. Кроме того, в полученном материале содержится значительное количество кислорода ~23% At, цинка ~9% At и незначительное количество примесей.

3.4. Термогравиметрический анализ

Результат термогравиметрического анализа синтезированного образца Zn-BTB в сравнении с литературными данными аналогичной структуры MOF-177 представлен на рис. 5.

Потеря веса первой стадии синтезированного в работе образца Zn-BTB составляет ~35% при температурах до ~100–160°С до уровня ~65%,

Рис. 4. СЭМ-снимки синтезированного образца Zn-BTB. Масштабная линейка (а) 30 мкм и (б) 90 мкм.

Рис. 5. Термогравиметрические (ТГ) кривые: сплошная линия – синтезированный образец Zn-BTB; пунктирная линия – для MOF-177 по данным [9].

обусловлена десорбцией молекул воды и растворителя из образца.

На образце МОF-177 потеря составляет ~45% при температурах до ~150°С. Резкое падение TГкривой при температуре около ~440°С соответствует началу разложения Zn-BTB, в результате чего образуется остаток в виде оксида цинка, потеря массы при этом составляет ~75%.

Этот анализ показывает, что образец Zn-BTB синтезированный в работе показывает более высокую термическую стабильность (~230°С) по сравнению с аналогичной структурой MOF-177 по литературным данным [9]. Структура MOF Zn-BTB термически деградирует при температуре ~400–480°С. Однако, для активации пористой структуры следует проводить регенерацию образца Zn-BTB при температурах до ~200°С, позволяющих десорбировать физически адсорбированную воду и остатки органического растворителя.

3.5. Адсорбция метана

Расчеты адсорбции метана проводили с использованием теории объемного заполнения микропор Дубинина для интервала температур 243–313 К и давлений 0–35 МПа – потенциально пригодных термодинамических условиях для применения в технологии АПГ. Общее уравнение ТОЗМ – уравнение Дубинина–Радушкевича [12]:

$$a = a_0 \exp(-A/E)^2, \tag{1}$$

где a_0 — предельная величины адсорбции исследуемого газа, [ммоль/г] при давлении P равном давлению насыщенного пара P_s ; E — характеристическая энергия адсорбции по исследуемому газу, [Дж/моль]; A — дифференциальная мольная работа адсорбции, [Дж/моль].

Дифференциальная мольная работа адсорбции рассчитывалась по уравнению:

$$A = RT \ln\left(\frac{f_s}{f}\right),\tag{2}$$

Рис. 6. (а) Изотермы адсорбции метана на адсорбенте Zn-BTB при температуре 243 К (*1*), 273 К (*2*), 298 К (*3*), 313 К (*4*). (б) Изостеры адсорбции метана на адсорбенте Zn-BTB, при значениях адсорбции, ммоль/г: *1* - 1; 2-3; 3-4; 4-5; 5-6; 6-7; 7-8; 8-9; 9-10; *10*-11; *11*-12; *12*-13.

где R — универсальная газовая постоянная, [Дж/(моль K)], T — температура, [K]; $f u f_s$ — летучести соответственно равновесной фазы и насыщенного пара адсорбтива, [Па].

Величину характеристической энергии адсорбции газа *E* рассчитывали через коэффициент аффинности исследуемого газа и стандартного пара (бензола) – $E = \beta E_0$. В свою очередь коэффициент аффинности определялся из отношения

Таблица 3. Расчетные максимальные величины удельной объемной плотности V_f метана в системе аккумулирования на основ Zn-BTB

Т, К	243	273	298	313
<i>V_f</i> , л(НТД)/л	150	140	134	132

парахоров метана П и стандартного пара Π_0 , $\beta = \Pi/\Pi_0 = 70.38/207.1 = 0.341$ [16].

Предельную величину адсорбции рассчитывают по уравнению Дубинина—Николаева:

$$a_0 = a_0^0 \exp[-\alpha (T - T_0)], \qquad (3)$$

где T_0 – температура кипения, [K]; a_0^0 – предельная адсорбция при температуре кипения, [ммоль/г]; α – термический коэффициент предельной адсорбции, $\alpha = 1.305 \times 10^{-3}$ [1/K].

Для определения равновесного давления P_s в области сверхкритических температур была использована линейная зависимость $\ln P_s - 1/T$, экстраполированная в область сверхкритических температур.

Ниже на рис. 6, приведены результаты расчетов адсорбции метана на адсорбенте Zn-BTB.

Как следует из рис. 6 адсорбция метана возрастает во всем интервале давлений и достигает значений в ~14.5, 13.5, 13, 12.8 ммоль/г при температурах 243, 273, 298, и 313 К соответственно. Также на изотермах сорбции можно наблюдать "выход на плато" расчетных данных в области высоких заполнений. В системах адсорбционного аккумулирования газов наиболее показательной характеристикой является величина удельной объемной плотности метана V_f , выраженной в л(НТД газа)/л(системы). Расчетные максимальные величины V_f с учетом кристаллической плотности 0.43 г/см³ материала и без учета газовой фазы в межгранульном пространстве представлены в табл. 3.

3.6. Дифференциальная мольная изостерическая теплота адсорбции

Дифференциальная мольная изостерическая теплота адсорбции рассчитывалась по уравнению В.А. Бакаева, считая, что вкладом адсорбционной деформации можно пренебречь [17, 18]:

$$q_{st} = -RZ \left(\frac{\partial \ln P}{\partial T^{-1}}\right)_a - V_0 \left(\frac{\partial P}{\partial a}\right)_T, \qquad (4)$$

где Z – коэффициент сжимаемости исследуемого газа; R – универсальная газовая постоянная, [Дж/(моль K)], V_0 – удельный приведенный объем системы "адсорбент—адсорбат", [см³/г].

На рис. 7 приведены результаты расчетов изостерической теплоты адсорбции.

Из рис. 7 следует, что дифференциальная мольная изостерическая теплота адсорбции на Zn-BTB падает с ростом адсорбции метана и постепенного заполнения микропор. В области начальных заполнений теплота адсорбции метана на адсорбенте Zn-BTB достигает значений ~20– 22 кДж/моль, что определяется адсорбцией моле-

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 58 № 1 2022

Рис. 7. Дифференциальные мольные изостерические теплоты адсорбции при температурах, К: *1* – 243, *2* – 273, *3* – 298, *4* – 313.

кул метана на наиболее энергетически выгодных адсорбционных центрах по механизму частично локализованной адсорбции. Затем значения теплоты плавно снижаются до ~16 кДж/моль. В области высоких давлений теплота адсорбции продолжает падать, при этом проявляется зависимость от температуры, связанная с неидеальностью газовой фазы Z, а также изменением адсорбционной активности адсорбента и влиянием члена $\left(\frac{\partial P}{\partial a}\right)$ в (4).

выводы

Синтезирована металл-органическая каркасная структура Zn-BTB на основе неорганической соли кристаллогидрата нитрата цинка (Zn(NO₃)₂·6H₂O), лиганда – 1,3,5-три(4-карбоксифенил)бензола и растворителя – N,N-диметилформамида. На основе адсорбционных данных по азоту при 77 К определены структурно-энергетические характеристики микропористой структуры материала – объем микропор $W_0 = 0.67 \text{ см}^3/\text{г}, S_{\text{БЭТ}} = 1550 \text{ м}^2/\text{г}$ и стандартная характеристическая энергия адсорбции (по бензолу) $E_0 = 18.0 \text{ кДж/моль}$. При помощи TГA анализа показано, что синтезированная структура MOF Zn-BTB термически стабильна при температурах вплоть до 230°C.

Оценка адсорбционной активности адсорбента по метану в рамках ТОЗМ при температурах 243—313 К показала, что максимальное значение адсорбции метана составляет около 14.5 ммоль/г (243 К) при давлении 8 МПа, что соответствует удельной объемной плотности метана V_f порядка 150 л(НТД)/л и указывает на потенциальную перспективность материала для применения в системах аккумулирования природного газа. Рассчитанные дифференциальные мольные изостериче-

ские теплоты адсорбции метана до 22 кДж/моль указывают на высокую энергетику процесса адсорбции метана в исследуемой МОКС, что может свидетельствовать о перспективности данного материала для ЭНАС аккумулирования метана.

Работа выполнена по государственному заданию, тема № 01201353185 с использованием оборудования Центра коллективного пользования ИФХЭ РАН.

СПИСОК ЛИТЕРАТУРЫ

- Цивадзе А.Ю., Аксютин О.Е., Ишков А.Г., Меньщиков И.Е., Фомкин А.А., Школин А.В., Хозина Е.В., Грачев В.А. // Успехи химии. 2018. Т. 87. № 10. С. 950.
- Князева М.К., Соловцова О.В., Цивадзе А.Ю., Фомкин А.А., Школин А.В., Меньщиков И.Е., Пулин А.Л., Ширяев А.А., Высоцкий В.В., Киселев М.Р. // Журн. неорганической химии. 2019. Т. 64. № 12. С. 1271. (Knyazeva M.K., Solovtsova O.V., Tsivadze A.Yu., Fomkin A.A., Shkolin A.V., Men'shchikov I.E., Pulin A.L., Shiryaev A.A., Vysotskii V.V., Kiselev M.R. // Russian J. Inorganic Chemistry. 2019. V. 64. № 12. Р. 1507.)
- 3. Князева М.К., Цивадзе А.Ю., Соловцов О.В., Фомкин А.А., Прибылов А.А., Школин А.В., Пулин А.Л., Меньщиков И.Е. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 1. С. 11. (Knyazeva M.K., *Tsivadze A.Yu., Solovtsova O.V., Fomkin A.A., Pribylov A.A., Shkolin A.V., Pulin A.L., Men'shchikov I.E.* // Protection of Metals and Physical Chemistry of Surfaces. 2019. V. 55. № 1. Р. 9.)
- Князева М.К., Цивадзе А.Ю., Фомкин А.А., Школин А.В., Соловцова О.В., Прибылов А.А., Пулин А.Л., Яковлев В.Ю., Меньщиков И.Е. // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 4. С. 350. (Knyazeva M.K., Tsivadze A.Yu., Fomkin A.A., Shkolin A.V., Solovtsova O.V., Pribylov A.A., Pulin A.L., Yakovlev V. Yu., Men'shchikov I.E. // Protection of

Metals and Physical Chemistry of Surfaces. 2020. V. 56. № 4. P. 682.)

- Zhao D., Yuan D., Zhou H.-C. // Energy Environ. Sci. 2008. V. 1. P. 222.
- Alesaadi S. J., Sabzi F. // International J. Hydrogen Energy. 2015. V. 40. № 4. P. 1651.
- Цивадзе А.Ю., Аксютин О.Е., Ишков А.Г., Князева М.К., Соловцова О.В., Меньщиков И.Е., Фомкин А.А., Школин А.В., Хозина Е.В., Грачев В.А. // Успехи химии. 2019. Т. 88. № 9. С. 925.
- Caskey Stephen R., Wong-Foy Antek G., Matzger Adam J. // Inorg. Chem. 2008. V. 47. P. 7751.
- Chae H.K., Siberio-Pérez D.Y., Kim J., Go Y.-B., Eddaoudi M., Matzger A.J., O'Keeffe M., Yaghi O.M. // Nature. 2004. V. 427. P. 523.
- Zhang Y.-B., Furukawa H., Ko N., Nie W., Park H.J., Okajima S., Cordova K. E., Deng H., Kim J., Yaghi O.M. // J. Am. Chem. Soc. 2015. V. 137. P. 2641.

- 11. *Li B., Wen H.-M., Zhou W., Xu J.Q., Chen B.* // Chem. Elsevier Inc. 2016. P. 557–580.
- 12. *Дубинин М.М.* Адсорбция и пористость. М.: ВАХЗ, 1972.
- Men'shchikov I.E., Fomkin A.A., Tsivadze A.Y. et al. // Prot. Met. Phys. Chem. Surf. 2015. V. 51. P. 493.
- 14. *Tsivadze A.Y., Aksyutin O.E., Ishkov A.G. et al.* // Prot. Met. Phys. Chem. Surf. 2016. V. 52. P. 24.
- Chugaev S.S., Fomkin A.A., Men'shchikov I.E. et al. // Prot. Met. Phys. Chem. Surf. 2020. V. 56. P. 897.
- 16. *Кельцев Н.В.* Основы адсорбционной техники. М.: Химия, 1976.
- 17. *Бакаев В.А.* // Изв. АН СССР. Сер. хим. 1971. № 2. 2648.
- 18. Fomkin A.A. // Adsorption. 2005. V. 11. P. 425.