НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 620.22:669.094.3

СТРУКТУРА И ОКАЛИНОСТОЙКОСТЬ ПОРОШКОВЫХ КОМПОЗИТОВ "СИЛИЦИД ТИТАНА Ті₅Si₃-ТИТАНОВАЯ СВЯЗКА"

© 2022 г. Г. А. Прибытков^{1,} *, М. Г. Криницын¹, В. В. Коржова¹, И. А. Фирсина¹, Е. Н. Коростелева¹

¹ФГБУН "Институт физики прочности и материаловедения Сибирского отделения Российской академии наук" (ИФПМ СО РАН), просп. Академический, 2/4, Томск, 634055 Россия

> **e-mail: gapribyt@mail.ru* Поступила в редакцию 12.03.2021 г. После доработки 09.06.2021 г. Принята к публикации 29.09.2021 г.

В режиме безгазового горения порошковых смесей титана и кремния синтезированы и исследованы металломатричные композиты "силицид титана Ti_5Si_3 — титановая связка. Структура композитов состоит из силицидных зерен, разделенных прослойками титановой связки толщиной, зависящей от содержания титана в реакционных смесях. При окислении на воздухе при температурах до 1000°С происходит преимущественное окисление титановой связки с образованием оксида титана TiO_2 (рутил).

Ключевые слова: титан, силицид титана, безгазовое горение, металломатричный композит, структура, окалиностойкость

DOI: 10.31857/S0044185622010168

введение

Сплавы титана широко используются в качестве конструкционных в судостроительной, аэрокосмической, химической промышленности благодаря коррозионной стойкости и высокой удельной прочности, в том числе при повышенных температурах [1, 2]. Недостатками титана и его сплавов является низкая износостойкость в трибосопряжениях и при воздействии абразива, а также высокая скорость окисления при нагреве на воздухе выше 400°С [3]. Целью легирования титана является, в основном, повышение прочностных свойств, что достигается за счет твердорастворного упрочнения. Влияние такого легирования на износостойкость и коррозионную стойкость, в большинстве случаев слабое. В последние годы ведутся интенсивные исследования влияния легирования кремнием, бором и углеродом на механические свойства титана и его сплавов. Небольшие (до 5%) добавки этих элементов приводит к образованию дисперсных выделений тугоплавких соединений (Ti₅Si₃, TiB или TiC), которые увеличивают прочность при одновременном снижении пластичности [4, 5]. Легированные неметаллическими элементами сплавы получают либо литьем [6, 7], либо с применением порошковых технологий, среди которых наиболее часто используют изостатическое горячее прессование (HIP) [8] и искровое плазменное

спекание (SPS) [9]. При всех применяемых технологиях получения титановых сплавов в качестве присадок обычно используют не чистые кремний, углерод или бор, а тугоплавкие соединения (B_4C , TiB₂, SiC, SiN₄). Эти соединения при высоких температурах превращаются в борид, карбид или силицид, находящиеся в равновесии с β -титаном. При использовании B_4C или SiC получают титановый сплав с гибридным упрочнением: частицами моноборида и карбида титана для B_4C или силицида и карбида титана для SiC.

Наряду с упрочнением дисперсные выделения указанных тугоплавких соединений положительно влияют на окалиностойкость титановых сплавов. Согласно [10, 11] скорость окисления литых титановых сплавов с содержанием 10 об. % (TiB + TiC) частиц примерно вдвое меньше в интервале 700–1000°С. При этом отмечается, что положительное влияние моноборида и карбида титана на окалиностойкость титана ограничено недостаточной стойкостью к окислению этих соединений.

Более перспективными в отношении влияния на стойкость к окислению представляются силициды титана, в частности Ti_5Si_3 , который всегда присутствует в титановых сплавах, легированных кремнием [12]. Введение 1.4% кремния в сложнолегированный титановый сплав в 1.5–2 газа уменьшает скорость параболического роста про-

СТРУКТУРА И ОКАЛИНОСТОЙКОСТЬ ПОРОШКОВЫХ

Целевой состав СВС продукта	Состав реакционных смесей мас. %		
	Ti	Si	
Ti ₅ Si ₃	73.97	26.03	
Ті ₅ Sі ₃ + 10 об. % Ті	76.71	23.29	
Ті ₅ Si ₃ + 20 об. % Ті	79.39	20.61	
Ті ₅ Si ₃ + 30 об. % Ті	82.04	17.96	
Ті ₅ Sі ₃ + 40 об. % Ті	84.68	15.32	

Таблица 1. Шихтовый состав реакционных смесей и целевой состав продуктов

дуктов при окислении на воздухе при 700°С до 250 ч [13]. Силициды металлов имеют высокую стойкость к окислению [14] благодаря образованию на их поверхности плотной окалины SiO₂, препятствующей проникновению кислорода к металлической поверхности. Силициды титана широко используются в качестве барьерных покрытий на титане и его сплавах. Эти покрытия наносятся различными способами: силицированием при высокотемпературной выдержке в порошке кремния [15, 16], оплавлением лазером слоя из порошковой смеси Ті и Si, нанесенной на поверхность [17]. В работе [18] получали толстое покрытие, состоящее из наружного слоя силицида Ti₅Si₃ и нижележащего слоя эвтектики, который обеспечивал прочное сцепление покрытия с титановой подложкой. Покрытие получали в процессе экзотермической реакции синтеза в нанесенной на поверхность порошковой смеси состава, соответствующего силициду Ti₅Si₃.

Силицидные покрытия на титане склонны к растрескиванию из-за присущей силицидам хрупкости [14] и из-за различия коэффициентов теплового расширения с подложкой. Поэтому представляют интерес композиционные покрытия, состоящие из силицидных включений в пластичной титановой матрице. Целью настоящей работы было исследование структуры и стойкости к окислению при нагреве на воздухе композиционных порошков Ti₅Si₃—Ti матрица, полученных самораспространяющимся высокотемпературным синтезом (СВС) из порошковых смесей титана и кремния [19]. Композиционные порошки со структурой металломатричного композита удобно использовать для нанесения покрытий методами наплавки [20] или напыления [21]. Полученные покрытия имеют более однородную структуру и стабильные свойства, по сравнению с покрытиями, полученными с применением смесей из элементарных порошков [22].

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Для проведения синтеза были приготовлены реакционные смеси составов, указанных в табл. 1. Там же приведен расчетный целевой состав продуктов синтеза (при условии образования при синтезе силицида Ti₅Si₃ стехиометрического состава). Реакционные смеси готовили из порошков титана (ТПП-8; <160 мкм; 99.4%) и кремния (Kp-00; <40 мкм; 99.45%). Порошки смешивали 4 ч всухую и прессовали в цилиндрические образцы $\emptyset20 \times 25$ мм пористостью 32–36%. Синтез проводили в герметичном реакторе в среде аргона с избыточным давлением около 0.5 атм. Горение инициировали нагревом поджигающей таблетки молибденовой спиралью, через которую пропускали электрический ток. Полученный рыхлый спек из продуктов синтеза дробили с рассевом на фракции.

Для испытания на стойкость к окислению на воздухе использовали фракцию 80–200 мкм. Пробы порошка насыпали слоем толщиной 3–5 мм в ванночки, изготовленные из фольги из нержавеющей стали 12Х18Н9Т. Ванночки с порошком и пустую ванночку помещали в печь СНОЛ, предварительно разогретую до конкретной температуры и выдерживали 2 ч. Привес с точностью до 1 мг определяли взвешиванием ванночек до и после выдержки в печи. Для исключения ошибки, вносимой окислением стальных ванночек, из суммарного привеса вычитали привес пустой ванночки.

Исходные и окисленные порошки исследовали на оборудовании Центра коллективного пользования "Нанотех" ИФПМ СО РАН методом рентгеноструктурного анализа (дифрактометр (ДРОН-3, Си K_{α} -излучение) и растровой электронной микроскопии (EVO 50, Zeiss, Germany). Образцы для металлографического исследования готовили шлифовкой и полировкой алмазными пастами гранул СВС продукта, залитых в эпоксидную смолу.

Рис. 1. Рентгенограммы продуктов синтеза в реакционных смесях титана и кремния. Целевое содержание (об. %) титановой связки: 1 - 10%; 2 - 20%; 3 - 30%; 4 - 40%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Фазовый состав и микроструктура исходных СВС порошков

Согласно результатам рентгеноструктурного анализа (рис. 1) продукты синтеза содержат две фазы: силицид титана Ti_5Si_3 и непрореагировавший титан, который находился в реакционной порошковой смеси в избытке.

Микроструктура композитов, синтезированных из смесей, различающихся элементным составом, показана на рис. 2, а на рис. 3 и 4 приведены карты распределения титана и кремния, с помощью которых были идентифицированы структурные составляющие на рис. 2. Силицидные зерна в структуре всех продуктов СВС окружены светлыми прослойками титановой связки. При увеличении содержания титановой связки толщина прослоек увеличивается, а размер силицидных зерен уменьшается. Это является следствием уменьшения температурного интервала существования жидкометаллического раствора, в котором происходит рост силицидных зерен [19]. Изменяется также и морфология силицидных включений (рис. 2). При содержании титановой связки 10 и 20% зерна преимущественно равноосные. В композите с 30% связки появляются зерна вытянутой формы, а в композите с 40% связки наряду с равноосными имеется много игольчатых силицидных включений (рис. 2г). Эта неоднородность структуры продукта синтеза объясняется пространственной неоднородностью концентрации жидкого Ti-Si раствора, из которого кристаллизуются силицидные зерна. В областях с концентрацией меньше средней возникают немногочисленные силицидные зародыши, которые беспрепятственно растут, приобретая характерную для Ti_5Si_3 вытянутую форму.

Кинетика и фазовый состав продуктов окисления

На рис. 5 приведены результаты испытаний на окисление СВС композиционных порошков силицид Ti₅Si₃ – титановая связка. Относительный привес (отношение прибавки веса к начальному) после выдержки при 600°С не превышает 5% и не зависит от состава порошка. Прогрессирующее увеличение привеса с ростом температуры начинается с 700°С. Относительный привес тем больше, чем больше содержание титановой связки в порошке. Это означает, что происходит преимущественное окисление титана. Привес титанового порошка после окисления при 900 и 1000°C не различается. Это является признаком полного израсходования титана в реакции окисления. Привес порошка из силицида в интервале 600-1000°С увеличивается незначительно.

Рентгенограммы продуктов окисления порошков при 900°С приведены на рис. 6, а результаты их расшифровки — в табл. 2. Согласно результатам рентгенофазового анализа (**РФА**) продукты окисления, кроме исходных фаз (титан и силицид), содержат единственный окисел титана TiO₂ (рутил). Наложение линий на рентгенограммах от различных фаз затрудняет точность определения количественного содержания, поэтому в табл. 2 приведены средние значения с указанием разброса. Из-за большого разброса указанные

Рис. 2. Микроструктура композиционных порошков Ti_5Si_3 —Ti связка. Объемное содержание титановой связки: (a) 10%; (b) 20%; (b) 30%; (г) 40%.

Электронное изображение 1

Ti Ka 1

Si Ka 1

Рис. 3. Карты распределения элементов в сечении гранулы CBC композита Ti_5Si_3-10 об. % Ті.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 58 № 1 2022

Электронное изображение 1

Si Ka 1

Рис. 4. Карты распределения элементов в сечении гранулы CBC композита Ti₅Si₃ - 40 об. % Ti.

Рис. 5. Окисление СВС порошков при 2-х часовой выдержке на воздухе при различных температурах.

средние значения нельзя считать надежными и достоверными, а поэтому какого либо влияния исходного фазового состава порошков на фазовый состав после окисления не выявлено. Остаточное содержание титана после окисления для всех образцов не превышает 2.7 об. %. Возможности точного количественного определения фазового состава исследованных нами порошков дисперсностью 80–200 мкм методами рентгеноструктурного анализа ограничены также тем, что глубина анализируемого слоя для исследованных нами порошков не превышает 23 мкм

Окисленные порошки	Ti ₅ Si ₃ (29-1362)*	TiO ₂ (21-1276)*	Ti (5-682)*
Титан ТПП-8	_	75.0	25.0
Ti ₅ Si ₃	72.1 ± 15.7	28.0 ± 15.7	_
$Ti_5Si_3 + 10\% Ti$	56.9 ± 20.7	42.4 ± 21.3	0.7 ± 0.7
$Ti_5Si_3 + 20\% Ti$	62.0 ± 17.7	36.3 ± 19.3	1.7 ± 1.7
$Ti_5Si_3 + 30\% Ti$	57.9 ± 20.1	39.4 ± 22.2	2.7 ± 2.1
$Ti_5Si_3 + 40\%$ Ti	63.5 ± 15.9	33.8 ± 17.3	2.7 ± 1.2

Таблица 2. Относительное содержание фаз (об. %) в CBC-порошках, окисленных 2 ч на воздухе при 900°C

* В скобках указаны номера карточек фаз из картотеки ASTM.

[19]. То есть, полученные нами результаты определения фазового состава методом РФА относятся к поверхностному слою порошков, а не к интегральному фазовому составу. Это подтверждается, например, тем, что согласно результатам РФА при окислении силицида при 900°С он почти на треть превращается в оксид (табл. 2). Однако привес при этом составляет около 4% (рис. 5).

выводы

1. Продукты синтеза в режиме волнового горения смесей порошков титана и кремния, содержащих избыток титана, имеют структуру металломатричного композита, в которой силицидные зерна разделены прослойками титана с толщиной, зависящей от содержания титана в реакционных смесях.

Рис. 6. Рентгенограммы продуктов окисления CBC-порошков 2 ч на воздухе при 900°С. Целевое содержание (об. %) титановой связки: 1 - 0% (Ti₅Si₃); 2 - 10%; 3 - 20%; 4 - 30%; 5 - 40%.

2. Единственным продуктом окисления композиционных порошков " Ti_5Si_3 —Ti связка" является TiO_2 (рутил), который образуется преимущественно при окислении титановых прослоек, разделяющих силицидные зерна.

3. Окалиностойкость порошков ухудшается с увеличением содержания титановой связки, что делает нецелесообразным применение порошков для нанесения защитных покрытий на титане.

Авторы благодарят В.П. Кривопалова за помощь при проведении синтеза порошков и испытаний на окалиностойкость.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 17-19-01425-П).

СПИСОК ЛИТЕРАТУРЫ

- 1. Горынин И.В., Чечулин Б.Б. Титан в промышленности. М.: Маш-е, 1990. 400 с.
- 2. Zwikker Ulrich. Titan und Titanlegirungen. Springer-Verlag. 1974. 717 p.
- 3. *Головко Э.И*. Высокотемпературное окисление металлов и сплавов. Справочник. Киев: Наук. Думка. 1980. 296 с.
- 4. *Tjong S.C., Mai Yiu-Wing* // Composites Science and Technology. 2008. V. 68. P. 583–601.
- Hayat M.D., Singh H., He Z., Cao P. // Composites Part A. 2019. V. 121. P. 418–438.
- Wang M., Lu W., Qin J. et al. // Scripta Materialia. 2006. V. 54. P. 1955–1959.
- Sun S., Wang M., Wang L. et al. // Composites: Part B. 2012. V. 43. P. 3334–3337.
- Jiao Y., Huang L.J., Geng L. et al. // Materials Science & Engineering A. 2017. V. 701. P. 359–369.
- Benamor A., Hadji Y., Chiker N. et al. // Ceramics International. 2019. V. 45. P. 21781–21792.
- 10. *Yadav P., Lee D.B.* // Advances in Technology Innovation. 2017. V. 2. № 4. P. 130–132.
- 11. *Kim Y.J., Yadav P., Hahn J. et al.* // Metals and Materials International. 2019. V. 25. P. 627–632.
- Huang X., Gao Y., Li Q. et al. // Corrosion Science. 2021. V. 181. P. 109235.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 58 № 1 2022

- 13. *Tkachenko S., Datskevich O., Dvorak K., Kulak L. //* J. Alloys and Compounds. 2017. V. 694. P. 1098–1108.
- 14. Mitra R. // Int. Mater. Rev. 2006. V. 51. P. 13-64.
- 15. *Liang W., Zhao X.G.* // Scripta mater. 2001. V. 44. P. 1049–1054.
- Vojtech D., Kubatik T., Pavlickova M., Maixner J. // Intermetallics. 2006. V. 14. P. 1181–1186.
- Wu Y., Wang A.H., Zhang Z. et al. // Applied Surface Science. V. 305. P. 16–23.
- 18. Riley D.P. // Intermetallics. 2006. V. 14. P. 770-775.

- Прибытков Г.А., Криницын М.Г., Коржова В.В. // Химическая физика и мезоскопия. 2020. Т. 22. № 3. С. 269–280.
- Krinitcyn M., Pribytkov G., Korzhova V., Firsina I. // Surface and coatings technology. 2019. V. 358. P. 706– 714.
- Pribytkov G.A., Kalita V.I., Komlev D.I. et al. // Inorganic materials: Applied research. 2018. V. 9. № 3. P. 442–450.
- 22. Fomin V.M., Golyshev A.A., Kosarev V.F. et al. // Phys. Mesomech. 2020. V. 23. № 4. P. 291–300.