ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ, 2022, том 58, № 2, с. 155–162

__ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ _____

УДК 541.182

СИНТЕЗ И МОДИФИКАЦИЯ УПОРЯДОЧЕННЫХ КРЕМНЕЗЕМНЫХ МАТЕРИАЛОВ

© 2022 г. Т. Ф. Кузнецова^{1, *}, Ю. Д. Саука¹

¹Институт общей и неорганической химии НАН Беларуси, ул. Сурганова, 9/1, Минск, 220072 Беларусь *e-mail: tatyana.fk@gmail.com Поступила в редакцию 28.02.2020 г. После доработки 20.09.2021 г.

Принята к публикации 06.11.2021 г.

Низкотемпературный синтез упорядоченных мезопористых силикатов, модифицированных *d*-металлами *in situ*, осуществлен золь—гель методом при постоянном молярном соотношении кремнезема и цетилпиридиниевого темплата и при различных значениях pH и концентраций (оксо)солей металлов. Методом низкотемпературной адсорбции—десорбции азота изучены адсорбционные свойства и текстура полученных металлосиликатов. Показано, что хромо-, цирконо- и ванадосиликаты с низким и средним содержанием металла (до *Me*/Si $\approx 25/75$ мол. %) в большей или меньшей степени обладают свойствами мезопористого молекулярного сита. Отличия в свойствах металлосиликатов связаны с особенностями введения различных гетероатомов в кремнеземный каркас и с образованием их внекаркасных разновидностей.

DOI: 10.31857/S0044185622020115

введение

Несмотря на возросший за последние годы интерес к исследованию упорядоченных кремнеземных мезопористых материалов, во многом способствовавший решению проблемы диффузии, ограничивающей производительность цеолитов, названные вещества по-прежнему требуют уточнения свойств и комплексной характеристики. Успешный синтез мезопористых молекулярных сит силикатной природы (M41S, SBA-15 и др.), обладающих уникальными текстурными свойствами, открыв новые возможности для адсорбции и гетерогенного катализа, одновременно выявил проблемы таких материалов – химическую инертность поверхности, аморфность стенок пор, недостаточную термическую и гидротермальную стабильность [1-6]. Известно, что массоперенос в цеолитах или похожих материалах, когда размер пор соизмерим с газокинетическими диаметрами "гостевых" молекул, обычно осуществляется в конфигурационном диффузионном режиме по молекулярно-ситовому механизму [7]. Диффузия в микропорах цеолитов очень мала, зависит от размера и формы молекул, концентрации вещества и характеризуется высокой энергией активации (до 100 кДж/моль). Молекулы постоянно взаимодействуют с поверхностью, и вследствие ограничения диффузии лишь часть цеолита оказывается каталитически эффективной. Коэффициент конфигурационной диффузии составляет около $10^{-12}-10^{-18}$ м²/с, что примерно на 10 порядков ниже коэффициента кнудсеновской диффузии, осуществляемой в порах диаметром от 2 до 50 нм [7], в которых частота столкновений молекул со стенками пор превышает частоту их взаимных столкновений в отличие, например, от макропор с диаметром более 50 нм, в которых преобладает молекулярная диффузия, и столкновения между молекулами происходят гораздо чаще, чем столкновения со стенками пор.

Согласно [8, 9], эффективность использования катализатора задается фактором эффективности η:

$$\eta = th\Phi/\Phi,\tag{1}$$

где Ф – модуль Тиле, являющийся для реакции первого порядка количественной мерой влияния массопереноса в порах катализатора:

$$\Phi = l(k/rD_e)^{1/2},$$
(2)

где l — длина диффузионного пути; k — константа скорости реакции; r — средний радиус поры; D_e — коэффициент эффективной диффузии.

По уравнениям (1) и (2), высокий модуль Тиле $(\Phi \to \infty, \eta \to 1/\Phi)$ при больших значениях константы скорости или глубины поры, малых значениях коэффициентов диффузии или радиусов пор свидетельствует о низкой эффективности ка-

тализатора. Чем меньше Φ ($\Phi \rightarrow 0, \eta \rightarrow 1$), тем фактор эффективности η выше. При больших значениях Ф скорость химической реакции велика, и основная часть реагента расходуется на начальном участке поры. Поскольку в глубину микропоры реагент практически не поступает, то часть активных центров остается для него не доступной, и диффузия исходного вещества становится лимитирующей стадией. В соответствии с представлениями о применимости модуля Тиле и фактора эффективности для цеолитных катализаторов [8, 9] коэффициент $\eta = 1$ в отсутствие диффузионных ограничений и при полном использовании каталитического потенциала. Если $\eta < 1$ и равен, например 0.25, то лишь четверть объема катализатора эффективна.

Транспортные ограничения отрицательно влияют не только на активность, но и на селективность катализатора, а также сокращают срок его службы. В соответствии с уравнением (2) стратегия повышения каталитической эффективности при постоянном значении константы скорости k заключается либо в сокращении диффузионного пути l, либо в повышении эффективности диффузии D_e в порах, что может быть реализовано при использовании мезопористых молекулярных сит.

Выбор и оптимизация мезопористых цеолитов в практических приложениях связаны. прежде всего, с расширением их применения в гетерогенном катализе. Это является причиной поиска альтернативы цеолитоподобным силикатным материалам, в качестве которой предлагаются представители нового класса комбинированных твердофазных клатратных соединений, например металлосиликатной природы, относящиеся в основном к мезопористым цеолитам. Мезопористые молекулярные сита класса M41S, объединяющие силикаты с гексагональной, кубической или пластинчатой упаковкой цилиндрических пор, обнаруживают узкие распределения пор по размерам, аналогичные классическим цеолитам, но с преобладающим эффективным размером от 2 до 50 нм, высокими удельными значениями площади поверхности ≥1000 м²/г и объема пор ≈1.0 см³/г и значительными гидро- и термостабильностью [10-12]. Начальный член этого семейства — мезопористый материал МСМ-41 по химическому составу является аморфным оксидом кремния(IV) с терминальными ОН-группами, в котором однородные поры объединены в надмолекулярную решетку с единой регулярной геометрией и дальним порядком. Вещество МСМ-41 демонстрирует рентгеновскую дифракцию из трех наиболее заметных пиков в области малых брегговских углов при d-значениях ($d_{100} = 3.98$, $d_{110} = 2.29, d_{200} = 1.98$ нм), отражающих расстояния "от поры к поре" [10, 13], и в этом смысле его

пористая структура является "кристалличной". Согласно *IUPAC* [10], его состав и строение после прокаливания схематически описываются "кристаллохимической формулой":

$[Si_n O_{2n}]_h \{3[amorphous]\}_n \{1[001](3.7)\}(H), \quad (3)$

где символ (H) относится к гексагональной кристаллической системе, а левые нижние индексы $_h$ и $_p$ — к аморфному оксиду кремния(IV) или поре соответственно (англ. "*Hexagonal*", "*host*" и "*pore*"). Одномерная пористая система выстроена гексагонально упакованными параллельными цилиндрическими капиллярами [001] с эффективным диаметром 3.7 нм.

Синтез мезопористых молекулярных сит осуществляют, как правило, гидротермальным методом на алкилтриметиламмониевых или алкилпиридиниевых шаблонах, используя различные прекурсоры оксида кремния(IV), от коллоидного кремнезема до тетраэтоксиортосиликата, в присутствии разнообразных противоионов, глинозема и каталитически активных металлов, влияющих на свойства стенок пор [11–14]. Последнее обстоятельство не только открывает серьезные перспективы для новых каталитических реакций, помимо селективного окисления и крекинга, но и обращает внимание исследователей на способность мезопористых молекулярных сит генерировать свободные радикалы в присутствии следовых количеств кислорода и влиять на каталитическую активность в реакциях, катализируемых кислотами.

Данная работа посвящена развитию низкотемпературного синтеза мезопористых силикатов, содержащих *d*-металлы и обладающих свойствами мезопористых молекулярных сит класса *M*41*S*. Цель работы — изучение адсорбционных характеристик и текстуры полученных материалов с перспективой выявления новых областей их применения в сорбции и катализе. Исходя из задачи, адсорбционный метод исследования был выбран как наиболее информативный среди иных методов изучения текстуры, изменяющейся посредством заполнения пустот, выравнивания заряда поверхности, стабилизации структурных единиц и т.д.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных веществ использовали химически чистые (оксо)соли хрома, циркония, ванадия и олигомерные формы оксида кремния(IV) в виде жидкого стекла с концентрацией SiO_2 5.5 мас. %. Считали, что вид аниона в соли металла не влияет на текстуру получаемого продукта. Низкотемпературный синтез упорядоченных мезопористых силикатов, модифицированных *d*-металлами *in situ*, осуществляли золь—гель методом при постоянном молярном соотноше-

нии кремнезема и цетилпиридиниевого темплата и при различных молярных соотношениях *Me*/Si [12]. В качестве темплата использовали хлорид цетилпиридиния в мицеллярной форме. Для нейтрализации щелочи применяли 35%-ную серную кислоту. Добавленную к реакционной смеси соль металла гидролизовали, доводя раствором NH₃·H₂O до фиксированных значений рН (от 3 до 10 единиц рН). Осадок отделяли и высушивали на воздухе, суспендировали в растворе сульфата аммония и дважды в растворе NH₃ · H₂O, после чего двукратно промывали дистиллированной водой. Полученный ксерогель прокаливали в муфельной печи при 923 К в течение 2 ч. Текстуру образцов оценивали удельными характеристиками объема пор и площади поверхности, вычисленными из изотерм низкотемпературной адсорбции-десорбции азота. Изотермы измеряли объемным методом на анализаторе площади поверхности и пористости ASAP 2020MP. Удельную поверхность определяли методом БЭТ (Авет), площадь внешней поверхности (A_{ext}) – сравнительным методом *t*-графика, среднюю статистическую толщину t адсорбционной пленки – по уравнению Гаркинса-Юры:

$$t = (n/n_m)\sigma,\tag{4}$$

где n/n_m — число статистических монослоев в пленке; n_m — емкость монослоя в молях адсорбата; σ — толщина одного слоя, равная для азота при 77 К 0.354 нм в предположении плотнейшей гексагональной упаковки молекул в адсорбционной пленке.

Анализируемую изотерму перестраивали в t-график в виде функции n = f(t). Замена p/p_0 на t позволяла проводить сравнение изотермы и стандартной t-кривой. Внешнюю площадь поверхности (A_{ext}) в расчете на единицу массы твердого тела получали как разность удельной поверхности, по БЭТ, и площади поверхности микропор (A_{micro}), вычисленной t-методом:

$$A_{ext} = A_{RET} - A_{micro}.$$
 (5)

Методом одной точки, по Гурвичу, рассчитывали объем пор (V_{sp}). Десорбционный кумулятивный объем ($V_{BJH des}$) группы пор диаметром в диапазоне от 1.7 до 300 нм определяли методом *BJH* (*Barrett–Joyner–Halenda*). Для описания реальной текстуры образцов использовали модель *NLDFT* (англ. *Nonlocal Density Functional Theory*). Образцы перед анализом вакуумировали при температуре 523 К и остаточном давлении 133.3 × 10⁻³ Па в течение 2 ч.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1–3 приведены линейные изотермы низкотемпературной сорбции азота и кривые

Рис. 1. Изотермы низкотемпературной адсорбциидесорбции азота и *NLDFT*-распределение пор по размеру для хромосиликатов, полученных при молярном соотношении Cr/Si (%), равном 5/95, и различном значении pH: 803 – 3; 804 – 5; 807 – 8; 808 – 10.

NLFDT-распределения пор образцов SiO₂ по размеру. Изотермы низкотемпературной адсорбциидесорбции азота имеют черты изотерм типа IV(*b*), по *IUPAC* [15], с характерным резким увеличением количества адсорбированного азота при относительном давлении $p/p_0 \approx 0.2-0.3$, присущим упорядоченным мезопористым материалам класса *M*41*S*. Всем изотермам свойственен обратимый участок при низких значениях относительного давления и петля капиллярно-конденсационного гистерезиса при более высоких $p/p_0 > 0.42$, что позволяет отнести изученные кремнеземы к мезопористым адсорбентам.

Форма петель капиллярно-конденсационного гистерезиса в области средних значений относительных давлений, $0.42 < p/p_0 < 0.8-0.9$, идентифицируется, как *H*4, и при очень высоких значениях $p/p_0 > 0.8-0.9$, как *H*3 (рис. 1–3). Оба типа петель связаны с упаковкой частиц, образованных силикатными слоями [15]. Согласно распределениям пор, по *NLFDT*, и формальным расче-

Линейные изотермы адсорбции-десорбции

Рис. 2. Изотермы низкотемпературной адсорбциидесорбции азота и *NLDFT*-распределение пор по размеру для цирконосиликатов, полученных при молярном соотношении Zr/Si (%), равном 15/85, и различном значении pH: 687 – *3*; 688 – *5*; 689 – *8*; 690 – *10*.

там, по *BJH*, средний (гидравлический) диаметр пор образцов может находиться в узком диапазоне 2-3 нм (рис. 1-3).

Из табл. 1 видно, что у хромосиликатов наблюдается падение удельной поверхности с ростом значения рН от 3 до 8 и некоторое увеличение этого параметра при рН 10. Удельный объем пор при этом в основном либо падает с ростом pH, либо стабилизируется. Значения среднего диаметра пор возрастают от 3 до 4 нм. В отсутствие d-металла площадь поверхности оксида кремния(IV), по БЭТ, составляет 1065 м²/г, внешняя площадь, по *t*-методу $- 1361 \text{ м}^2/\Gamma$, объем пор, по Гурвичу — $0.70 \text{ см}^3/\Gamma$, кумулятивный объем мезо $nop - 0.41 \text{ см}^3/\Gamma$ (табл. 1). Те же параметры при введении катиона хрома(III) в молярном соотношении 4/96 составляют 1134 и 1932 м²/г и 0.84 и 0.62 см³/г (табл. 1). Средние диаметры пор отличаются мало, и уникальное однородное распределение объема мезопор по диаметру сохраняется.

Рис. 3. Изотермы низкотемпературной адсорбциидесорбции азота и *NLDFT*-распределение пор по размеру для ванадосиликатов, полученных при молярном соотношении V/Si (%), равном 15/85, и различном значении pH: 722 – 3; 723 – 5; 724 – 8; 725 – 10.

Объемы пор, V_{sp} и $V_{BJH des}$, при всех соотношениях Cr/Si в отличие от образцов цирконо- и ванадосиликатов, как правило, выше, чем данные величины у исходного мезопористого молекулярного сита MCM-48.

Итак, экспериментальные результаты и расчетные данные на рис. 1-3 и в табл. 1-3 показывают, что при увеличении pH удельные значения площади поверхности и объема пор металлосодержащих материалов обычно снижаются, а средний размер пор возрастает. При фиксированных значениях pH с ростом содержания ванадия и циркония обнаруживается преимущественно та же направленность и повторяемость значений величин A, V и D, хотя закономерности их изменения в зависимости от вида катиона переходного металла гораздо сложнее, что, на наш взгляд, обусловлено особенностями введения различных гетероатомов в кремнеземный каркас, а также образованием их внекаркасных разновидностей.

СИНТЕЗ И МОДИФИКАЦИЯ

№ образца 001-	Cr/Si	рН	A_{BET} , м ² /г	A_{ext} , M^2/Γ	$V_{sp}, \mathrm{cm}^3/\mathrm{r}$	$V_{BJH \ des},$ cm $^3/\Gamma$	<i>D</i> , нм	<i>D_{ВЈН}</i> , нм
782	1/99	3	1129	1625	0.82	0.60	2.9	3.8
783		5	1100	1748	0.77	0.60	2.8	3.2
786		8	976	1391	0.77	0.64	3.2	3.9
787		10	1026	1611	0.79	0.63	3.1	3.8
792	3/97	3	1180	1913	0.79	0.54	2.7	3.7
793		5	1124	1840	0.76	0.52	2.7	3.6
794		8	1004	1536	0.80	0.67	3.2	3.8
795		10	1024	1619	0.81	0.62	3.1	4.1
797	4/96	3	1134	1932	0.84	0.62	2.9	3.5
798		5	1128	1710	0.84	0.67	3.0	3.2
801		8	962	1257	0.81	0.71	3.4	3.8
802		10	993	1327	0.84	0.76	3.7	3.8
803	5/95	3	1161	1774	0.71	0.44	2.5	3.5
804		5	1137	1843	0.70	0.39	2.4	3.0
807		8	924	1424	0.75	0.54	3.0	4.0
808		10	972	1264	0.81	0.66	3.3	4.3
821	7/93	3	1104	1845	0.80	0.64	2.9	3.3
822		5	1143	1600	0.85	0.67	3.0	3.4
823		8	995	1393	0.73	0.53	2.9	3.8
824		10	970	1471	0.85	0.72	3.5	4.4
825	8/92	3	1218	2040	0.84	0.58	2.8	3.9
826		5	1202	2080	0.80	0.51	2.6	3.3
837		8	965	1201	0.73	0.55	3.0	4.2
838		10	894	1272	0.70	0.51	3.1	4.5
857	10/90	3	1223	1802	0.80	0.46	2.6	4.4
858		5	1138	1677	0.75	0.48	2.6	3.5
861		8	896	1247	0.66	0.49	2.9	3.9
862		10	941	1297	0.70	0.50	3.0	4.1
863	25/75	3	1143	1702	0.74	0.45	2.6	4.2
864		5	1148	1719	0.84	0.62	2.9	3.8
865		8	653	773	0.55	0.47	3.4	4.3
869		10	707	904	0.65	0.58	3.7	4.3
874	0/100	3	1065	1361	0.71	0.41	2.6	4.7

Таблица 1. Адсорбционные и текстурные свойства хромосиликатов

Известно, что в случае цеолитов изоморфное замещение, связанное с катионным обменом в анионном каркасе, осуществляется только в процессе синтеза [16] и что способность иона металла Me^{n+} к внедрению зависит от ионного радиуса и способности элемента находиться в соответствующем оксиде в стабильной тетраэдрической координации с критерием Полинга ρ в интервале 0.225–0.414 [17]:

$$\rho = r^+ / r^-,$$

где r^+ и r^- – радиусы катиона и аниона соответственно.

Однако систематические исследования показывают, что существует ряд элементов, таких как Ti, B, Ga, Fe, Co, Mo, Zr, Zn, не подчиняющихся этому правилу [16]. Число отражений на дифрактограммах полученных образцов оксида кремния(IV), доказывающих наличие мезопористого молекулярного сита *MCM*-48, невелико. Анализ дифрактограмм, измеренных в области малых брэгговских углов, дает возможность по наиболее

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 58 № 2 2022

КУЗНЕЦОВА, САУКА

№ образца 001-	Zr/Si	рН	A_{BET} , M^2/Γ	$A_{ext},$ M^2/Γ	$V_{sp}, \mathrm{cm}^3/\mathrm{f}$	$V_{BJH \ des},$ cm ³ / Γ	<i>D</i> , нм	<i>D_{ВЈН}</i> , нм
679	5/95	3	837	1051	0.58	0.41	2.8	4.7
680	5/95	5	888	1079	0.62	0.41	2.8	3.9
681	5/95	8	895	1019	0.70	0.60	3.1	3.6
686	5/95	10	853	1017	0.65	0.51	3.0	3.7
687	15/85	3	776	926	0.47	0.22	2.4	3.8
688	15/85	5	656	798	0.46	0.29	2.8	5.6
689	15/85	8	661	773	0.53	0.38	3.2	6.1
690	15/85	10	646	733	0.51	0.36	3.1	6.1
691	25/75	3	653	740	0.39	0.17	2.4	4.7
692	25/75	5	531	566	0.36	0.21	2.7	6.1
693	25/75	8	508	475	0.52	0.41	4.1	8.5
703	25/75	10	523	492	0.55	0.43	4.2	8.5

Таблица 2. Адсорбционные и текстурные свойства цирконосиликатов

Таблица 3. Адсорбционные и текстурные свойства ванадосиликатов

№ образца 001-	V/Si	pН	A_{BET} , м ² /г	$A_{ext},$ m ² /r	V_{sp} , см ³ /г	$V_{BJH \ des},$ cm ³ /r	<i>D</i> , нм	<i>D_{ВЈН}</i> , нм
714	10/90	3	950	1094	0.79	0.76	3.3	3.5
715	10/90	5	849	946	0.69	0.64	3.2	3.5
716	10/90	8	857	923	0.79	0.81	3.7	3.9
717	10/90	10	842	857	0.72	0.71	3.4	3.5
722	15/85	3	1142	1657	0.76	0.47	2.7	3.9
723	15/85	5	857	841	0.53	0.26	2.5	6.4
724	15/85	8	744	907	0.49	0.33	2.7	5.4
725	15/85	10	761	963	0.50	0.28	2.6	5.0
730	25/75	3	1039	1250	0.90	0.91	3.4	3.5
731	25/75	5	579	596	0.43	0.30	3.0	4.9
732	25/75	8	21	24	0.26	0.32	4.9	6.8
733	25/75	10	59	56	0.13	0.13	8.9	11.8

интенсивному рефлексу $d_{211} = 3.31$ нм (50–511 в картотеке *ASTM*) идентифицировать мезопористое молекулярное сито *MCM*-48 с кубической пористой структурой в образцах с низким и средним содержанием металла (до $Me^{n+}/\text{Si} \approx 25/75$). Кубическая структура *MCM*-48 индексируется в пространственной группе *Ia3d*. При концентрациях металла $Me^{n+}/\text{Si} \geq 25/75$ геометрические параметры, по-видимому, менее важны, чем факторы, относящиеся к условиям кристаллизации гидроксидов металлов. По этим причинам непросто сформулировать критерии, предсказывающие способность элемента внедряться в анионный каркас оксида кремния(IV).

В случае применения мезопористых молекулярных сит каталитические превращения молекул реагентов могут сдерживаться низкой кислотностью и недостаточной гидротермальной стабильностью данных кремнеземных материалов, обусловленными их аморфной природой. Различия в свойствах мезопористых молекулярных сит и типичных кристаллических микропористых цеолитов [18] проявляются, в частности, в том, что кислотность Бренстеда у первых либо незначительна, либо вообще отсутствует. Поэтому данные материалы мало эффективны в качестве катализаторов в таких реакциях, как крекинг, изомеризация и гидроизомеризация, алкилирование, этерификация и т.д., катализируемых кислотами. В ряде технологий гетерогенные цеолитные катализаторы с сильной бренстедовской кислотностью успешно заменяют гомогенные, применение которых зачастую нетехнологично и экологически опасно. Очевидно, что для каталитических превращений в промышленных технологиях экономически выгодными будут даже небольшие технологические усовершенствования при использовании улучшенных катализаторов типа металлосиликатных мезопористых молекулярных сит.

Что касается механизма образования мезопор в кремнеземах с упорядоченной наноструктурной морфологией, то супрамолекулярный коллоидный темплат (сурфактант в мицеллярной форме) действует как часть системы, вокруг которой полимеризуются оксидные структурные единицы. Из-за тесного взаимодействия анионной решетки SiO₂ и катионного темплата последний оказывается "запертым" в формирующемся силикатном каркасе, который в результате отражает геометрию органических молекул [19–22]. Происходящий рост неорганических или гибридных сетей на основе мицеллярных агрегатов сурфактанта приводит к созданию нанопористых материалов в мезомасштабе от 2 до 100 нм [23–27].

Наши результаты доказывают, что из водных растворов в кислой среде при низких температурах можно синтезировать хромо-, ванадо- и цирконосиликаты, в большей или меньшей степени близкие по адсорбционным и структурным свойствам к мезопористым молекулярным ситам. Увеличение pH равносильно росту содержания металла и также сопровождается аморфизацией и разупорядочением надмолекулярной рещетки MCM-48 с единой геометрией и дальним порядком.

ЗАКЛЮЧЕНИЕ

Проведенное исследование новых упорядоченных мезопористых кремнеземных материалов, модифицированных *d*-металлами, позволяет предложить их в качестве альтернативы силикатным цеолитоподобным материалам для применения в катализе, адсорбции и сепарации благодаря большему структурному разнообразию, гибкой текстуре, достаточной стабильности и химически активной поверхности, включая не только сродство к различным загрязнителям, но и каталитическую активность и селективность в различных реакциях. Полученные в результате низкотемпературного синтеза металлосиликатные мезопористые материалы по адсорбционным и структурным свойствам близки к кремнеземам с кубической упаковкой цилиндрических пор типа МСМ-48 и обладают высокими значениями удельной поверхности ≈900–1200 м²/г, объема пор ≈0.7-0.9 см³/г и узкими распределениями пор по размерам аналогично классическим микрокристаллическим цеолитам, но с преобладающим размером пор >2 нм. В работе использованы преимущества кремнезема МСМ-48 по сравнению с другими представителями класса мезопористых молекулярных сит - его достаточно высокая термостабильность и возможность регулирования каталитических свойств путем внедрения различных металлов в стенки анионного каркаса (Zr, V, Cr, Al, Ті и др.), а также однородность частиц субмикронного размера. В отличие от МСМ-41 геометрическая структура МСМ-48 более развита, что улучшает массоперенос в процессах катализа и адсорбции. Пористые наноструктурные металлосиликаты несут в себе перспективу как для селективной иммобилизации катионов токсичных тяжелых металлов в пространствах (пустотах) с очень небольшим объемом, так и для производительного и высокоэффективного катализа, где их высокая удельная поверхность увеличивает доступ больших молекул реагентов во внешние открытые поры упорядоченного пористого неорганического материала и позволяет минимизировать проблемы массопереноса.

СПИСОК ЛИТЕРАТУРЫ

- 1. Viswanathan B., Jacob B. // Catal. Rev. 2005. V. 47. № 1. P. 1.
- Trong D., On D.D., Danumah C., Kaliaguine S. // Applied Catal. A. 2001. V. 222. P. 299.
- 3. Corma A., Garcia H. // Catal. Today. 1997. V. 38. P. 257.
- 4. Corma A. // Chem. Rev. 1997. V. 97. P. 2373.
- Brunel D., Blanc A. C., Galarneau A., Fajula F. // Catal. Today. 2002. V. 73. P. 139.
- 6. Perego C., Ingallina P. // Catal. Today. 2002. V. 73. P. 3.
- Roque-Malherbe R.M.A. Adsorption and Diffusion in Nanoporous Materials. Boca Raton: CRC Press, 2007, 269 p.
- Silica and Silicates in Modern Catalysis / Ed. by Halasz I. Conshohocken, USA: Principal Chemist, PQ Corporation, 2010. P. 171.
- 9. Baur R., Krishna R. // Catal. Today. 2005. V. 105. P. 173.
- McCusker L.B., Liebau F., Engelhardt G. // Microporous Mesoporous Mater. 2003. V. 58. P. 3.
- Molecular Sieves, Science and Technology / Ed. by Carge H.G., Weitkamp J. New-York: Springer, 1998. V. 1. P. 97.
- 12. Kuznetsova T.F., Eremenko S.I. // Russian J. Physical Chemistry A. 2015. V. 89. № 7. P. 1269.
- 13. Kuznetsova T.F., Ivanets A.I., Kulbitskaya L.V., Budeiko N.L., Savka Yu.D. // Protection of Metals and Physical Chemistry of Surfaces. 2017. V. 53. № 4. P. 658.
- 14. *Kuznetsova T.F., Ivanets A.I., Katsoshvili L.L.* // Russian J. Phys. Chem. A. 2017. V. 91. № 4. P. 744.
- 15. *IUPAC* // Pure Appl. Chem. 2015. V. 87. № 9. P. 1051.
- Ione K.G., Vostrikova L.A., Mastikhin V.M. // J. Mol. Catal. 1985. V. 31. P. 355.
- 17. *Pauling L*. The Nature of Chemical Bond / 3rd edn. Cornell University Press, Ithaca, 1960.
- Taguchi A., Schüth F. // Microporous Mesoporous Mater. 2005. V. 77. P. 1.

- 19. Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S. // Nature. 1992. V. 359. P. 710.
- Zhao D., Feng J., Huo Q., Melosh N., Frederickson G.H., Chmelka B.F., Stucky G.D. // Science. 1998. V. 279. № 5350. P. 548.
- 21. Inagaki S., Fukushima Y., Kuroda K. // J. Chem. Soc. Chem. Commun. 1993. № 8. P. 680.
- 22. Kresge C.T., Vartuli J.C., Roth W.J., Leonowicz M.E. // Sci. Catal. 2004. V. 148. P. 53.
- 23. *Roth W.J., Vartuli J.C.* // Studies in Surface Science and Catalysis. 2001. V. 135. P. 134.
- Fan J., Yu C., Wang L., Tu B., Zhao D., Sakamoto Y., Terasaki O. // J. Am. Chem. Soc. 2001. V. 123. № 48. P. 12113.
- 25. *Cai Q., Luo Z.-S., Pang W.-Q., Fan Y.-W., Chen X.-H., Cui F.-Z.* // Chem. Mater. 2001. V. 13. № 2. P. 258.
- 26. *Widenmeyer M., Anwander R.* // Chem. Mater. 2002. V. 14. № 4. P. 1827.
- 27. Pantazis C.C., Trikalitis P.N., Pomonis P.J. // J. Phys. Chem. B. 2005. V. 109. № 25. P. 12574.