_ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ ____

УДК 544.723.21:541.183:661.183.45:661.183.6

АДСОРБЦИЯ ОСНОВНЫХ КОМПОНЕНТОВ ВОЗДУХА N₂ И O₂ НА КАТИОНООБМЕННЫХ ФОРМАХ ЦЕОЛИТА LSX

© 2022 г. И. Н. Павлова^{1, *}, Г. Ф. Гариева¹, Б. И. Кутепов¹, А. А. Фомкин^{2, **}, И. Е. Меньщиков²

¹Институт нефтехимии и катализа УФИЦ РАН, Проспект октября, 141, Уфа, 450075 Россия ²ФГБУН Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский проспект, 31, Москва, 119071 Россия *e-mail: superirina.pavlova@yandex.ru **e-mail: fomkinaa@mail.ru Поступила в редакцию 17.06.2021 г. После доработки 20.09.2021 г. Принята к публикации 06.11.2021 г.

Синтезированы образцы Na-, Li- и Ca-форм кристаллических цеолитов LSX высокой фазовой чистоты и степени кристалличности. Изучено влияние замены в цеолитах LSX катионов K⁺ и Na⁺ на катионы Na⁺, Li⁺ и Ca²⁺ при объемном заполнении внутрикристаллического пространства парами воды и бензола и установлено изменение значений предельной адсорбции не более чем на 10–15 отн. %. Исследована адсорбционная активность полученных цеолитов по N₂ и O₂ при давлениях до 100 кПа и температуре 293 К. Общее сравнение изотерм адсорбции азота и кислорода на обменных формах цеолита LSX с изотермами на промышленном цеолите G5000 показало, что наиболее эффективным цеолитом по комплексу показателей является цеолит Li_{0.83}NaLSX. Цеолит Ca_{0.84}NaLSX также может быть эффективным, но в области повышенных давлений.

Ключевые слова: цеолит LSX, ионообменные формы, адсорбционная емкость, адсорбция N_2 и O_2 , кинетика адсорбции

DOI: 10.31857/S0044185622020139

введение

Разделение газовых смесей адсорбционным методом обычно основывается на различиях в энергиях адсорбции компонентов или на различиях их коэффициентов диффузии. Поэтому в технологии разделения газовых смесей используют методы адсорбционного и кинетического разделения. Для получения кислорода из воздуха по технологии короткоцикловой безнагревной адсорбции (**КБА**) успешно используются адсорбенты и адсорбционное разделение на основе катионообменных форм низкомодульных цеолитов [1–6].

В последние годы для разделения воздуха с целью получения кислорода получили распространение адсорбенты на основе обменных форм низкомодульного (Si/Al = 1.0) цеолита типа X(LSX) [3, 5]. Преимущество цеолита LSX перед цеолитами A и X, объясняется тем, что в нем сочетается открытость пористой структуры, характерной для цеолита X и максимальное количество обменных катионов, присущее цеолиту A.

Адсорбции азота и кислорода на цеолитах LSX посвящено значительное количество публикаций [8–16].

Классическая схема для разделения газовых смесей [6] включает два адсорбера заполненных цеолитом, попеременно работающих в режимах адсорбции и регенерации. Комбинируя число адсорберов и фазы их работы, можно оптимизировать работу системы в целом, настроить процесс на режимы очистки, выделения или полного разделения компонентов газовой смеси. При адсорбции на цеолитах различия в адсорбируемости азота и кислорода обусловлены тем, что кроме дисперсионных и поляризационных сил проявляется дополнительный вклад специфического взаимодействия квадрупольных моментов азота и кислорода с внекаркасными катионами цеолита. Процесс адсорбционного обогащения воздуха кислородом на цеолитах основан на том, что молекулы азота в отличие от молекул кислорода содержат π -электроны, поэтому на периферии молекул азота сосредоточен отрицательный заряд. Его характеристикой служит квадрупольный момент, который для азота составляет 0.43×10^{15} Кл м, а для кислорода 0.14 × 10¹⁵ Кл м [2]. Благодаря большему квадрупольному моменту азот лучше,

чем кислород адсорбируется на катионах в микропористых кристаллах цеолитов.

Основными факторами, влияющими на активность неолитов при алсорбнии азота, в первую очередь, являются количество катионов в цеолите, их доступность для молекул адсорбата, а также плотность заряда катиона, $e = Z/r^2$, где Z и r – заряд и радиус катиона [7]. Наличие катионов в пористой структуре цеолитов обуславливает их адсорбционную селективность и активность. Химическая природа и содержание обменных катионов оказывают влияние на размеры входных окон полостей цеолитов, что приводит к проявлению молекулярной селективности [2]. При обмене катионов Na⁺ на другие катионы возможно изменение положения последних и специфическое взаимодействие молекул азота с обменными катионами при малых степенях заполнения адсорбционного объема. Поэтому важно и актуально, провести исследование эффективности адсорбции основных компонентов воздуха, азота и кислорода на цеолитах типа LSX с многозарядными катионами и катионами с малыми радиусами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез цеолита LSX и его ионообменных форм

Высокодисперсный цеолит NaKLSX кристаллизовали из реакционной смеси (PC) аморфного щелочного силикаалюмогидрогеля следующего состава: (5.0-5.5)Na₂O · (1.6-1.65)K₂O · Al₂O₃ · · (2.0-2.2)SiO₂ · (120-130)H₂O по методике [18]. Содержание в реакционной смеси катиона K⁺ обусловлено тем, что низкомодульный цеолит X (Si/Al = 1.0) формируется только в присутствии двух щелочных катионов Na⁺ и K⁺.

Na-, Li-, и Ca-формы цеолита LSX получали путем ионного обмена в водных растворах хлоридов соответствующих катионов при $T = 80-90^{\circ}$ С, соотношении катионов в растворе и катионов Na⁺ в цеолите G = 1.5 г-экв/г-экв, pH 5.5–7.0 и продолжительности $\tau = 1$ ч. Образцы подвергали термической обработке сначала при 110–120°С не менее 12 часов в атмосфере сухого воздуха, затем при 540°С в течение 4 часов в той же атмосфере [18].

МЕТОДЫ ИССЛЕДОВАНИЯ

Химический состав жидкой фазы и образцов после их перевода в раствор анализировали на пламенном фотометре ПФА-378 и энергодисперсионном рентгенофлуоресцентном спектрометре EDX-800HS (Shimadzu) с рентгеновской трубкой с родиевым анодом (напряжение 15–50 кВ, ток 20-1000 мкА, вакуум, коллиматор 3-5 мм).

Фазовый состав кристаллической решетки цеолитов определяли с помощью методов рентге-

нофазового (РФА) и рентгеноструктурного (РСА) анализов на дифрактометре Rigaku Ultima IV в Си $K\alpha$ -излучении в области углов от 3 до 50 по 20° с шагом 0.5 град/мин и временем накопления в каждой точке 20 с. Фазовый анализ проводили сопоставлением полученных дифрактограмм с базой данных PDF2. Относительную степень кристалличности оценивали по суммированию площадей пяти наиболее интенсивных пиков при углах дифракции 6.12°, 9.99°, 23.31°, 26.65° и 30.95° [19].

Морфологию кристаллов образцов исследовали методом сканирующей электронной микроскопии (СЭМ) на электронном микроскопе JEOL JSM-6490LV. Съемку изображений вели в режиме регистрации вторичных электронов при ускоряющем напряжении 20 кВ и рабочем расстоянии 10 мм. Перед съемкой образцы помещали на поверхность алюминиевого столика диаметром 25 мм, фиксировали при помощи проводящей липкой ленты.

Распределение частиц по размерам изучалось с помощью лазерного анализатора размеров частиц Fritsch Analyzette 22 NanoTec.

Адсорбционные свойства пористой структуры полученных образцов характеризовали значениями равновесных адсорбционных количеств и предельных адсорбционных объемов по парам воды $(a_{\rm H_{2O}} \mbox{ и } W_{\rm 0H_{2O}})$ и бензола $(a_{\rm C_6H_6} \mbox{ и } W_{\rm 0C_6H_6})$ при 25°С и $P/P_s = 0.8$ [20].

Равновесные величины адсорбции газов на исследуемых адсорбентах в интервале давлений от 0.01 Па до 0.1 МПа измеряли гравиметрическим методом на адсорбционно-вакуумной установке, разработанной и изготовленной в ИФХЭ РАН [21]. Адсорбцию (*a*, ммоль/г) определяли по показаниям автоматической системы регистрации изменения массы адсорбента при адсорбции;

$$a = (m_i - m_0 + m_p) / m_0, \qquad (1)$$

где *m*₀ – масса регенерированного адсорбента; *m_i* – масса адсорбента, при заданных давлении и температуре; *m_p* – поправка на плавучесть. До начала проведения экспериментов образец адсорбента взвешивали с точностью $\pm 0.5 \times 10^{-4}$ г и помещали в специальный контейнер, для обеспечения его сохранности при регенерации. После чего, контейнер с адсорбентом помещали на чашку весов адсорбционно-вакуумной установки, и она приводилась в рабочее состояние. В начале процесса регенерации адсорбента для улучшения откачки и адсорбционной стабилизации образца, в ампулу с адсорбентом напускали азот до давления 100 кПа. После 10 мин выдержки, установку с адсорбентом откачивали форвакуумным и диффузионным насосами в течение 8 ч до давления $\sim 1 \times 10^{-2}$ Па при температуре адсорбента 673 К. Остаточное давление в системе контролировали с

Образец	Химический состав, мас. %				Si/Al	Степень кристалличности,	Структурный
	Na ₂ O	K ₂ O	Al ₂ O ₃	SiO ₂		01H. 70	тип цеолита
NaKLSX	15.9	6.8	35.1	42.2	1.0	100	FAU [19]

Таблица 1. Физико-химические характеристики цеолита NaKLSX

помошью термопарной лампы ПМТ-2. После проведения процедуры регенерации часть стеклянной ампулы с адсорбентом помещали в термостат при температуре 293 К и после выдержки в течение ~2 ч и достижения равновесия, проводили измерения. В управляющей программе компьютера, задавали исходные параметры эксперимента: адсорбент, адсорбтив, температуру регенерации, температуру опыта, массу адсорбента. После чего производили пуск измеряемого газа в установку, и регистрирующая система производила контроль и запись параметров эксперимента – адсорбции, давления и всего времени проведения эксперимента ло установления равновесия. После выхода адсорбционной системы на равновесие, управляющей программой осуществлялась запись равновесных данных, и производился следующий напуск газа. Величину адсорбции определяли по изменению массы образца адсорбента, которую регистрировала управляющая программа во времени. Основным условием точности определения адсорбции, являлся выход кинетической кривой на "плато" и достижение равновесного давления. Вес образца адсорбента выбирали около 0.2 г. Диапазоны измеряемых изменений веса образца – 100; 10; 1 мг. Погрешность измерения на каждом диапазоне составляла ±1.0% с доверительной вероятностью 95.0%.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл. 1 приведены данные химического и фазового состава синтезированного цеолита NaKLSX. Из табл. 1 следует, что полученный образец характеризуется высокой фазовой чистотой и степенью кристалличности.

Из результатов исследования дисперсности кристаллов цеолитов NaKLSX следует, что размеры основной их части находятся в интервале от 0.5 до 10.0 мкм. Средний размер кристаллов цеолита NaKLSX составляет ~3.0 мкм.

На рис. 1 представлен снимок поверхности кристаллов цеолита NaKLSX, полученный с помощью сканирующей электронной микроскопии. Из рис. 1 следует, что кристаллы цеолита NaKLSX представляют собой частицы сферической формы, образованные более мелкими кристаллами.

Следует отметить, что при получении Li-, К-, Са-форм цеолита LSX с максимальным содержа-

нием обменных катионов непосредственно из исходной NaK-формы происходит частичная аморфизация его кристаллической решетки [18]. Поэтому сначала получали стабильную Na-форму цеолита LSX(NaLSX) со степенью обмена не ниже 0.98 путем трехкратного ионного обмена в водном растворе NaCl. Практически полная замена катионов K⁺ в исходной форме цеолита LSX объясняется тем, что их содержание составляет около 30% от общего количества катионов, и располагаются они, в основном, в больших полостях [2].

В табл. 2 приведены результаты исследования влияния количества обменных обработок на степени обмена содержащихся в цеолите LSX катионов Na⁺ на катионы Li⁺ и Ca²⁺.

Как следует из табл. 2, при трехкратной обработке цеолита NaLSX в растворах LiCl и CaCl₂ величины $\alpha_{Na \rightarrow Li}$ и $\alpha_{Na \rightarrow Ca}$ составляют 0.83 и 0.84, соответственно. Дальнейшее увеличение количества обменов до пяти не оказывает заметного влияния на величины $\alpha_{Na \rightarrow Li}$ и $\alpha_{Na \rightarrow Ca}$. Полученные результаты объясняются тем, что часть обменных катионов в цеолите LSX находится в недоступных для обмена местах в малых полостях.

В табл. 3 приведены данные рентгенофазового анализа цеолита LSX в NaK-, Na-, Li- и Ca- формах после термообработки при 450°C в течение 3 ч.

Видно, что при замене катионов Na⁺ и K⁺, содержащихся в исходном цеолите LSX, на катионы Na⁺, Li⁺ и Ca²⁺ фазовых изменений не происхо-

Рис. 1. Снимок СЭМ для цеолита NaKLSX. Размерная линейка – 2 мкм.

Таблица 2. Влияние количества обработок на степень обмена в цеолите NaLSX катионов Na⁺ на катионы Li⁺ $(\alpha_{Na \to Li})$ и Ca²⁺ $(\alpha_{Na \to Ca})$

Количество	Цеолит NaLSX			
обработок	$\alpha_{Na \rightarrow Li}$	$\alpha_{Na \to Ca}$		
1	0.57	0.63		
2	0.75	0.73		
3	0.83	0.84		
4	0.83	0.84		
5	0.83	0.84		

Таблица 3. Интенсивности основных пиков (*I*, усл. ед.) на рентгенограммах обменных форм цеолита LSX

Катионная форма цеолита	*І, усл. ед.					
2θ°	6.12	9.99	23.31	26.65	30.85	
NaKLSX	2.357	1.776	1.977	1.761	1.870	
Na(0.98)LSX	2.856	1.665	1.815	1.745	1.684	
Li _(0.83) NaLSX	2.374	1.359	1.604	1.437	1.404	
Ca _(0.84) NaLSX	2.542	1.551	1.585	1.427	1.373	

*Интенсивности основных пиков после термообработки при 450°С.

дит и сохраняются интенсивности характерных пиков обменных форм цеолита LSX, что хорошо согласуется с литературными данными [19] и подтверждает высокую степень кристалличности исследуемых образцов.

В табл. 4 приведены значения равновесных адсорбционных количеств и предельных адсорбционных объемов по парам воды ($a_0(H_2O)$, $W_0(H_2O)$) и бензола ($a_0(C_6H_6)$, $W_0(C_6H_6)$) [21], полученных Na-, Li-, и Ca-форм цеолита LSX. Видно, что замена катионов K⁺ и Na⁺ в цеолите LSX на катионы Na⁺, Li⁺ и Ca²⁺ вызывает изменение значений указанных характеристик не более чем на 10–15 отн. %. Таким образом, при объемном заполнении внутрикристаллического пространства цеолита LSX парами воды и бензола, замена катионов Na⁺ и K⁺ на катионы Na⁺, Li⁺ и Ca²⁺ не оказывает существенного влияния на объемы микропор $W_0(H_2O)$, $W_0(C_6H_6)$. В этих условиях, при $P/P_s =$ = 0.8 и практически полном заполнении полостей адсорбатом, влияние химического состояния поверхности цеолитов на адсорбцию нивелируется процессами ассоциирования адсорбированных молекул в полостях цеолитов.

При адсорбции газов, даже при высоких давлениях, полости цеолитов далеки от предельного заполнения и химическое состояние поверхности играет главную роль в адсорбционных процессах.

Представлялось важным сравнить адсорбционные свойства синтезированных цеолитов с цеолитом G5000, используемым для получения кислорода в КБА — установках для получения кислорода из воздуха.

На рис. 2 представлена зависимость адсорбции азота от давления при 293 К на обменных формах цеолита LSX и промышленном адсорбенте G5000.

Из рис. 2 следует, что при давлении 100 кПа и температуре 293 К адсорбция азота для всех синтезированных цеолитов LSX в среднем не превосходит 1 молекулы на полость, а цеолиты Са_(0.84)NaLSX и Li_(0.83)NaLSX при 100 кПа обладают наибольшей адсорбционной активностью. В случае цеолита Ca_(0.84)NaLSX повышенная адсорбционная активность обусловлена повышенной энергией взаимодействия двухзарядного катиона Ca²⁺ с молекулой азота, имеющей значительный квадрупольный момент [22]. В цеолите Li_(0 83)NaLSX повышенная энергия адсорбции обусловлена взаимодействием молекулы азота с ионом Li⁺, имеющим малый радиус 0.060 нм [7]. Сравнение изотерм адсорбции азота на синтезированных цеолитах LSX с изотермой промышленного адсорбента G5000 при 293 К показало, что наиболее близкими по адсорбционной актив-

	$a_0({ m H_2O})$	$W_0(H_2O)$	$a_0(C_6H_6)$	$W_0(C_6H_6)$
Катионная форма цеолита	ΜΓ/Γ	см ³ /г	ΜΓ/Γ	см ³ /г
NaKLSX	310	0.31	264	0.30
Na _(0.98) LSX	290	0.29	285	0.32
Li _(0.83) NaLSX	310	0.31	264	0.30
Ca _(0.84) NaLSX	270	0.27	274	0.31
Средние значения	295	0.295	272	0.30

Таблица 4. Структурно-адсорбционные характеристики цеолитов LSX при $T = 25^{\circ}$ С, $P/P_s = 0.8$

 P_s – давление насыщенного пара.

Рис. 2. Изотермы адсорбции азота при температуре 293 К на обменных формах цеолита LSX и адсорбенте G5000.

Рис. 3. Изотермы адсорбции кислорода при температуре 293 К на обменных формах цеолита LSX и адсорбенте G5000.

ности образцами являются цеолиты $Ca_{(0.84)}$ NaLSX и $Li_{(0.83)}$ NaLSX.

На рис. 3 представлены изотермы адсорбции кислорода на синтезированных обменных формах цеолита LSX при 293 К и адсорбенте G5000.

Из рис. 3 следует, что при 293 К и давлении 100 кПа адсорбция кислорода для всех синтезированных цеолитов LSX в 2–5 раз меньше чем адсорбция азота поскольку его квадрупольный момент значительно меньше, и также, в среднем, заполнение не превосходит 1 молекулы на полость. Характерно, что цеолит $Ca_{(0.84)}$ NaLSX при 100 кПа обладает наибольшей адсорбционной активностью. В ряду синтезированных цеолитов LSX повышенная адсорбционная активность цеолита $Ca_{(0.84)}$ NaLSX по кислороду вероятно обусловлена повышенной энергией взаимодей-

ствия двухзарядного катиона Ca²⁺ с молекулой кислорода имеющей небольшой квадрупольный момент [21]. Сравнение изотерм адсорбции кислорода на синтезированных LSX цеолитах с изотермой адсорбента G5000 при 293 К показало, что наиболее близким по адсорбционной активности цеолитом является Li_(0.83)NaLSX.

Общее сравнение изотерм адсорбции азота и кислорода на синтезированных цеолитах LSX с изотермами на цеолите G5000 показывает, что наиболее эффективным образцом по комплексу показателей является цеолит LSX в Li-форме со степенью обмена равной 0.83. Однако в условиях повышенных давлений, более эффективным может быть цеолит LSX в Ca-форме со степенью обмена равной 0.84.

ЗАКЛЮЧЕНИЕ

Синтезированы образцы порошкообразного цеолита LSX высокой фазовой чистоты и степени кристалличности в Na-. Li- и Ca-формах. Исследованы химический состав, рентгенографические, СЭМ, структурные и адсорбционные характеристики обменных форм высокодисперсного цеолита LSX. Установлено, что замена катионов К⁺ и Na⁺ в цеолите LSX на катионы Na⁺, Li⁺ или Са²⁺ при объемном заполнении внутрикристаллического пространства парами воды и бензола вызывает изменение значений предельной адсорбции не более чем на 10-15 отн. %. Изучение изотерм адсорбции азота и кислорода на синтезированных обменных формах цеолита LSX в сравнении с изотермами на промышленном адсорбенте G5000 показало, что наиболее эффективным цеолитом по комплексу показателей является цеолит Li_{0.83}NaLSX. Цеолит Ca_{0.84}NaLSX также может быть эффективным адсорбентом в процессах получения кислорода из воздуха в вакуумных условиях.

Работа выполнена в соответствии с государственными заданиями.

Регистрационный номер: АААА-А19-119022290006-2.

Работа выполнена в рамках государственного задания Института нефтехимии и катализа УФИЦ РАН (тема № FMRS-2022-0080). Структурные исследования проведены в Региональном Центре коллективного пользования "Агидель" УФИЦ РАН, в рамках выполнения государственного задания Института нефтехимии и катализа УФИЦ РАН (тема № FMRS-2022-0081).

СПИСОК ЛИТЕРАТУРЫ

1. Глупанов В.Н., Шумяцкий Ю.И., Серегин Ю.А. и др. // Получение кислорода и азота адсорбционным разделением воздуха ЦИНТИХИМНЕФТЕМАШ, 1991. С. 44.

- 2. Брек Д. Цеолитовые молекулярные сита / Пер. с англ. М.: Мир, 1976. С. 781.
- Bülow M., Shen D.. Sorption kinetics of atmospheric gases on Li, RE (rare earth)-LSX zeolite beads as sorbents for oxygen PVSA processes // Microporous and Mesoporous Materials. V. 105. Iss. 1–2. 15.09.2007. P. 163–169.
- 4. Шумяцкий Ю.И. Промышленные адсорбционные процессы. М.: КолоС. 2009. 183 с.
- 5. *Kulprathipanja S*. Zeolites in industrial separation and catalysis. Wiley. 2010. P. 593.
- 6. Шумяцкий Ю.И., Афанасьев Ю.М. Адсорбция: процесс с неограниченными возможностями. М.: Высш. шк. 1998. 78 с.
- Полине Л. Природа химической связи / Пер. с англ. под ред. Сыркина А.К. М.: Госхимиздат. 1947. 438 р.
- Hutson N.D., Yang R.T. Structural effects on adsorption of atmospheric gases in mixed Li,Ag–X-zeolite / AIChE J. 2000. V. 46. Iss. 11. P. 2305–2317.
- 9. Yang R.T., Chen Y.D., Peck J.D. et.al. Zeolites containing mixed cations for air separation by weak chemisorption-assisted adsorption / Industrial & Engineering Chemistry Research. 1996. V. 35. № 9. P. 3093–3099.
- 10. Патент 5268023 US / *Kirner J.F.* // Nitrogen adsorption with highly lithium-exchanged X-zeolites with low silicon/aluminum ratio. МКИ B01D 53/04.1993.
- Патент US 5174979 / Chien C. Chao // Mixed ion-exchanged zeolites and processes for the use thereof in gas separation. МКИ C01B033/34, B01D053/04. 1992.
- Coe C.G. Structural Effects of the Adsorptive Properties of Molecular Sieves for Air Separation // Access in Nanoporous Materials. N.Y.: Plenum Press, 1995. P. 213–229.
- Goursot A., Fajula F. // J. Physical Chemistry. 1995. V. 99. № 34. P. 12925–12932.

- 14. *Rege U.S., Yang R.T.* // Industrial & Engineering Chemistry Research. 1997. V. 36. № 12. P. 5358–5365.
- 15. *Kazansky V.B., Bulow B.M., Tichomirova E.* Specific sorption sites for nitrogen in zeolites NaLSX and LiLSX // Adsorption. 2001. № 7. P. 291–299.
- 16. *Panezai H., Sun J., Ullah R.* Kinetic evaluation of dehydration in $M_x Na_{96-x} LSX$ (M = Li⁺, Ca²⁺ and Ag⁺) zeolites and resulting effects on selective adsorption of N_2 and O_2 // Microporous and Mesoporous Materials. 2020. 301. P. 210–233.
- 17. Pavlova I.N., Travkina O.S., Garieva G.F. The influence of hydrogel aging conditions on the crystal size and morphology of LSX zeolite in the NaK-form // Petroleum Chemistry. 2020. V. 60. № 8. P. 903–908.
- Павлова И.Н., Гариева Г.Ф., Травкина О.С., Кутепов Б.И., Фомкин А.А., Школин А.В. Синтез и исследование термической стабильности NaK-, K-, Naи Li-форм цеолита LSX // Физикохимия поверхности и защита материалов. 2015. Т. 51. № 5. С. 767–773.
- Treacy M.M.J., Higgins J.B. // Collection of Simulated XRD Powder Patterns of Zeolites. Amsterdam: Elsevier. 2001.
- 20. *Кельцев Н.В.* Основы адсорбционной техники // М.: Химия. 1984. 592 с.
- Патент РФ № 2732199 / Фомкин А.А., Меньщиков И.Е., Харитонов В.М., Пулин А.Л., Школин А.В. // "Стенд для измерения адсорбции газов и паров гравиметрическим методом и способ его эксплуатации". МПК G01N7/04 G01N5/02. 14.09.2020. Бюл. № 26.
- 22. Дубинин М.М. Адсорбция и пористость // М.: ВАХЗ. 1972. 128 с.
- Kington J.L., Maclead A.C. // Trans. Faraday Soc. 1959.
 V. 55. № 10. P. 1799–1814.
- 24. *Тимофеев Д.П*. Кинетика адсорбции // М.: Изд-во АН СССР. 1962. 250 с.