НАНОРАЗМЕРНЫЕ И НАНОСТРУКТУРИРОВАННЫЕ ____ МАТЕРИАЛЫ И ПОКРЫТИЯ

УЛК 620.197:621.318.1:537.622

МАГНИТНЫЕ СВОЙСТВА КОМПОЗИТОВ "Fe + Ni-СОДЕРЖАЩИЙ TiO₂-СЛОЙ/Ti"

© 2022 г. М. В. Адигамова^{1, *}, И. В. Лукиянчук¹, И. А. Ткаченко¹, В. П. Морозова¹

¹Институт химии Дальневосточного отделения Российской академии наук, пр-т 100-летия Владивостока, 159, Владивосток, 690022 Россия

*e-mail: adigamova@ich.dvo.ru Поступила в редакцию 09.07.2021 г. После доработки 16.07.2021 г.

Принята к публикации 23.07.2021 г.

Методом плазменно-электролитического оксидирования (ПЭО) в течение 5—15 мин в электролитах-суспензиях, содержащих коллоидные частицы гидроксидов железа и никеля в соотношении $\mathrm{Fe^{3+}/Ni^{2+}} = 3:1$, сформированы оксидные слои на титане. Усредненные концентрации железа, никеля и титана в составе покрытий составляют 6.1, 2.2 и 3.5 ат. %, соответственно. Для всех композитов величины коэрцитивной силы $H_{\rm c}$ при 300 K не превышают 59 Э, что позволяет отнести их к магнитомягким материалам. При 2 K для всех образцов наблюдается рост значений намагниченности и значительное увеличение $H_{\rm c}$ до 496—679 Э. Сделано предположение, что вклад в магнитное поведение образцов при комнатной температуре вносит массив покрытий, а при гелиевой — обнаруженные в порах микроразмерные образования с повышенным содержанием железа и никеля. Увеличение длительности ПЭО процесса до 15 мин приводит к уменьшению значений $H_{\rm c}$ при 2 K почти на 100 Э, что может быть связано с уменьшением доли железа в составе кристаллитов и появлением в порах шаровидных частиц с повышенной концентрацией фосфора, титана и кислорода. Установлено, что после длительного хранения образцов на воздухе наблюдается почти двукратное снижение значений коэрцитивной силы, измеренной при 2 K, что может быть связано с окислением металлических Fe + Ni-содержащих частиц, локализованных в открытых порах на поверхности покрытия.

Ключевые слова: титан, плазменно-электролитическое оксидирование, ферромагнитные свойства, Fe-, Ni-содержащие покрытия, кристаллиты в порах

DOI: 10.31857/S0044185622030020

ВВЕДЕНИЕ

Метод плазменно-электролитического оксидирования (ПЭО - электрохимическое окисление поверхности металлов в условиях реализации в прианодной области искровых и микродуговых электрических разрядов) позволяет получать на обрабатываемом материале поверхностные керамикоподобные структуры разнообразного химического состава, обладающие различными функциональными свойствами [1-3]. В зависимости от состава такие композиции могут проявлять каталитические [4], оптические [5], биосовместимые [6] или биоцидные [7], защитные [8], гидрофобные [9] и другие свойства. В последнее время активно развивается направление, связанное с формированием на парамагнитных металлах магнитоактивных ПЭО-слоев [10-14]. Подобные композиты представляют значительный интерес для применения в качестве поглотителей электромагнитных излучений [15, 16], в СВЧ-волноводах [17], в микроэлектронике [18, 19]. Одним из подходов, предложенных для их получения, является

модифицирование железом и/или кобальтом растущего при ПЭО на металлической подложке слоя М_гО_г путем использования электролитов, содержаших коллоидные частицы гидроксидов соответствующих металлов [20-25]. Показано, что в зависимости от природы обрабатываемого материала, состава электролита и режима обработки (временных, токовых параметров) можно формировать на парамагнитных металлах, например, Ті, Al, Zr, Nb, оксидные слои с ферро-, ферри- и антиферромагнитными характеристиками. Экспериментальные данные, ранее полученные для подобных систем, и модельные расчеты, выполненные на их основе, позволяют считать, что основной вклад в магнитные свойства сформированных композиций вносят локализованные в порах кристаллиты – металлические частицы, окруженные оксидно-гидроксидной оболочкой [20-25]. Механизм их образования связан с миграцией отрицательно заряженных частиц гидроксидов переходных металлов из электролита к поверхности положительно заряженного образца (анода), где под действием электрических разрядов они претерпевают высокотемпературные превращения и встраиваются в состав пор. Изменяя концентрации компонентов электролита, можно управлять составом кристаллитов в порах покрытий [22, 24]. Регулируя параметры процесса (плотность тока и время формирования), можно влиять на размеры пор, и, следовательно на размеры кристаллитов в порах [20, 24]. Оба этих фактора позволяют целенаправленно влиять на магнитные характеристики образцов. К настоящему времени наиболее детально исследованы системы Fe-ПЭО-слой/М и Fe + Co-П \ni O-слой/M, где M = Ti, Al, Zr, Nb [20— 25]. В то же время другие двойные системы, содержащие металлы триады железа, например, "Fe + + Ni-содержащий ПЭО-слой/М", мало изучены.

В работе [22] показано, что в фосфатно-боратно-вольфраматном электролите, содержащем равные концентрации солей железа и никеля (по $0.04\,$ моль/л), на сплаве алюминия могут быть сформированы Fe-, Ni-содержащие покрытия с высокими значениями коэрцитивной силы $H_{\rm c}=322-325$ Э при 2 К. При этом сформированные в электролите того же состава ПЭО-слои на титане при низких температурах проявляют слабо выраженные ферромагнитные свойства ($H_{\rm c}=25\,$ Э при 4 K) [26]. Поскольку железо является более магнитоактивным металлом по сравнению с никелем [27], в настоящей работе взято соотношение солей железа и никеля в электролите $C_{\rm Fe}/C_{\rm Ni}=3:1$.

Цель настоящей работы — методом плазменно-электролитического оксидирования сформировать композиты Fe + Ni-содержащий TiO_2 -слой/Ti, изучить влияние временного параметра на их магнитные характеристики во взаимосвязи с составом и строением, в том числе на микроуровне.

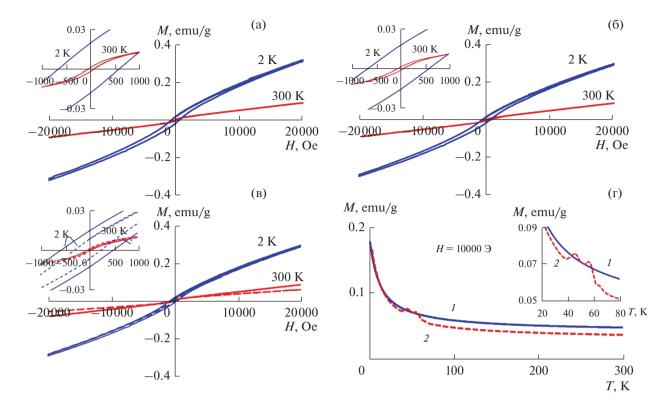
МАТЕРИАЛЫ И МЕТОДЫ

Для синтеза Fe-, Ni-содержащих оксидных слоев на титановых субстратах (сплав титана BT1-0, размеры образцов $-2.5 \times 2.5 \times 0.1 \text{ и } 3.5 \times 0.7 \times 0.1 \text{ см}^3$) был приготовлен базовый водный щелочной PBW-электролит состава (моль/л): $0.066 \text{ Na}_3 \text{PO}_4 +$ +0.034 Na₂B₄O₇ + 0.006 Na₂WO₄, в который дополнительно вводили оксалат железа $Fe_2(C_2O_4)_3$ и ацетат никеля Ni(CHCOO)2. Соотношение концентраций металлов в электролите составляло $C_{Fe}/C_{Ni} = 3:1$ (PBWFeNi-электролит). После введения в щелочной электролит (рН ~ 11) добавок водорастворимых солей железа и никеля в результате процессов гидролиза в объеме раствора самопроизвольно образуется суспензия (рН ~ 9), содержащая коллоидные отрицательно заряженные частицы гидроксидов этих металлов.

Процесс ПЭО проводили в гальваностатическом режиме с эффективной плотностью тока $0.1~{\rm A/cm^2}$ в течение $5{-}15~{\rm мин}$. Источник тока — управляемый

компьютером тиристорный агрегат ТЕР4-100/460H (Россия), работающий в однополярном режиме. Электрохимическая ячейка представляла собой термостойкий стеклянный стакан, в который помещали анод (титановый образец) и катод (полый змеевик из сплава никеля). В процессе синтеза электролит перемешивали магнитной мешалкой и охлаждали пропусканием холодной водопроводной воды через змеевик. Температура электролита в ходе процесса не превышала 30°C.

Толщину сформированных на титановой подложке слоев определяли с помощью вихретокового толщиномера ВТ-201 (Россия). Усредняли данные по результатам 10 измерений, проводимых с каждой стороны образца.


С помощью рентгеноспектрального микроанализатора ЈХА 8100 (Япония) с энергодисперсионной приставкой INCA (Англия) получали снимки поверхности, данные по элементному составу и карты распределения элементов по поверхности покрытий. Усредненный элементный состав определяли на основе результатов сканирования пяти участков поверхности площадью ~250 мкм² каждый. Для более детального исследования отдельных составляющих поверхности, в том числе образований в порах, дна и стенок пор, использовали электронный сканирующий микроскоп высокого разрешения Hitachi S5500 (Япония) с приставкой для энергодисперсионного анализа Thermo Scientific (США). Для предотвращения заряжения поверхности в обоих случаях перед анализом на покрытия напыляли золото.

Рентгенограммы получали на рентгеновском дифрактометре Д8 ADVANCE (Германия) в CuK_{α} -излучении (РФА). При анализе рентгенограмм использовали программу поиска "EVA" с банком данных "PDF-2".

Магнитные измерения проводили на магнитометре SQUID MPMS 7 (США) при температурах от 2 до 300 К с шагом в 50 К. Образцы при измерениях размещали параллельно направлению магнитного поля. При расчете намагниченности измеренный магнитный момент нормировали на массу образца с покрытием.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Магнитные характеристики композитов. На рис. 1, 2 приведены результаты исследований магнитных характеристик сформированных композитов $Fe + Ni-TiO_2/Ti$. Исходя из вида полевых зависимостей намагниченности (рис. 1a-1b), вероятнее всего, в данных образцах имеется несколько видов магнитного упорядочения. Для всех образцов при 300 K в области малых полей наблюдаются характерные для ферромагнетиков петли гистерезиса (приведены на вставках к рис. 1a-1b). Наблюдается линейная зависимость намагничен-

Рис. 1. Зависимости намагниченности образцов от величины внешнего магнитного поля (а—в) при температурах 300 и 2 К и температурные зависимости намагничивания до (1) и после (2) хранения образца на воздухе (г). Покрытия сформированы в течение 5 (а), 10 (б) и 15 мин (в, г). Пунктирной линией на рис. (в) обозначены кривые намагничивания для образца после хранения.

ности от приложенного внешнего магнитного поля в полях H > 1000 Э, во всех случаях отсутствует выход намагниченности на насыщение. Такое поведение кривых намагничивания связано с преобладанием в области высоких полей вклада парамагнитной составляющей образцов – титановой подложки. Согласно данным, приведенным на рис. 2, величины $H_{\rm c}$, полученные при комнатной температуре, не превышают 59 Э, что позволяет отнести исследованные композиты к магнитомягким материалам. Отметим, что ответственная за ферромагнетизм всего композита массовая доля покрытия в образах составляет всего около 1-3%. Отсутствие выхода на насыщение магнитных кривых в высоких полях ранее уже наблюдали для металлических (Ti, Al, Nb и Zr) образцов с ПЭО-покрытиями, сформированными в PBWFe-, PBWFeCo-электролитах [24, 25].

При 2 К для всех образцов наблюдается рост значений намагниченности и значительное увеличение $H_{\rm c}$ (рис. $1{\rm a-1}{\rm b}$, 2). Петли гистерезиса вытягиваются и не схлопываются во всем изученном диапазоне полей. Кроме того, понижение температуры приводит к значительному смещению петель гистерезиса в сторону отрицательных полей, что может свидетельствовать о наличии в данных образцах обменных взаимодействием между фер-

ромагнитной и антиферромагнитной (ферримагнитной) фазами. С понижением температуры определяющий вклад в магнитные характеристики изученных композитов начинают вносить фазы, обладающие свойствами, отличными от ферро- и парамагнитных. Например, это могут быть суперпарамагнитные фазы, что косвенно подтверждается резким увеличением $H_{\rm c}$ при T=2 K (рис. 2).

Следует отметить практически полное совпадение зависимостей $H_{\rm c}=f(T)$ для образцов, сформированных в течение 5 и 10 мин (рис. 2). Увеличение длительности процесса до 15 мин приводит к уменьшению значений $H_{\rm c}$ при 2 К почти на 100 Э.

На рис. 1в и 1г представлены результаты исследования длительного хранения на воздухе (более 3 лет) на магнитные характеристики композита, полученного в течение 15 мин. После хранения наблюдается почти двукратное снижение значений коэрцитивной силы, измеренной при 2 К. Низкотемпературная петля гистерезиса (рис. 1в) начинает схлопываться при меньших значениях напряженности внешнего магнитного поля, асимметрия относительно оси M при этом сохраняется ($H_{\rm c} = -300/242$ Э). Измеренное при комнатной температуре значение $H_{\rm c}$ снижается незначительно (рис. 2).

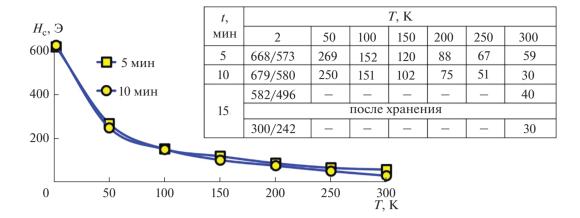
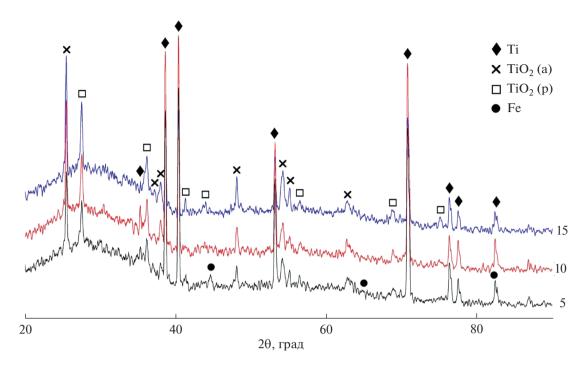


Рис. 2. Влияние температуры на коэрцитивную силу ПЭО-покрытий, сформированных при 5-15 мин.

По сравнению с зависимостью M=f(T) для исходного образца (кривая I на рис. 1г), на кривой 2, полученной после его долговременного хранения, значения намагниченности уменьшаются, появляются два пика, один из которых при $T\approx 54~{\rm K}$ относится к переходу адсорбированного кислорода в парамагнитное состояние, а второй при $T\approx 44~{\rm K}$, скорее всего, отвечает за переход в иное магнитоупорядоченное состояние. Однако для определения природы данного перехода требуется проведение дополнительных исследований. Изменения в магнитном поведении образца можно объяснить его окислением при хранении на воздухе.

Влияние времени формирования на толщину, элементный и фазовый составы покрытий. В табл. 1 приведены данные по толщине и элементному составу покрытий, определенному по данным РСА. Увеличение времени формирования приводит к росту конечных значений напряжения формирования $U_{\rm K}$, и, как следствие, толщины покрытий h с 12 до 22 мкм. При этом элементный состав поверхностного слоя покрытий, сформированных в течение 5-15 мин, примерно одинаков. Усредненные концентрации железа, никеля и титана составляют 6.1, 2.2 и 3.5 ат. %, соответственно.

Рентгенограммы образцов с ПЭО-покрытиями приведены на рис. 3. Все композиты содержат


кристаллические фазы TiO₂ в модификациях анатаз и рутил, а также металл основы. На рентгенограмме покрытия, сформированного в течение 5 мин, видны рефлексы, относящиеся к металлическому железу. Ранее Fe⁰ определяли в составе покрытий на алюминии при ПЭО-обработке в PBWFе-электролите, содержащем 0.03 моль/л Fe(III) [20]. Отметим, что в других случаях Fe- и Ni-содержащие кристаллических фазы не обнаружены, несмотря на довольно высокие концентрации этих элементов в составе покрытий (табл. 1). Наличие аморфного гало на всех рентгенограммах позволяет предположить, что соединения железа и никеля находятся в аморфном состоянии.

Морфология поверхности композитов. На рис. 4 приведены ЭСМ-снимки поверхности покрытий, сформированных при разной длительности процесса. С увеличением t_{ϕ} рост покрытий происходит под действием более мощных искровых и дуговых разрядов, что в итоге приводит к укрупнению фрагментов рельефа поверхности (пор — каналов пробоев и участков оплавленного материала по их периметру) и формированию более развитых покрытий.

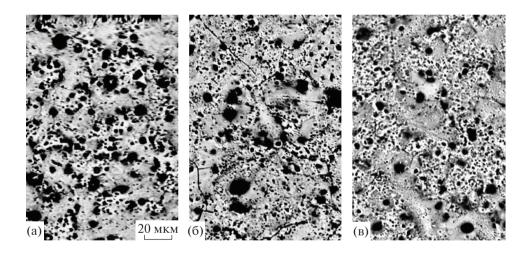

Карты распределения основных элементов в поверхностном слое ПЭО-покрытия, сформированного в течение 10 мин, приведены на рис. 5. В порах и в оплавленных образованиях вокруг

Таблица 1. Влияние времени формирования на состав и толщину покрытий, сформированных в PBWFeNi-электролите по данным микрозондового рентгеноспектрального анализа

Условия формирования				С, ат. %								
t_{Φ} , мин	$U_{\rm K}$, B	<i>Q</i> , Кл/см ²	<i>h</i> , мкм	С	0	Na	Р	Ti	Fe	Ni	W	Fe/Ni
5	112	30	12 ± 2	21.7	59.3	1.7	5.0	3.6	5.7	2.1	0.9	2.7
10	116	60	15 ± 1	21.5	59.4	1.5	5.1	3.8	5.8	2.1	0.9	2.8
15	126	90	22 ± 3	18.3	60.5	2.2	5.8	3.2	6.7	2.5	0.9	2.7

Рис. 3. Рентгенограммы образцов с покрытиями, полученными в течение 5, 10 и 15 мин. Съемка выполнена с накоплением сигнала 10 с.

Рис. 4. ЭСМ-снимки поверхности покрытий, сформированных в течение 5 (a), 10 (б) и 15 мин (в).

пор сконцентрирован титан, в противофазе находятся железо и никель — их содержание выше во впадинах, пронизанных большим количеством мелких пор. На свободной от пор поверхности в большом количестве присутствует фосфор. По данным PCA его содержание в составе покрытия составляет 5.1 ат. %. Высокое содержание фосфора характерно для покрытий, сформированных на сплаве титана в фосфатных электролитах. Так, например, из электролита, содержащего 30 г/л $Na_6P_6O_{18}$, в состав ПЭО-покрытия на титане встраивается 13.4 ат. % P [28].

Состав микрообразований в порах покрытий. Использование электронной сканирующей микроскопии высокого разрешения позволило установить наличие кристаллоподобных микрообразований на дне и стенках пор, рис. 6. В большинстве случаев эти образования (кристаллиты) имеют правильную геометрическую форму, а их максимальный линейный размер не превышает 1.2 мкм. Преобладающий размер кристаллитов незначительно увеличивается с $t_{\rm ф}$ и составляет 0.3, 0.6 и 0.8 мкм для пор покрытий, сформированных в течение 5, 10 и 15 мин. В порах покры-

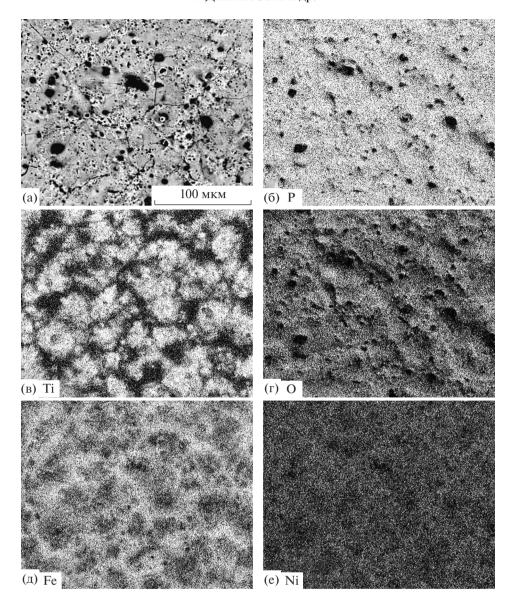


Рис. 5. Общий вид (а) и распределение элементов по поверхности покрытия, сформированного в течение 10 мин (б-е).

тия, сформированного в течение 15 мин, наряду с кристаллитами были обнаружены конгломераты шаровидных образований (частиц) с линейными размерами ~0.8 мкм.

Определенный по результатам 3-15 измерений элементный состав кристаллитов в порах и площадок на поверхности размерами $\sim 70 \times 90$ мкм² представлен в табл. 2. По данным энергодисперсионного анализа (глубина анализа 1-2 мкм), в составе покрытий выше концентрации железа, никеля, натрия и титана, чем по данным микрозондового рентгеноспектрального анализа (табл. 1, глубина анализа 2-5 мкм). Практически равные соотношения концентраций Fe/Ni в составе покрытий, определенные двумя методами: 2.7-2.8 (табл. 1) и 2.5-3.0 (табл. 2) свидетельствуют о том,

что встраивание железа и никеля происходит пропорционально их мольному отношению в объёме электролита (Fe(III)/Ni(II) = 3).

В отличие от поверхности в составе кристаллитов наблюдаются повышенные концентрации Fe, Ni и Ti и пониженные концентрации кислорода (табл. 2). Суммарное содержание металлов (Fe + Ni + Ti + W) в порах покрытий находится в пределах \sim 68–81 ат. %, в то время как на поверхности — \sim 19–22 ат. %. С увеличением $t_{\rm ф}$ в кристаллитах повышается концентрация никеля с 21 до 34 ат. %, в то время как концентрация железа сначала растет с 34 до 41 ат. %, а потом при $t_{\rm ф}$ = 15 мин снижается до 21 ат. %. При этом отношение концентраций $C_{\rm Fe}/C_{\rm Ni}$ уменьшается с 1.6 до 0.6, то есть встраивание железа и никеля в кристаллиты

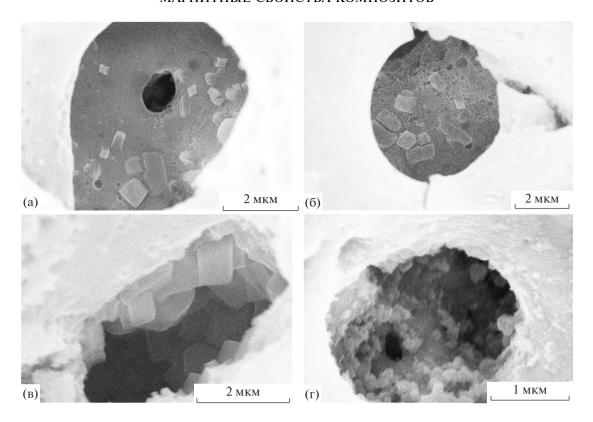


Рис. 6. Кристаллиты в порах покрытий, сформированных в течение 5 (а), 10 (б) и 15 мин (в, г).

происходит не пропорционально их концентрациям в электролите. Состав шаровидных частиц, локализованных в порах покрытий при $t_{\rm ф}=15$ мин, отличается от состава кристаллитов повышенными концентрациями фосфора, титана и кислорода, а также отношением $C_{\rm Fe}/C_{\rm Ni}=3.5$, близким к мольному отношению в объеме электролита.

Обсуждение результатов. Недостаток кислорода для образования оксидов металлов в порах ПЭО-покрытий ($C_0 = 14-28$ ат. %) позволяет считать, что металлы электролита и подложки находятся в составе кристаллитов и шаровидных ча-

стицах преимущественно в восстановленном состоянии. Микроразмерные образования в этом случае могут представлять собой сложные химически неоднородные системы, например, би- или монометаллические ядра (Fe + Ni, Fe или Ni), окруженные оксидно-гидроксидной оболочкой, или любые другие гетерофазные системы. По всей видимости, эти микрообразования, состоящие из преимущественно восстановленных металлов, окруженных оксидно-гидроксидной оболочкой, вносят существенный вклад в магнитные свойства композитов.

Таблица 2. Элементный состав отдельных составляющих поверхности, определенный с помощью энергодисперсионного анализа

t MIIII	Объект	С, ат. %								Fe/Ni
t_{Φ} , мин	OUBERT	С	О	Na	P	Ti	Fe	Ni	W	I TE/INI
5	Общая поверхность	10.7	56.6	3.3	7.4	5.8	11.3	3.8	1.1	3.0
	Кристаллиты	3.9	19.1	1.1	1.7	19.7	33.7	20.6	0.3	1.6
10	Общая поверхность	13.0	56.6	3.1	7.2	5.5	9.6	3.9	1.1	2.5
	Кристаллиты	1.2	13.8	2.5	1.8	9.4	40.5	30.5	0.3	1.3
15	Общая поверхность	10.8	57.8	4.3	7.6	3.7	10.7	3.9	1.0	2.7
	Кристаллиты	8.5	18.9	2.3	1.7	13.2	20.7	34.2	0.4	0.6
	Шаровидные частицы	5.8	27.9	1.4	3.3	25.8	27.5	7.8	0.5	3.5

Наличие восстановленного железа в составе покрытий, сформированных методом ПЭО в РВWFе-электролите, ранее было установлено методами РФЭС и РФА в работах [20, 21]. В настоящей работе наличие Fe^0 в составе покрытий, сформированных в течение 5 мин, подтверждается данными РФА (рис. 3). Возможная причина восстановления металлов в порах — наличие восстановительной атмосферы в каналах электрических пробоев, где в качестве восстановителей могут выступать водород, образующийся при термолизе молекул воды [29], а также продукты разложения анионов щавелевой и уксусной кислот, входящих в состав $Fe_2(C_2O_4)_3$ и $Ni(CH_3COO)_2$.

При длительном хранении на воздухе образцов происходит уменьшение значений магнитных характеристик (рис. 1в, 1г, рис. 2). Это может быть связано с окислением металлических Fe + Ni-содержащих частиц, локализованных в открытых порах на поверхности покрытия. Также не исключено, что с течением времени происходит объединение частиц в более сложные агломераты, что вызывает их переход из однодоменного состояния в многодоменное.

Ранее методом магнитосиловой микроскопии было показано, что ферромагнетизм покрытий на титане обеспечивают не только соединения в порах, но и основной массив покрытия [23]. Поскольку в нашем случае состав покрытий, сформированных в течение 5–15 мин, практически одинаков, вполне возможно, что при комнатной температуре именно основной массив покрытий вносит вклад в магнитные свойства композитов. В его составе могут быть аморфные оксиды, гидроксиды и фосфаты железа и никеля, обладающие слабомагнитными свойствами [30—32].

Отличие в составе микрообразований в порах покрытий, сформированных в течение разного времени, позволяет предположить, что за изменение магнитного поведения образцов при гелиевой температуре отвечают микрообразования в порах покрытий. При $t_{\rm d}=15$ мин в составе кристаллитов начинает преобладать никель по отношению к железу (Fe/Ni = 0.6, табл. 2). Кроме того, в отдельных порах появляются шаровидные частицы с повышенным содержанием титана и фосфора. По всей видимости, оба этих фактора приводят к уменьшению значения $H_{\rm c}$ при 2 К почти на 100 Э (рис. 2).

Таким образом, замещение в электролите железа никелем в соотношении $C_{Fe}/C_{Ni}=3/1$ позволяет формировать на титане более "магнитоактивные" при низких температурах покрытия по сравнению с покрытиями, содержащими только соединения железа [20], или соединения железа и никеля в отношении 1:1 [26].

ЗАКЛЮЧЕНИЕ

- 1. Методом плазменно-электролитического оксидирования в течение 5—15 мин в электролитах-суспензиях с гидроксидами железа и никеля в отношении 3 : 1 сформированы композиты Fe + + Ni— TiO_2/Ti , проявляющие ферромагнитные свойства. Все полученные композиты при комнатной температуре относятся к магнитомягким материалам (H_c < 59 Э). Уменьшение температуры до 2 К приводит к увеличению коэрцитивной силы композитов до 496—679 Э.
- 2. С увеличением времени формирования от 5 до 15 мин состав покрытий практически не меняется, при этом соотношение Fe и Ni в покрытиях эквивалентно соотношению Fe(III)/Ni(II) = 3/1 в электролите.
- 3. Установлено, что в порах всех сформированных покрытий присутствуют микроразмерные кристаллиты. В порах покрытий, полученных в течение 15 мин, помимо кристаллитов, имеются шаровидные частицы. В кристаллитах и частицах концентрации железа, никеля и титана выше, чем в основном массиве покрытий. Соотношение железа и никеля в кристаллитах отлично от их соотношения в электролите и зависит от времени формирования покрытий. В шаровидных образованиях, по сравнению с кристаллитами, повышены концентрации фосфора, титана и кислорода, отношение Fe/Ni = 3.5 близко к мольному отношению в объеме электролита.
- 4. При гелиевой температуре за магнитные свойства композитов отвечают микрообразования, локализованные в порах покрытий. Изменение в их составе с увеличением времени формирования до 15 мин приводит к уменьшению значений коэрцитивной силы. При комнатной температуре основной вклад в магнитные свойства композитов вносит массив покрытий.
- 5. При длительном хранении образцов происходит уменьшение значений магнитных характеристик, что может быть связано с окислением металлических частиц, сконцентрированных на дне и стенках открытых пор.

ФИНАНСИРОВАНИЕ

Синтез композитов, исследование их фазового, элементного состава и магнитных характеристик выполнено в рамках государственного задания Института химии ДВО РАН, тема № FWFN(0205)-2022-0001.

СПИСОК ЛИТЕРАТУРЫ

 Руднев В.С. Многофазные анодные слои и перспективы их применения // Защита металлов. 2008. Т. 44. № 3. С. 283—292.

- Curran J.A. Research into plasma electrolytic oxidation coating technologies aims to broaden its industrial potential.
 - http://abrasiveshub.com/2014/09/abrasives-articles-45/
- 3. Kaseem M., Fatimah S., Nashrah N., Ko Y.G. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance // Prog. Mater. Sci. 2020. V. 117. № 29. P. 100735.
 - https://doi.org/10.1016/j.pmatsci.2020.100735
- Patcas F., Krysmann W. Efficient catalysts with controlled porous structure obtained by anodic oxidation under spark-discharge // Appl. Catal. Gen. 2007.
 V. 316. № 2. P. 240–249. https://doi.org/10.1016/j.apcata.2006.09.028
- Stojadinovic S., Radic N., Grbic B., Maletic S., Stefanov P., Pacevski A., Vasilic R. Structural, photoluminescent and photocatalytic properties of TiO₂: Eu³⁺ coatings formed by plasma electrolytic oxidation // Appl. Surf. Sci. 2016. V. 370. P. 218–228. https://doi.org/10.1016/j.apsusc.2016.02.131
- 6. Terleeva O.P., Sharkeev Yu.P., Slonova A.I., Mironov I.V., Legostaeva E.V., Khlusov I.A., Matykina E., Skeldon P., Thompson G.E. Effect of microplasma modes and electrolyte composition on micro-arc oxidation coatings on titanium for medical applications // Surf. Coat. Technol. 2010. V. 205. № 6. P. 1723—1729. https://doi.org/10.1016/j.surfcoat.2010.10.019
- 7. Song W.H., Ryu H.S., Hong S.H. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coating formed by micro-arc oxidation // J. Biomed. Mater. Res. A. 2009. V. 88. № 1. P. 246–254. https://doi.org/10.1002/jbm.a.31877
- 8. Vladimirov B.V., Krit B.L., Lyudin V.B., Morozova N.V., Rossiiskaya A.D., Suminov I.V., Epel'feld A.V. Microarc discharge oxidizing of magnesium alloys: a review // Surf. Eng. Appl. Electrochem.2014. V. 50. № 3. P. 195–232. https://doi.org/10.3103/S1068375514030090
- 9. Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Buznik V.M., Emel'Yanenko A.M., Boinovich L.B. Hydrophobic properties of composite fluoropolymer coatings on titanium // Prot. Met. Phys. Chem. Surf. 2011. V. 47. № 1. P. 93–101. https://doi.org/10.1134/S2070205111010047
- 10. *Jin F.Y., Tong H.H.*, *Li J., Shen L.R., Chu P.K.* Structure and microwave absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation // Surf. Coat. Technol. 2006. V. 201. № 1–2. P. 292–295. https://doi.org/10.1016/j.surfcoat.2005.11.116
- Jagminas A., Ragalevicius R., Mazeika K., Reklaitis J., Jasulaitiene V., Selskis A., Baltrunas D. A new strategy for fabrication Fe₂O₃/SiO₂ composite coatings on the Ti substrate // J. Solid State Electrochem. 2010. V. 14. № 2. P. 271–277. https://doi.org/10.1007/s10008-009-0820-7
- 12. Гнеденков С.В., Синебрюхов С.Л., Ткаченко И.А., Машталяр Д.М., Устинов А.Ю., Самохин А.В., Цветков Ю.В. Магнитные свойства поверхностных слоев, формируемых на титане методом плазменно-электролитического оксидирования // Перспективные материалы. 2011. № 5. С. 55—62.

- 13. Rogov A.B., Terleeva O.P., Mironov I.V., Slonova A.I. Iron-containing coatings obtained by microplasma method on aluminum with usage of homogeneous electrolytes // Appl. Surf. Sci. 2012. V. 258. № 7. P. 2761–2765. https://doi.org/10.1016/j.apsusc.2011.10.128
- Baranova T.A., Chubenko A.K., Ryabikov A.E., Mamaev A.I., Mamaeva V.A., Beletskaya E.Y. Microarc synthesis of nanostructured radiation-absorbing coatings on aluminum and titanium surfaces // IOP Conf. Ser.-Mat. Sci. 2018. V. 286. P. 012037. https://doi.org/10.1088/1757-899X/286/1/012037
- 15. *Tirkey M.M.*, *Gupta N*. The quest for perfect electromagnetic absorber: a review // Int. J. Microw. Wirel. Technol. 2019. V. 11. № 2. P. 151–167. https://doi.org/10.1017/S1759078718001472
- 16. Green M., Chen X.B. Recent progress of nanomaterials for microwave absorption // J. Materiomics. 2019. V. 5. № 4. P. 503–541. https://doi.org/10.1016/j.jmat.2019.07.003
- 17. *Levy M*. The on-chip integration of magnetooptic waveguide isolators // IEEE J. Sel. Top. Quantum Electron. 2002. V. 8. № 6. P. 1300–1306. https://doi.org/10.1109/JSTQE.2002.806691
- 18. *Nipan G.D., Stognij A.I., Ketsko V.A.* Oxide ferromagnetic semiconductors: coatings and films // Russ. Chem. Rev. 2012. V. 81. № 5. P. 458–475. https://doi.org/10.1070/RC2012v081n05ABEH004251
- Hou X.W., Liu S.B., Chang J. Effect for micro-transformer using different substrate materials // Applied Mechanics and Materials. 2012. V. 135–136. P. 484–486.
 https://doi.org/10.4028/www.scientific.net/AMM.135-136.484
- 20. Руднев В.С., Адигамова М.В., Лукиянчук И.В., Устинов А.Ю., Ткаченко И.А., Харитонский П.В., Фролов А.М., Морозова В.П. Влияние условий формирования на ферромагнитные свойства железосодержащих оксидных покрытий на титане // Физикохимия поверхности и защита материалов. 2012. Т. 48. № 5. С. 459—469.
- 21. Руднев В.С., Морозова В.П., Лукиянчук И.В., Ткаченко И.А., Адигамова М.В., Устинов А.Ю., Харитонский П.В., Фролов А.М., Боев С.А. Магнитные свойства железосодержащих оксидных покрытий на сплаве алюминия, сформированных плазменно-электролитическим оксидированием // Физикохимия поверхности и защита материалов. 2013. Т. 49. № 3. С. 294—304. https://doi.org/10.7868/S0044185613030145
- 22. Rudnev V.S., Lukiyanchuk I.V., Adigamova M.V., Morozova V.P., Tkachenko I.A. The effect of nanocrystallites in the pores of PEO coatings on their magnetic properties // Surf. Coat. Technol. 2015. V. 269. P. 23–29. https://doi.org/10.1016/j.surfcoat.2015.01.073
- Rudnev V.S., Kharitonskii P.V., Kosterov A.A., Sergienko E.S., Shevchenko E.V., Lukiyanchuk I.V., Adigamova M.V., Morozova V.P., Tkachenko I.A. Magnetism of Fe-doped Al₂O₃ and TiO₂ layers formed on aluminum and titanium by plasma-electrolytic oxidation // J. Alloys Compd. 2020. V. P. 152579. https://doi.org/10.1016/j.jallcom.2019.152579

- 24. Kharitonskii P., Rudnev V., Sergienko E., Gareev K., Tk-achenko I., Morozova V., Lukiyanchuk I., Adigamova M., Frolov A., Ustinov A. Peculiarities of magnetic states of iron-cobalt coatings formed on aluminum by plasma electrolytic oxidation // J. Supercond. Nov. Magnetism. 2018. V. 31 № 6. P. 1933—1940. https://doi.org/10.1007/s10948-017-4423-8
- Rudnev V.S., Adigamova M.V., Lukiyanchuk I.V., Tkachenko I.A., Morozova V.P. Oxide coatings with ferromagnetic characteristics on Al, Ti, Zr and Nb // Surf. Coat. Technol. 2020. V. 381. P. 125180. https://doi.org/10.1016/j.surfcoat.2019.125180
- 26. Адигамова М.В., Руднев В.С., Лукиянчук И.В. Магнитные характеристики железо-, никельсодержащих оксидных слоев на титане // В сборнике: Наноструктурированные оксидные пленки и покрытия. Сборник статей по материалам Четвертой международной молодежной научной школы-семинара. 2017. С. 90—97.
- Iida S., Ohno K., Kamimae K., Kumagai H., Sawada S., Eds.: Handbook on Physical Properties (Asakura-Shoten, 1994) P.124–128.
- Руднев В.С., Яровая Т.П., Коньшин В.В., Гордиенко П.С. Анодно-искровые слои на титане и сплаве АМцМ

- из электролитов с полифосфатными комплексами алюминия // Защита металлов. 2003. Т. 39. № 2. С. 182-187.
- 29. Snezhko L.A., Kalinichenko O.A., Misnyankin D.A., Erokhin A.L. Hydrogen release on the anode in the course of plasma electrolytic oxidation of aluminum // Mater. Sci. 2016. V. 52. № 3. P. 421–430. https://doi.org/10.1007/s11003-016-9974-5
- 30. Pavic L., Graca M.P.F., Skoko Z., Mogus-Milankovic A., Valente M.A. Magnetic properties of iron phosphate glass and glass-ceramics // J. Am. Ceram. Soc. 2014. V. 97. № 8. P. 2517–2524. https://doi.org/10.1111/jace.12951
- 31. Essehli R., El Bali B., Benmokhtar S., Bouziane K., Manoun B., Abdalslam M.A., Ehrenberg H. Crystal structures and magnetic properties of iron (III)-based phosphates Na₄NiFe(PO₄)₃ and Na₂Ni₂Fe(PO₄)₃ // J. Alloys Compd. 2011. V. 509. № 4. P. 1163—1171. https://doi.org/10.1016/j.jallcom.2010.08.159
- Храмов А.Н., Гончаров Г.И., Комиссарова Р.А. и др. Палеомагнитология / Под ред. А.Н. Храмова. Л.: Недра, 1982. 312 с.