НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 547.245:541.183:543.544

МОДИФИКАЦИЯ ПОВЕРХНОСТИ СТЕКЛА СИЛАТРАНИЛ-ДИГИДРОПИРАНОВЫМ ГИБРИДОМ: ПОДХОД К НОВЫМ КОМПЛЕКООБРАЗУЮЩИМ И БИО-ФУНКЦИОНАЛЬНЫМ МАТЕРИАЛАМ

© 2022 г. Е. Н. Оборина^{1,} *, Н. В. Вчисло¹, Е. А. Верочкина¹, С. Н. Адамович¹

¹Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук,

Иркутск, Россия *e-mail: oborina@irioch.irk.ru Поступила в редакцию 03.03.2021 г. После доработки 30.03.2022 г. Принята к публикации 06.04.2022 г.

На основе 1-(3-аминопропил)силатрана (1) и 2,5-дибутилтио-2,3-дигидро-2-формил-4*H*-пирана, "дибутирина" (2), синтезировано новое силатранил-дигидропирановое соединение (3). Из гибридного силатрана (3) получены Cd(II) и Cu(II) комплексы (4–7), а также образцы модифицированного стекла (8). Соединения (3–8) охарактеризованы методами элементного анализа, ИК и ¹H, ¹³С ЯМР-спектроскопии. Изучены противомикробные свойства полученных соединений.

DOI: 10.31857/S0044185622040155

ВВЕДЕНИЕ

Кремнийорганические эфиры триэтаноламина, 1-органилсилатраны, R-Si(OCHRCH₂)₃N, представляют собой известный класс трициклических соединений пентакоординированного кремния (рис. 1) [1–5].

Уникальная структура силатранов придает им особые химические, физические свойства [2–4], а также высокую и разнообразную биологическую (физиологическую, фармакологическую) активность [5, 6]. Например, 1-(3-аминопропил)силатран и его производные оказывают противомикробные [7, 8], противопаразитарные [9], антигепатитные В [10], противоопухолевые [11], иммуномодулирующие [12] и ростстимулирующие [13] действия. Кроме того, 1-органилсилатраны недавно были успешно использованы для модификации различных поверхностей. Так. 3-аминопропилсилатран, 3-меркаптопропилсилатран и их производные при мягком гидролизе образуют идеальные по морфологии, чрезвычайно стабильные, функциональные кремнийорганические монослои на металлах, стекле, полимерах, хлопке и др. Такие модифицированные материалы могут применяться для производства устойчиво окрашенных нелиняющих тканей, противообрастающих покрытий, гибких схем и биосенсоров, а их металлокомплексы использоваться в гетерогенном катализе [14-18].

Дигидропираны являются основой природных и синтетических биологически активных соединений, таких как амбрутицин, форбоксазол, лейкаскандролид, кендомицин, неопелтолид и диоспонин. Замещенные дигидропираны также используются в качестве вкусовых или ароматических добавок для пищевых и других продуктов [19, 20].

В Иркутском институте химии СО РАН реакцией димеризации синтезирован оригинальный дигидропиран, содержащий альдегидную группу, а именно, 2,5-дибутил-тио-2,3-дигидро-2-формил-4*H*-пиран, получивший название "Дибутирин" (рис. 2).

Установлено, что дибутирин обладает широким спектром антигрибкового и антимикробного действия. Комплексная оценка микробиологических и токсикологических свойств показала, что дибутирин является нетоксичным веществом, а также одним из наиболее эффективных антибиотических и антисептических средств [21–23].

Сравнить дибутирин по действию на стафилококк с известными антибиотиками и антисептиками позволяет табл. 1.

Анализ результатов собственных исследований свидетельствует, что по активности и безопасности дибутирин находится на уровне наилучших современных антисептиков и даже превосходит их.

Молекулярная гибридизация (МГ) это один из современных подходов к рациональной разработ-

Рис. 1. 1-Органилсилатраны.

Рис. 2. Синтез 2,5-дибутилтио-2,3-дигидро-2-формил-4*H*-пирана (дибутирина).

ке новых лекарств или материалов, когда химические объекты получают путем объединения двух фармакофорных или функциональных единиц в одну молекулу [24–26].

Мы предположили, что метод МГ, может привести к объединению уникальных свойств 1-(3-аминопропил)силатрана (1) и 2,5-дибутилтио-2,3-дигидро-2-формил-4H-пирана (2).

Известно, что альдегиды и первичные амины реагируют с образованием иминов (азометинов). Существуют лишь единичные примеры взаимодействия (1) с альдегидами (салициловым альдегидом) [27, 28]. При этом образуются силатраны, содержащие в заместителе R основание Шиффа, т.е азометиновую/иминную группу C=N. Наличие такой группы способствует, например, комплексообразованию с металлами [29].

Целью работы является синтез связанного иминным линкером гибридного силатранил-дигидропиранового каркаса (3), его металлических комплексов с Cd и Cu (4–7), а также получение с помощью силатрана (3) функциональной пленки на поверхности стекла.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Материалы и методы

Растворители (ТГФ, CH₂Cl₂, CHCl₃ и MeOH), перед использованием очищали согласно [30]. Хлориды и ацетаты металлов Cd и Cu приобретали у Sigma-Aldrich.

Исходные соединения, 1-(3-аминопропил)силатран (1) синтезировали по методике [27], 2,5-дибутилтио-2,3-дигидро-2-формил-4Н-пиран (2) получали способом описанным в патенте [22].

ИК-спектры регистрировали на ИК-Фурьеспектрометре Varian 3100 в диапазоне 4000–400 см⁻¹.

Спектры ЯМР ¹Н и ¹³С записывали в $CDCl_3$ при комнатной температуре на спектрометре Bruker DPX-400 (400.13 и 100.61, соответственно).

Таблица 1. Средние МИК (мкг/мл) антибиотиков и антисептиков для выборок внебольничных и больничных штаммов *S. aureus*

Антибиотик	$x \pm S$, мкг/мл			$x \pm S$, мкг/мл	
	внебольничные (<i>n</i> = 145)	больничные (<i>n</i> = 149)	Антисептик	внебольничные (<i>n</i> = 150–192)	больничные (<i>n</i> =134–150)
Бензилпенициллин	105 ± 8.1	1867 ± 39.4	Хлоргексидин	5.0 ± 0.5	6.0 ± 0.2
Оксациллин	17.8 ± 3.9	953 ± 68.6	Дибутирин	1.3	1.5-3.1
Ампициллин	192 ± 20.9	717 ± 61.7	Этоний	120 ± 3.0	450 ± 60
Эритромицин	560 ± 69.7	1700 ± 51.6	Декаметоксин	40 ± 0.2	40 ± 0.1
Олеандомицин	592 ± 71.1	1525 ± 65.8	Диоксидин	2630 ± 70	2120 ± 70
Линкомицин	151 ± 40.3	1735 ± 52.9	Йодопирон	1000 ± 3.0	1000 ± 3.0
Тетрациклин	31.9 ± 1.3	313 ± 15.6	Первомур	90 ± 1.0	96 ± 2.0
Стрептомицин	524 ± 62.3	1847 ± 39.3	Резорцин	5600 ± 10	5420 ± 20
Мономицин	23.5 ± 5.2	715 ± 34.7	Борная кислота	2500 ± 100	3720 ± 300
Гентамицин	7.1 ± 0.04	553 ± 60.2	Риванол	460 ± 60	910 ± 130

Элементный анализ проведен на Thermo Finnigan Flash 1112.

Синтез гибридного силатрана (3)

Синтез соединения (3) проводили по схеме 1.

Схема 1.

Общая методика синтеза соединения (3)

Смесь силатрана 1 (1 ммоль) и альдегида 2 (в соотношении 1 : 1) в ТГФ, CHCl₃ или CH₂Cl₂ в присутствии сит 4 Å или MgSO₄ перемешивали при комнатной температуре в течение 1-3 ч. Сита отфильтровывали, растворитель отгоняли, остаток многократно промывали диэтиловым эфиром и высушивали в вакууме. Получали силатран (3) в виде маслообразной жидкости.

Общий синтез металлических комплексов (4-7)

Смесь силатрана (3) (2 ммоль), хлорида или ацетата металла Cd, Cu (1 ммоль) в МеОН перемешивали при комнатной температуре в течение 1–3 ч. Растворитель отгоняли, остаток многократно промывали диэтиловым эфиром и высушивали в вакууме. Получали комплексы (4–7) состава 2 : 1.

Получение модифицированного стекла (8)

Процедуру проводили способом погружения стеклянных пластинок в раствор подобно методике [14]. А именно, стеклянные пластинки размером 5 × 1 см очищали мылом, обрабатывали ультразвуком (Sonorex TK52) последовательно в метаноле, ацетоне, воде по 15 мин на каждой стадии, высушивали при 80° С. Очищенные стекла погружали в 5% раствор метанол/вода (1:1) силатрана (3) на 12 ч, затем промывали метанолом и дистиллированной водой, высушивали при 80° С. Получали образцы модифицированного стекла (8).

Микробиологические исследования

Для оценки роста микроорганизмов (*Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Escherichia coli*) после контакта с исходным силатраном (**3**) и комплексными соединениями (**5**, **6**), а также поверхностью модифицированного стекла (**8**) применяли метод секторных посевов (Gould method) [31, 32].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Как видно из схемы 1, синтез гибридного силатрана (3) представляет собой простой одностадийный процесс.

Соединение (3) – желтое масло. Выход 88% (в СH₂Cl₂), 90% (в CHCl₃), 92% (в ТГФ). ИК-спектр, v, cm⁻¹: 1626 (C=N), 1456 (C=C), 1365 (NCH₂), 1276 (OCH₂), 1051 (Si-O), 769 (SCH₂). ¹H ЯМР (CDCl₃, 400 МГц) б: 0.31 (м, 2H, SiCH₂), 0.82 (м, 6H, 2CH₃ (2Bu)), 1.33 (м, 4H, C<u>H</u>₂CH₃(2Bu)), 1.45 (м, 4H, 2SCH₂C<u>H</u>₂ (Bu)), 1.66 (м, 2H, NCH₂C<u>H</u>₂), 2.03 (м, 2H, CH₂ (при C-4)), 2.10 и 2.36 (м, 2H, CH₂ (при С-3)), 2.44–2.51 (м, 4H, 2SCH₂ (2Bu)), 2.73 (м, 6H, NCH₂), 3.40 (т, 2H, J = 7.4 Гц, =NCH₂), 3.66 (м, 6H, OCH₂), 6.58 (с, 1H, =CH(O)), 7.43 (с, 1H, N=CH). ¹³C ЯМР (CDCl₃, 101.6 MΓμ) δ: 13.6 (SiCH₂), 13.68 (CH₃ (2Me (Bu)), 21.55 (<u>C</u>H₂CH₃ (Ви при С*)), 22.02 (<u>С</u>H₂CH₃ (Ви при С=), 23.75 (С-3), 26.32 (NCH₂<u>C</u>H₂), 27.38 (SCH₂ (Ви при С*)), 29.75 (С-4), 31.42 (SCH₂<u>C</u>H₂ (Ви при С*)), 31.77 (SCH₂<u>C</u>H₂ (Ви при C=)), 32.28 (SCH₂ (Ви при C=), 51.11 (NCH₂ (сил)), 57.74 (OCH₂), 64.18 (NCH₂), 84.63 (C*), 106.85 (C-5), 144.10 (=CHO), 160.04 (CH=N).

Найдено, %: С, 54.98; Н, 8.37; N, 5.58. С₂₃Н₄₂N₂O₄S₂Si.

Вычислено, %: C, 54.96; H, 8.38; N, 5.58.

Таким образом, совокупность данных элементного анализа, ИК и ЯМР-спектроскопии подтверждает образование гибридного силатрана (3), содержащего азометиновую группировку.

Синтез металлических комплексов (4–7) представляет собой простую процедуру (см. экспериментальную часть).

Комплекс (4). Бесцветный порошок, выход 96%. ИК-спектр, v, см⁻¹ 1662 (C=N), 1453 (C=C), 1365 (NCH₂), 1272 (OCH₂), 1051 (Si–O), 764 (SCH₂). ¹H ЯМР (CDCl₃, 400 МГц) δ : 0.35 (м, 2H, SiCH₂), 0.85 (м, 6H, 2CH₃ (2Bu)), 1.35 (м, 4H, CH₂CH₃(2Bu)), 1.47 (м, 4H, 2SCH₂CH₂ (Bu)), 1.68 (м, 2H, NCH₂CH₂), 2.04 (м, 2H, CH₂ (при С-4)), 2.14 и 2.34 (м, 2H, CH₂ (при С-3)), 2.48–2.55 (м, 4H, 2SCH₂ (2Bu)), 2.76 (м, 6H, NCH₂), 3.44 (т, 2H, $J = 7.4\Gamma\mu$, =NCH₂), 3.71 (м, 6H, OCH₂), 6.63 (с, 1H, =CH(O)), 7.48 (с, 1H, N=CH). ¹³C ЯМР (CDCl₃, 101.6 МГ μ) δ: 13.68 (SiCH₂), 13.75 (CH₃ (2Me (Bu))), 21.64 (<u>C</u>H₂CH₃ (Bu при C*)), 22.09 (<u>C</u>H₂CH₃ (Bu при C=), 23.79 (C-3), 26.36 (NCH₂<u>C</u>H₂), 27.48 (SCH₂ (Bu при C*)), 29.80 (C-4), 31.49 (SCH₂<u>C</u>H₂ (Bu при C*)), 31.80 (SCH₂<u>C</u>H₂ (Bu при C=)), 32.35 (SCH₂ (Bu при C=), 51.18 (NCH₂ (сил)), 57.81 (OCH₂), 64.16 (NCH₂), 84.70 (C*), 107.03 (C-5), 144.03 (=CHO), 160.42 (CH=N).

Найдено, %: С, 46.60; Н, 7.14; N, 4.75. С₄₆Н₈₄N₄O₈S₄Si₂CdCl₂.

Вычислено, %: C, 46.62; H, 7.10; N, 4.73.

Комплекс (5). Зеленый порошок, выход 96%. ИК-спектр, v, см⁻¹ 1651 (C=N), 1459 (C=C), 1365 (NCH₂), 1272 (OCH₂), 1051 (Si-O), 764 (SCH₂). ЯМР спектры получить не удается из-за парамагнитности атомов меди.

Найдено, %: C, 48.46; H, 7.36; N, 4.93. C₄₆H₈₄N₄O₈S₄Si₂CuCl₂.

Вычислено, %: C, 48.46; H, 7.37; N, 4.91.

Комплекс (6). Бесцветный порошок, выход 96%. ИК-спектр, v, см⁻¹ 1660 (С=N), 1453 (С=С), 1365 (NCH₂), 1272 (OCH₂), 1051 (Si-O), 764 (SCH₂).¹Н ЯМР (CDCl₃, 400 МГц) δ: 0.34 (м, 2H, SiCH₂), 0.86 (м, 6H, 2CH₃ (2Bu)), 1.33 (м, 4H, С<u>H</u>₂CH₃(2Bu)), 1.46 (м, 4H, 2SCH₂C<u>H</u>₂ (Bu)), 1.66 (м, 2H, NCH₂C<u>H</u>₂), 2.04 (м, 2H, CH₂ (при C-4)), 2.13 и 2.32 (м, 2H, CH₂ (при С-3)), 2.25 (с, 6H, OMe), 2.47–2.55 (м, 4H, 2SCH₂ (2Bu)), 2.76 (м, 6H, NCH₂), 3.43 (т, 2H, J = 7.4 Гц, =NCH₂), 3.71 (м, 6H, OCH₂), 6.64 (c, 1H, =CH(O)), 7.48 (c, 1H, N=CH). ¹³С ЯМР (CDCl₃, 101.6МГц) δ: 13.66 (SiCH₂), 13.73 (CH₃ (2Me (Bu)), 21.63 (<u>C</u>H₂CH₃ (Bu при C*)), 22.08 (<u>C</u>H₂CH₃ (Ви при C=), 23.4 (OMe), 23.78 (C-3), 26.34 (NCH₂<u>C</u>H₂), 27.47 (SCH₂ (Bu при С*)), 29.81 (С-4), 31.49 (SCH₂CH₂ (Ви при С*)), 31.78 (SCH₂<u>C</u>H₂ (Ви при C=)), 32.35 (SCH₂ (Ви при C=), 51.16 (NCH₂ (сил)), 57.81 (OCH₂), 64.15 (NCH₂), 84.70 (C*), 107.03 (C-5), 144.03 (=CHO), 160.42 (CH=N), 182.4 (COO).

Найдено, %: С, 47.64; Н, 7.43; N, 4.66. С₄₈Н₉₀N₄O₁₂S₄Si₂Cd.

Вычислено, %: C, 47.60; H, 7.44; N, 4.63.

Комплекс (7). Зеленый порошок, выход 96%. ИК-спектр, v, см⁻¹ 1657 (C=N), 1459 (C=C), 1365 (NCH₂), 1272 (OCH₂), 1051 (Si–O), 764 (SCH₂). ЯМР спектры получить не удается из-за парамагнитности атомов меди. Найдено, %: C, 49.53; H, 7.72; N, 4.83. $C_{48}H_{90}N_4O_{12}S_4Si_2Cu.$

Вычислено, %: C, 49.57; H, 7.74; N, 4.82.

Осуществлен анализ ИК и ¹H, ¹³С ЯМР спектров силатрана (3), комплексов (4–7). В ИКспектре гибридного силатрана (3) проявляется полоса поглощения 769 см⁻¹ сульфидной группы SCH₂, а также характерные полосы поглощения силатранильной группы при 1051 см⁻¹ (Si–O), 1276 см⁻¹ (O–CH₂), 1365 см⁻¹ (CH₂–N). Полосы поглощения в области 1456 см⁻¹ и 1626 см⁻¹ относятся к валентным колебаниям C=C и C=N дигидропиранового кольца и иминной группы, соответственно.

Сравнение полос поглощения 764 см⁻¹ (SCH₂), 1651–1662 см⁻¹ (C=N) в спектрах комплексов (4–7) с аналогичными полосами в спектрах силатрана (3) показывает понижение их интенсивности и заметное смещение, что может указывать на образование координационной связи между ионами Cd(II), Cu(II) и атомами азота и серы гибридного силатрана (3).

Проведен анализ ¹H, ¹³С ЯМР спектров силатрана (**3**) и его комплексов (**4**–7). В спектрах ¹H ЯМР силатрана (**3**) присутствуют сигналы протонов группы SCH₂, 2.44–2.51 м.д., силатранильной группы 2.73 м.д. (NCH₂), 3.66 м.д. (OCH₂), а также иминной группы 7.43 м.д. (CH=N) (рис. 3).

В спектрах ¹³С ЯМР наблюдаются сигналы углерода группы SCH₂ 27.38 м.д., сигналы силатранильной группы 51.11 м.д. (NCH₂), 57.74 м.д. (OCH₂), а также иминной группы 160.04 м.д. (CH=N) (рис. 4).

Проведенный ЯМР-мониторинг взаимодействия гибридного силатрана (3) с постадийным добавлением хлоридов и ацетатов Cd(II) и Cu(II) показал изменения в спектрах ЯМР характерные для комплексообразования по активным центрам SCH₂ и CH=N. Например, в спектрах ¹Н ЯМР комплекса (4) наблюдается уширение и смещение сигналов SCH₂ (2.55 м.д.) и CH=N (7.48 м.д.) групп в слабое поле (рис. 5).

В спектрах ¹³С ЯМР комплекса (4) уширение и смещение претерпевают сигналы углеродов SCH₂ (27.48 м.д.) и CH=N (160.42 м.д.) (рис. 6).

Эти спектральные эффекты свидетельствуют об участии этих групп в координации с металлом.

Таким образом, результаты элементного анализа, а также данные ИК, ЯМР-спектроскопии подтверждает образование комплексов (4–7) состава 2 : 1. Их предполагаемая структура отображена на схеме 3.

436

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 58 № 4 2022

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 58 № 4 2022

4 (M = Cd, X = Cl) 5 (M = Cu, X = Cl) 6 (M = Cd, X = OAc)

7 (
$$M = Cu, X = OAc$$
)

Схема 3. Предполагаемая структура комплексов (4–7).

Иммобилизацию силатрана (3) на поверхность специально подготовленного стекла проводили по схеме 2, подобно методике [14] (см. экспериментальную часть). После процедуры иммобилизации, соответствующей промывки и высушивания получали образцы функционализированного стекла (8).

Модификация поверхности стекла, очевидно, является результатом взаимодействия между силатраном (3) и гидроксильными группами стекла и, вероятно, протекает в несколько стадий:

(а) реакция гидролиза силатрана (3), приводящая к выбросу триэтаноламина и образованию соответствующего силанола (HO)₃Si-(CH₃)₃-R;

(б) реакция конденсации силанола с гидроксильной группой стекла, приводящая к образованию силанольного интермедиата;

(в) реакция конденсации следующей молекулы силанола, как с гидроксильной группой интермедиата, так и с ОН группой стекла, ведущая к образованию цепей –O–Si–O–Si–O–. В результате, не исключается вероятность образования на поверхности стекла самосборных функциональных силоксановых слоев/пленок (схема 2).

(8)

Схема 2. Схема получение модифицированного стекла (8).

ИК-спектр функционализированного стекла (8) показал полосы поглощения 770 см⁻¹, соответствующие сульфидной группы SCH₂, а также характерные полосы поглощения 1457 и 1628 см⁻¹, которые относятся к валентным колебаниям группы C=C дигидропиранового кольца и иминной группы C=N. Эти данные позволяют предположить, что модификация стекла прошла успеш-

Культура	Время контакта, ч								
	0	1	3	24	48				
Дибутирин (2)									
S. aureus	Рост 10 ⁶	Рост 10 ²	Нет роста	Нет роста	Нет роста				
P. aeruginosa	Рост 10 ⁶	Рост 10 ²	Нет роста	Нет роста	Нет роста				
E. coli	Рост 10 ⁶	Рост 10 ²	Нет роста	Нет роста	Нет роста				
Силатран (3)									
S. aureus	Рост 10 ⁶	Рост 10 ²	Нет роста	Нет роста	Нет роста				
P. aeruginosa	Рост 10 ⁶	Рост 10 ²	Нет роста	Нет роста	Нет роста				
E. coli	Рост 10 ⁶	Рост 10 ²	Нет роста	Нет роста	Нет роста				
Комплекс (5)									
S. aureus	Рост 10 ⁶	Нет роста	Нет роста	Нет роста	Нет роста				
P. aeruginosa	Рост 10 ⁶	Нет роста	Нет роста	Нет роста	Нет роста				
E. coli	Рост 10 ⁶	Нет роста	Нет роста	Нет роста	Нет роста				
Комплекс (6)									
S. aureus	Рост 10 ⁶	Нет роста	Нет роста	Нет роста	Нет роста				
P. aeruginosa	Рост 10 ⁶	Нет роста	Нет роста	Нет роста	Нет роста				
E. coli	Рост 10 ⁶	Нет роста	Нет роста	Нет роста	Нет роста				
Модифицированное стекло (8)									
S. aureus	Рост 10 ⁶	Рост 10 ²	Нет роста	Нет роста	Нет роста				
P. aeruginosa	Рост 10 ⁶	Рост 10 ²	Нет роста	Нет роста	Нет роста				
E. coli	Рост 10 ⁶	Рост 10 ²	Нет роста	Нет роста	Нет роста				

Таблица 2. Антимикробные свойства полученных соединений

но, а полученные образцы или их аналоги на основе силикагелей, цеолитов, целлюлозы и др. могут быть использованы в качестве сорбентов/гемосорбентов/энтеросорбентов.

Анализ антимикробной активности

Исследования по определению антимикробной активности в отношении к грамположительным (*S. aureus*), и грамотрицательным (*P. aeruginosa, E. coli*) бактериям исходного дибутирина (**2**), гибридного силатрана (**3**) и комплексных соединений (**5**, **6**), а также поверхности модифицированного стекла (**8**) проводили на базе ФКУЗ Иркутского научно-исследовательского противочумного института.

Выживаемость микроорганизмов (S. aureus, *P. aeruginosa, E.coli*) определяли посевом из пробирки с "образец-микроорганизм" при интервалах инкубации (0, 1, 3, 24 и 48 ч) на чашках Петри с питательным агаром. Для оценки роста микроорганизмов использовали метод секторных посевов. Результаты представлены в табл. 2. Как видно из табл. 2, дибутирин (2) гибридный силатран (3), а также модифицированное стекло (8) уменьшают рост как грамположительных (золотистый стафилококк), так и грамотрицательных (синегнойная и кишечная палочки) микроорганизмов через 3 ч после контакта.

Комплексные соединения (5) и (6) полностью тормозят рост всех исследованных бактерий уже через 1 ч после контакта и сохраняется в дальнейшем. Эти результаты соответствуют данным о более высокой биологической активности металлокомплексов, по сравнению с лигандами, а также новым стратегиям получения противомикробных материалов [33].

ЗАКЛЮЧЕНИЕ

Таким образом, из доступных реагентов, 1-(3-аминопропил)силатрана (1) и 2,5-дибутилтио-2,3-дигидро-2-формил-4*H*-пирана, "дибутирина" (2) синтезирован связанный иминным линкером гибридный силатранил-дигидропирановый каркас (3) и его металлические комплексы с солями Cd(II) и Cu(II) (4–7). На основе гибридного силатрана (**3**) получены образцы модифицированного стекла (**8**).

Изучение противомикробных свойств исследуемых соединений (2, 3, 5, 6, 8) показало, что исходный дибутирин (2), синтезированный гибридный силатран (3) и модифицированное стекло (8) при контакте с бактериями *Staphylococcus aureus*, *Pseudomonas aeruginosa* и *Escherichia coli* подавляют рост микроорганизмов одинаково, однако металлические комплексы (5) и (6) останавливают рост бактерий гораздо раньше.

Полученные соединения (**3**–**8**) представляют значительный интерес как основа для создания новых комплексообразующих, сорбционных и био-функциональных соединений и материалов.

Основные результаты получены с использованием оборудования Байкальского аналитического центра коллективного пользования СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- Voronkov M.G., Dyakov V.M., Kirpichenko S.V. // J. Organomet. Chem. 1982. V. 233. P. 1.
- Puri J.K., Singh R., Chahal V.K. // Chem. Soc. Rev. 2011. V. 40. P. 1791.
- Vlasova N.N., Sorokin M.S., Oborina E.N. // Appl. Organomet. Chem. 2017. V. 31. e3668. https://doi.org/10.1002/aoc.3668
- 4. Adamovich S.N. // Appl. Organomet. Chem. 2019. V. 33. e4940. https://doi.org/10.1002/aoc.4940
- Adamovich S.N., Kondrashov E.V., Ushakov I.A., Shatokhina N.S., Oborina E.N., Vashchenko A.V., Belovezhets L.A., Rozentsveig I.B., Verpoort F. // Appl. Organomet. Chem. 2020. V. 34. e5976. https://doi.org/10.1002/aoc.5976
- Voronkov M.G., Baryshok V.P. // Silatranes in Medicine and Agriculture, SO RAN Publ. Novosibirsk. 2005. C. 255.
- Singh G., Saroa A., Girdhar S., Rani S., Choquesillo-Lazarte D., Sahoo S.C. // Appl. Organometal. Chem. 2015. V. 29. P. 549.
- Singh G., Arora A., Rani S., Kalra P., Aulakh D., Wried M. // Appl. Organometal. Chem. 2017. V. 31. e3728. https://doi.org/10.1002/aoc.3728
- Singh G., Satija P., Singh A., Aulakh D., Wriedt M., Ruiz C.E., Esteban M. ., Sinha S., Sehgal R. // Appl. Organometal. Chem. 2019. V. 33. e4695. https://doi.org/10.1002/aoc.4695
- Han A., Li L., Qing K., Qi X., Hou L., Luo X., Shi S., Ye F. // Bioorg. Med. Chem. Lett. 2013. V. 23. P. 1310.
- 11. Voronkov M.G., Baryshok V.P. // Pharm. Chem. J. 2004. V. 38. P. 3.
- Faqing Ye, Xiaoqin Song, JianminLiu Liu, Xu Xuemei, Wang Yuewu, Hu Lichuan, Wang Yi, Liang Guang, Guo Ping, Xie Zixin // Chem. Biol. Drug. Des. 2015. V. 86. P. 905.
- Z.-xin Xie, L.-fang Chen, Y.-wu Wang, X.-qing Song, X.-lu Qi, P. Guo, Fa-q. Ye // Phytochem. Lett. 2014. V. 8. P. 202.

- 14. Chen W.-H, Tseng Y.-T., Hsieh S., Liu W.-C., Hsieh C.-W., Wu C.-W., Huang C.-H., Lin H.-Y., Chen C.-W., Linb P.-Y., Chau L.-K. // RSC Adv. 2014. V. 4. P. 46527.
- 15. *Materna K.L., Brennan B.J., Brudvig G.W.* // Dalton Trans. 2015. V. 44. P. 20312.
- Tseng Y.-T., Lu H.-Y., Li J.-R., Tung W.-J., Chen W.-H., Chau L.-K. // ACS Appl. Mater. Interfaces. 2016. V. 49. P. 34159.
- 17. Singh H., Singh R., Kaur V. // Cellulose. 2019. V. 26. P. 2885.
- 18. Huang C.-J., Zheng Y.-Y. // Langmuir. 2019. V. 35. P. 1662.
- Dobbs A.P., Martinovi S. // Tetrahedron Lett. 2002. V. 43. P. 7055.
- Saha P., Ghosh P., Sultana S., Saikia A. K. // Org. Biomol. Chem. 2012. V. 10. P. 8730.
- Баркова Н.П., Кейко Н.А., Степанова Л.Г., Воронков М.Г., Портяной А.А., Никифорова Т.И. // Патент РФ 1727243. Бюлл. Изобрет. 1993. С. 33.
- Кейко Н.А., Степанова Л.Г., Чувашов Ю.А., Воронков М.Г. // Патент РФ 2030412. Бюлл. Изобрет. 1995. С. 35.
- Кейко Н.А., Вдовина Г.П., Коростелева Л.К., Одегова Т.Ф., Степанова Л.Г. // II Конференция "Фундаментальная наука в интересах развития химической и химико-фармацевтической промышленности". Сборник тезисов докладов. 2004. С. 8.
- Viegas C., Jr., Danuello A., Bolzani V. da Silva, Barreiro E.J., Fraga C.A.M. // Curr. Med. Chem. 2007. V. 14. P. 1829.
- 25. Corson T.W., Aberle N., Crew C.M. // ACS Chem. Biol. 2008. V. 3. P. 677.
- M. de Oliveira Pedrosa, R.M.D. da Cruz, J. de Oliveira Viana, R.O. de Moura, H.M. Ishiki, J.M.B. Filho, M.F.F.M. Diniz, M.T. Scotti, L. Scotti, F.J.B. Mendonca // Curr. Top. Med. Chem. 2017. V. 17. P. 1044.
- Dumitriu A.-M.-C., Cazacu M., Shova S., Turta C., Simionescu B. C. // Polyhedron. 2012. V. 33. P. 119.
- 28. *Singh R., Mutneja R., Kaur V., Wagler J., Kroke E. //* J. Organometal. Chem. 2013. V. 724. P. 186.
- 29. Ispir E., Kurtoglu M., Purtas F. // Transition Metal Chem. 2005. V. 30. P. 1042.
- 30. *Гордон А., Форд Р.* Спутник химика. М.: Мир. 1976. 541 с.
- Покровский В.И. Медицинская микробиология / под ред. Покровского В.И. М.: ГЭОТАР Медицина, 1998. С. 326.
- Пьянова Л.Г., Лавренов А.В., Корниенко Н.В., Огурцова Д.Н. // Физикохимия поверхностей и зашита материалов. 2020. Т. 56. С. 595.
- Claudel M., Schwarte J.V., Fromm K.M. // Chemistry. 2020. V. 2. P. 849. https://doi.org/10.3390/chemistry2040056

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 58 № 4 2022