НОВЫЕ ВЕЩЕСТВА, МАТЕРИАЛЫ И ПОКРЫТИЯ

УДК 621.762;537.523.4

ВЛИЯНИЕ ЭНЕРГИИ РАЗРЯДНЫХ ИМПУЛЬСОВ ПРИ ЭЛЕКТРОИСКРОВОМ ОСАЖДЕНИИ АМОРФНЫХ ПОКРЫТИЙ

© 2022 г. А. А. Бурков*

ФГБУН Институт материаловедения Хабаровского научного центра ДВО РАН, ул. Тихоокеанская, 153, Хабаровск, 680042 Россия *e-mail: burkovalex@mail.ru Поступила в редакцию 20.07.2021 г. После доработки 30.05.2022 г. Принята к публикации 06.06.2022 г.

В работе представлены результаты исследования аморфного покрытия на подложке из стали 35, приготовленного электроискровым осаждением в смеси железных гранул с порошком CBCrSiMoW. С ростом длительности разрядов повышалось содержание железа в составе покрытий, что приводило к снижению доли аморфной фазы с 67 до 50 об. %. Аморфное покрытие имело в 23 раза более высокую стойкость к окислению при температуре 700°С по сравнению со сталью 35. Поляризационные испытания образцов в 3.5% растворе NaCl показали возрастание плотности тока коррозии с ростом длительности импульсов выше 200 мкс. Микротвердость покрытий находилась в диапазоне от 399 до 759 HV. Средние значения скорости износа покрытий в условиях сухого скольжения находились в диапазоне от 1.6×10^{-6} до 10.9×10^{-6} мм³/Hм, что от 4 до 22 раз ниже, чем у стали 35 без покрытия. Наибольший коэффициент трения и скорость изнашивания наблюдались для покрытия, полученного при наиболее длинных импульсах из-за наименьшей концентрации аморфной фазы. Результаты работы покрытий и приемлемого содержания аморфной фазы, находится в диапазоне от 50 до 200 мкс.

Ключевые слова: металлические стекла на основе Fe, покрытия, электроискровое легирование, коррозионная стойкость, жаростойкость, износ

DOI: 10.31857/S0044185622050059

1. ВВЕДЕНИЕ

Металлические стекла (МС) – это аморфные металлические материалы, обладающие улучшенными магнитными, электрохимическими, трибологическими и каталитическими свойствами [1-4], а также радиационной-стойкостью, биосовместимостью и нецитотоксичностью [5-7]. Покрытия из МС на основе железа привлекают внимание исследователей и инженеров, поскольку они улучшают твердость, жаростойкость и коррозионную устойчивость стальных изделий [8, 9]. Для получения МС покрытий используются различные технологии, такие как магнетронное напыление, лазерная наплавка, плазменное распыление, гальванику и электроискровое легирование (ЭИЛ) [10-15]. Технология ЭИЛ основана на переносе материала анода на поверхность катода при воздействии множества коротких (~10⁻⁴ с) электрических разрядов. Среди вышеперечисленных методов ЭИЛ характеризуется минимальным тепловым воздействием на материал подложки, не требует дорогостоящего оборудования и поддержания вакуума, а полученные покрытия выгодно отличаются высокой адгезией к подложке за счет металлургической связи покрытия с подложкой [15–18].

Обычно процесс ЭИЛ выполняется на установках, оснащенных ручным держателем электрода. Ранее нами была показана возможность автоматизированного ЭИЛ с использования смеси порошков металлов (W, Mo, Cr) и неметаллов (Si, С, SiB₄) для осаждения аморфных покрытий с анодом их железных гранул [19]. Железные гранулы и стальная подложка выступали в качестве источника железа для МС. При прохождении разряда между гранулой и подложкой, порошок электростатически зафиксированный на их поверхности вводится в микрованну расплава. Это сопровождается конвективным и диффузионным перемешиванием элементов до гомогенного состояния. Из-за высокой скорости охлаждения материала после прекращения разряда до 105-106 К/с происходит фиксация аморфной структуры из многокомпонентного расплава с высокой стеклообразующей способностью. Известно, что энергия разрядов может оказывать влияние на условия охлаждения

Порошок	ат. %	Элемент	ат. %		
Si	5.91	Si	15.27		
С	3.49	С	24.03		
Mo	20.02	Мо	10.00		
Cr	21.7	Cr	19.99		
SiB ₄	7.66	В	20.60		
WC	41.23	W	10.09		

Таблица 1. Состав порошковой смеси

материала при ЭИЛ [17]. Поэтому целью данной работы является исследование влияния длительности разрядных импульсов на структуру и свойства аморфных покрытий, полученных электроискровой обработкой стали 35 в смеси железных гранул с многокомпонентным порошком.

2. МЕТОДИКА

Покрытия наносились на подложку из стали 35 в виде цилиндра диаметром 12 мм и высотой 10 мм. В качестве осаждаемого материала использовали порошковую смесь (табл. 1) и гранулы низколегированной стали Ст. 3.

Гранулы получали путем разрезания проволоки диаметром 4 \pm 0.2 мм на цилиндры высотой 4 \pm 0.2 мм. Исходные порошки имели чистоту не менее 99.5 мас. %. Порошковая смесь была приготовлена путем смешивания порошков в планетарной шаровой мельнице РМ-400 в течение 90 мин в аргоне при скорости вращения 250 об./мин в течение 2 ч. По данным сорбтометра Sorbi-M, после смешивания порошок имел удельную поверхность 3.1 м²/г. К железным гранулам добавляли высушенный порошок в концентрации 9 об. %, и все это загружали в стальной контейнер. Схема установки для нанесения покрытий представлена на рис. 1а. Подложка размещалась в центре контейнера. Контейнер устанавливался под углом 45° и соединялся с приводом.

Скорость вращения контейнера составляла 60 об./мин. Подложка была закреплена на стальном стержне, подключенном к отрицательной клемме генератора импульсов, и соединена с приводом, вращающем ее в направлении, противоположном контейнеру, со скоростью 60 об./мин. Положительный вывод генератора был подключен к контейнеру через медные шетки. Генератор импульсов IMES-40 выдавал прямоугольные импульсы тока амплитудой 110 ± 10 А при напряжении 30 \pm 5 В, длительностью (τ) в диапазоне 20-500 мкс с частотой 1000 Гц (табл. 2). Аргон подавали в контейнер со скоростью 10 Л мин⁻¹ для предотвращения процессов окисления на поверхности образцов. Время нанесения каждого покрытия составляло 360 с.

Фазовый состав образцов исследовали на рентгеновском дифрактометре ДРОН-7 в Си K_{α} -излучении. Состав покрытий исследовали с помощью растрового электронного микроскопа (СЭМ) Sigma 300 VP, оснащенного спектральным анализатором INCA Energy. Рамановскую микроспектрометрию проводили на приборе InVia Reflex (Renishow, Великобритания). Параметры зонда: лазер 532 нм, выходная мощность 5 мВт при 500 повторах. Электрохимические поляризационные ис-

Рис. 1. Схема ЭИЛ в гранулах с добавлением порошка (а) и прирост массы подложки в зависимости от длительности импульсов после 6 мин ЭИЛ (б).

БУРКОВ

Обозначение покрытий	Длительность импульса, мкс	Энергия, Дж	Толщина, мкм	
C20	20	0.066	22 ± 9	
C50	50	0.165	29 ± 5	
C100	100	0.33	38 ± 9	
C200	200	0.66	39 ± 7	
C300	300	0.99	47 ± 17	
C400	400	1.32	54 ± 9	
C500	500	1.65	56 ± 17	

Таблица	2.	Электрические	параметры ЭГД	I, обозначение по	крытий и их толщина
			······································	1	F A A A A A A A A A A A A A A A A A A A

пытания проводили в 3.5% растворе NaCl в стандартной трехэлектродной ячейке с использованием потенциостата P-2X. В качестве электрода сравнения использовался стандартный хлорсеребряный электрод. Контр-электродом служила платиновая фольга, а в качестве рабочего электрода использовались образцы с покрытием и сталь 35. Площадь контакта образцов с электролитом составляла 1 см². Сканирование проводилось со скоростью 3 мВ/с в диапазоне -1.5-0.5 В. Для обеспечения воспроизводимости результатов было выполнено 5 измерений для каждого образца. Испытания на стойкость к высокотемпературному окислению проводились в муфельной печи при температуре 700°С на воздухе. Общее время тестирования составило 100 ч. Твердость покрытий измеряли на микротвердомере ПМТ-3М при нагрузках 0.5 Н по методу Виккерса. Износостойкость покрытий исследовали согласно ASTM G99-17 при сухом трении скольжения со скоростью 0.47 м/с при нагрузках 10 и 25 Н с использованием диска из быстрорежущей стали M45 твердостью 60 HRC в качестве контртела. Изменение массы образцов контролировали с помощью весов с чувствительностью 0.1 мг.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В процессе электроискрового осаждения покрытий в смеси стальных гранул и порошка СгМоWCBSi наблюдалось увеличение массы подложек в результате осаждения материала гранул и порошка на катод (рис. 16). С увеличением длительности импульсов, посылаемых генератором, средний привес катода монотонно увеличивался почти в десять раз с 1.6 до 15.4 мг/см² за 6 мин осаждения. Привес катода Δm_c во время ЭИЛ в гранулах может быть выражен как сумма масс материала гранул Δm_a и порошка Δm_p , перешедшего в микрованну расплава (MB) на поверхности катода, за вычетом эрозии катода ε_c :

$\Delta m_{\rm c} = \Delta m_{\rm a} + \Delta m_{\rm p} - \varepsilon_{\rm c}.$

Как известно, Δm_a увеличивается с увеличением энергии разряда при ЭИЛ [20]. В этом случае, повышение привеса катода происходит за счет увеличения эрозии анода Δm_a и фиксации порошка Δm_p . Величина Δm_p — это масса порошка, закрепленная силами электростатического притяжения на поверхности электродов, равной площади MB.

СЭМ-изображения в режиме обратно отраженных электронов и распределение элементов в поперечном сечении покрытий показаны на рис. 2. Средняя толщина покрытий увеличивалась с 22 до 56 мкм при увеличении длительности разрядных импульсов (табл. 2). В микроструктуре покрытий наблюдалось небольшое количество пор и поперечных трещин. Возникновение поперечных трещин принято объяснять разницей коэффициентов теплового расширения покрытия и подложки [21, 22]. Светлые включения в покрытиях диаметром менее 15 мкм представляют собой карбид вольфрама и металлический молибден, которые не успевают раствориться в металлическом расплаве из-за высокой температуры плавления (рис. 3а, 3б). В слоях подложки, прилегающих к покрытию, видны световые пятна, являющиеся зоной термического воздействия. По данным СЭМ изображений толщина зоны термического влияния не превышала 30 мкм. Таким образом, можно сделать вывод о слабом тепловом воздействии ЭИЛ на подложку.

EDS-анализ покрытий показал равномерное распределение элементов в поперечном сечении покрытий (рис. 26, 2г, 2е). По данным EDS-анализа поверхности покрытий, с увеличением т в диапазоне от 20 до 500 мкс содержание железа в покрытиях увеличивалось с 50 до 67 ат. % на фоне снижения концентрации элементов CrMoWCBSi порошка (рис. 3в). Это объясняется увеличением времени разряда, в течение которого большее количество железа вовлекается в микрованну разря-

Рис. 2. СЭМ-изображения (а, в, д) и результаты ЭДС сканирования (б, г, е) поперечного сечения покрытий С20 (а, б); С100 (в, г) и С500 (д, е). Пунктирная линия указывает область сканирования.

да из гранул и подложки. В момент прохождения разряда, порошок, закрепленный на поверхности электрода, равной MB, плавился и смешался с электродным материалом, образуя покрытие. Таким образом, количество порошка, перенесенного в покрытие в результате одного разряда, зависит от диаметра MB. Зависимость диаметра MБ на катоде от τ в диапазоне от 20 до 500 мкс хорошо описывается логарифмической зависимостью: при малых τ от 20 до 100 мкс диаметр области плавления увеличивался сильно, а выше 100 мкс – незначительно [23]. Соответственно, при τ более 100 мкс количество порошка в MB практически не увеличивалось. В то же время при увеличении τ от 100 до 500 мкс глубина проплавления подложки в зоне действия разряда увеличивалась и, соответственно, увеличивалась концентрация железа в MB. Этим объясняется наблюдаемое снижение концентрация элементов порошка в покрытии при увеличении τ выше 100 мкс.

Результаты рентгенофазового анализа исходной порошковой смеси и покрытия С100 показаны на рис. 5. Рефлексы карбида вольфрама, молибдена, хрома, кремния и графита наблюдались БУРКОВ

Рис. 3. ЭДС спектры участков покрытия точка 1 (а) и точка 2 (б) на рис. За, а также концентрации металлов и кремния, согласно ЭДС-анализу поверхности покрытия в зависимости от т (в).

Рис. 4. Рентгеновские дифрактограммы многокомпонентного порошка и покрытия C100 (a), а также фазовый состав нанесенных покрытий по данным РФА (б).

в рентгеновском спектре CrMoWCBSi порошка (рис. 4а).

На дифрактограмме покрытия видно характерное гало в диапазоне углов $2\theta = 35^{\circ}-55^{\circ}$, что означает наличие аморфной фазы. Кроме того, в спектрах покрытий наблюдались узкие Брэгговские рефлексы, соответствующие α Fe от подложки, а также карбиду вольфрама и молибдену. Наличие фаз WC и Мо в покрытиях согласуется с данными СЭМ и ЭДС-анализа (рис. 2a; 3a, 3б) и объясняется их высокими точками плавления. Доля аморфной фазы по данным рентгеноструктурного анализа обычно рассчитывается как отношение суммы площадей гало к сумме площадей гало и острых Брэгговских рефлексов [24, 25]:

$$V_{\rm Amor} = \frac{\Sigma A_{\rm Amor}}{\Sigma A_{\rm Amor} + \Sigma A_{\rm Cryst}}$$

где V_{Amor} — объемная доля аморфной фазы, A_{Cryst} и A_{Amor} — площади кристаллических рефлексов и аморфных гало соответственно. Из расчета следует, что доля аморфной фазы в покрытиях составляла от 50 до 67 об. % (рис. 46). Наибольшая доля аморфной фазы наблюдалась в покрытиях, полученных при низкой τ . Это можно объяснить действием двух факторов: стеклообразующей спо-

Рис. 5. Поляризационные кривые стали 35 и аморфных покрытий в 3.5% растворе NaCl (а) и спектр комбинационного рассеяния поверхности образца C100 после испытаний (б).

собностью и скоростью охлаждения. Во-первых, с увеличением длительности импульса покрытия обогащаются железом (рис. 3в), что снижает их стеклообразующую способность. Во-вторых, с уменьшением τ скорость движения фронта затвердевания в микрованне расплава после завершения разряда увеличивается, поскольку меньше объемный нагрев подложки.

Потенциодинамические поляризационные испытания проводились в 3.5% водном растворе NaCl для изучения коррозионной стойкости стали 35 с MC покрытиями (рис. 5а). Плотность тока коррозии (I_{corr}), потенциал коррозии (E_{corr}) и сопротивление поляризации (R_p) были рассчитаны путем экстраполяции катодных и анодных наклонов Тафеля с использованием метода Штерна-Гири (табл. 3). Результаты испытания покрытий показали снижение потенциала коррозии на 19– 43% и плотности тока до 2.17 раз и повышение сопротивления поляризации до 6.9 раз по сравнению со сталью 35. Это можно объяснить аморфной структурой покрытий [26, 27]. Кроме того, хром, кремний и вольфрам, входящие в состав аморфных покрытий, могут улучшить их коррозионные свойства в 3.5% растворе NaCl [28]. Это связано с барьерными свойствами оксидных пленок, образующихся на поверхности покрытия при взаимодействии с электролитом. При увеличении τ от 200 до 500 мкс $E_{\rm corr}$ уменьшался, а $I_{\rm corr}$ увеличивался. Покрытие C500 показало самый высокий ток коррозии и самые низкие значения $E_{\rm corr}$ и $R_{\rm p}$. Это объясняется увеличением концентрации железа в покрытиях с увеличением τ , поскольку известно, что с уменьшением концентрации аморфной фазы коррозионная стойкость аморфно-нанокристаллических композитов ухудшается [29].

Рамановская спектроскопия поверхности покрытия C100 после поляризационного тестирования показала присутствие Fe_2O_3 (217, 279 и 597 см⁻¹) вместе с небольшим количеством Fe_3O_4 (390 см⁻¹), SiO₂ (479 см⁻¹) и MoO₂ (660 см⁻¹), которые являются нерастворимыми продуктами коррозии

Таблица 3. Коррозионные параметр	ы образцов
----------------------------------	------------

Параметр	сталь 35	C20	C50	C100	C200	C300	C400	C500
$E_{\rm corr}, {\rm V}$	-0.98	-0.68	-0.77	-0.71	-0.74	-0.81	-0.79	-0.82
$I_{\rm corr}$, µA cm ⁻²	121.8	85.0	56.1	76.1	60.6	98.5	111.1	171.7
<i>R</i> _p , kOhm	14.8	38.7	89.8	49.2	46.9	76.9	101.9	31.2

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 58 № 5 2022

Рис. 6. Циклическая жаростойкость покрытия C100 по сравнению со сталью 35 при температуре 700°С (а), рентгеновская дифрактограмма (б) и спектры комбинационного рассеяния поверхности покрытия после испытания на жаростойкость (в).

аморфной фазы во время испытаний в 3.5% растворе NaCl (рис. 56).

На рис. 6а показана кинетика изменения массы образца С100 и стали 35 при температуре 700°С на воздухе. За 100 ч испытаний образец с покрытием подвергся окислению в 23 раза меньше, чем сталь 35, из-за ограничения контакта кислорода с подложкой. На рис. 6б показан участок рентгеновского спектра покрытия С100 после испытания на жаростойкость. В соответствии с ним, прирост образца обусловлен фиксацией кислорода на поверхности образца в виде оксида железа(III) в модификации гематита. Помимо гематита, на дифракционной картине наблюдались рефлексы α Fe, что указывает на небольшую толщину оксидного слоя, через который проникает рентгеновское излучение. Рамановская спектроскопия оксидного слоя также показала присутствие Fe₂O₃ (216, 279 и 592 см⁻¹) (рис. 6в). Кроме того, магнетит Fe₃O₄ (390 см⁻¹) наблюдается вместе с небольшим количеством SiO₂ (485 см⁻¹). SiO₂ указывает на коррозию аморфной фазы в процессе

Рис. 7. СЭМ-изображение поперечного сечения покрытия C100 после испытания на циклическое окисление при увеличении: $250 \times (a)$, $2500 \times (b)$; $1200 \times (r)$; и ЭДС спектр точки 3 (в).

высокотемпературного окисления. Известно, что существенную роль в высокой жаростойкости МС покрытий играет кремний, оксид которого обладает высокими барьерными свойствами [30, 31].

Изображение поперечного сечения покрытия С100 после испытания на жаростойкость показывает, что оксидный слой формируется на стальной подложке фрагментарно в самых тонких местах покрытия (рис. 7а). На микрофотографии фрагмента покрытия (рис. 7б) видно, что оксидный слой продолжает расти под покрытием и в наиболее богатых железом местах покрытия.

Примечательно, что оксидный слой практически не образуется поверх покрытия, что подтверждает высокую стойкость к окислению сформированного аморфного слоя. Данные ЭДС анализа показывают значительно более низкую концентрацию Cr, Mo и Si по сравнению с железом в оксидном слое (рис. 7г). Это означает слабое участие материала покрытия в образовании окалины. Важно отметить, что тонкие поперечные трещины в покрытии не вызывают очагов окисления, как показано на рис. 7в.

Испытания покрытий на микротвердость показали, что для большинства образцов средние значения твердости находились в диапазоне от 617 до 759 HV (рис. 8а). В целом наблюдалась тенденция к снижению твердости покрытия с увеличением т. Так, средняя твердость покрытия С500 составила 399 HV. Согласно литературным данным, твердость большинства МС на основе Fe находится в диапазоне от 430 до 1200 HV [32–44]. Таким образом, твердость разработанных покрытий соответствует МС близкого состава.

Средние значения коэффициента трения покрытий составляли от 0.67 до 0.94 при нагрузке 25 Н и от 0.62 до 0.69 при 70 Н (рис. 86, 8в). Полученные значения укладываются в диапазон коэффиБУРКОВ

Рис. 8. Зависимость микротвердости покрытий от длительности импульса (а), коэффициент трения покрытий при нагрузках 25 (б) и 70 H (в), износ покрытий по сравнению со сталью 35 (г).

циентов трения для большинства МС покрытий на стальной подложке. Для большинства покрытий коэффициент трения был на 15–25% ниже, чем для стали 35. При обеих нагрузках наибольший коэффициент трения наблюдался для покрытия С500 мкс. Это можно объяснить низкой твердостью данного покрытия из-за высокого содержания железа.

Результаты испытаний покрытий на износ при нагрузках 25 и 70 H представлены на рис. 8г. Средние значения скорости износа покрытий находились в диапазоне от 1.6×10^{-6} до 10.9×10^{-6} мм³/Hм. По-

крытие C20, нанесенное при самой низкой т, показало относительно высокую скорость износа, что может быть объяснено его малой толщиной, вследствие чего оно быстро изнашивалось. Наибольшая скорость износа наблюдалась у покрытия C500 при обеих нагрузках. Это связано с высоким содержанием железа в его составе и низкой твердостью. Скорость износа покрытий C50–C400 имела близкие значения в диапазоне от 1.6 × 10⁻⁶ до 3 × 10⁻⁶ мм³/Нм при нагрузке 25 Н и от 3.6 × 10⁻⁶ до 4.7 × 10⁻⁶ мм³/Нм при 70 Н. Защитный эффект покрытий определяется как отношение скорости износа материала подложки к скорости износа покрытия. Как показано на рис. 8г, защитный эффект приготовленных ЭИЛ покрытий находился в диапазоне от 4 до 22. Исходя из данных за последние годы [32–44], скорость износа при сухом скольжении представленных MC покрытий находилась в широком диапазоне 2.7×10^{-6} –373 $\times 10^{-6}$ мм³/Нм, а защитный эффект от 0.54 до 6. Таким образом, данные по износостойкости полученных аморфных покрытий являются одними из лучших среди ранее опубликованных результатов.

выводы

Приготовлено аморфное покрытие на стали 35 новым методом электроискрового осаждения в смеси железных гранул с порошком CBCrSiMoW. Установлено, что в структуре покрытия преобладает аморфная фаза. При увеличении длительности импульса разряда доля аморфной фазы в составе покрытий уменьшалась с 67 до 50 об. %. Это связано как с ухудшением стеклообразующей способности материала покрытия из-за обогащения железом, так и с уменьшением скорости охлаждения материала из-за объемного нагрева подложки. Осажденное покрытие характеризуется высокой стойкостью к окислению при температуре 700°С. Оксидная окалина образовывалась фрагментарно на стальной подложке в наиболее богатых железом местах покрытия и не обнаруживалась на поверхности покрытия. Микротвердость покрытий находилась в диапазоне от 399 до 759 HV. Средние значения коэффициента трения покрытий находились в диапазоне от 0.62 до 0.94. Средние значения скорости изнашивания покрытий находились в диапазоне от 1.6×10^{-6} до 10.9×10^{-6} мм³/Нм, что в 4–22 раза ниже, чем у стали 35. Покрытие, полученное при наиболее длинных импульсах, имело наименьшую твердость и износостойкость, а также самый высокий коэффициент трения за счет малой концентрации аморфной фазы.

СПИСОК ЛИТЕКРАТУРЫ

- Masood A., Belova L., Ström V. // J. Magnetism and Magnetic Materials. 2020. V. 504. P. 166667.
- Cherkezova-Zheleva Z. et al. // Hyperfine Interactions. 2020. V. 241. № 1. P. 1–12.
- Ji L. et al. // J. Physics and Chemistry of Solids. 2020. V. 145. P. 109546.
- Zhang Q. et al. // J. Materials Science & Technology. 2021. V. 61. P. 159–168.
- Suo Y. et al. // Fusion Engineering and Design. 2020. V. 157. P. 111635.
- 6. Schroers J. et al. // Jom. 2009. V. 61. № 9. P. 21–29.

- Wang Y.B. et al. // Materials Science and Engineering: C. 2012. V. 32. № 3. P. 599–606.
- Ibrahim M.Z. et al. // Surface and Coatings Technology. 2020. V. 392. P. 125755.
- 9. *Wang H. et al.* // Materials Chemistry and Physics. 2020. V. 250. P. 123091.
- Lee J., Liou M. L., Duh J. G. // Surface and Coatings Technology. 2017. V. 310. P. 214–222.
- 11. *Koga Y. et al.* // Materials Transactions. 2017. V. 58. Nº 10. P. 1444–1450.
- 12. *Chen W. Y. et al.* // Surface and Coatings Technology. 2020. V. 389. P. 125636.
- Бурков А.А., Зайцев А.В., Сюй А.В., Зайкова Е.Р., Каминский О.И. // Физикохимия поверхности и защита материалов. 2019. Т. 55. № 1. С. 72–78.
- 14. *Бурков А.А., Кулик М.А.* // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 6. С. 667–672.
- Cadney S., Brochu M. // Intermetallics. 2008. V. 16. № 4. P. 518–523.
- Николенко С.В., Сюй Н.А. // Физикохимия поверхности и защита материалов. 2017. Т. 53. № 5. С. 543–549.
- 17. *Felix L.M., Kwan C.C.F., Zhou N.Y.* // Metallurgical and Materials Transactions A. 2019. V. 50. № 9. P. 4223–4231.
- 18. *Kayali Y., Talas S.* // Protection of Metals and Physical Chemistry of Surfaces. 2021. V. 57. P. 106–112.
- Бурков А.А. // Обработка металлов: технология, оборудование, инструменты. 2019. V. 21. № 4. Р. 19–30.
- 20. *Ribalko A.V., Sahin O.* // Surface and coatings technology. 2006. V. 201. № 3–4. P. 1724–1730.
- 21. Zhang J. et al. // Transactions of the China Welding Institution. 2009. V. 30. № 12. P. 17–20.
- 22. Salmaliyan M., Ghaeni F.M. // Surface and Coatings Technology. 2017. V. 321. P. 81–89.
- 23. *Pyachin S.A. et al.* // Russian Physics Journal. 2019. V. 61. № 12. P. 2236–2243.
- Shkodich N.F. et al. // J. Alloys and Compounds. 2018. V. 741. P. 575–579.
- Cheng J. et al. // J. Alloys and Compounds. 2017. V. 716. P. 88–95.
- Guo R. Q. et al. // Corrosion Science. 2011. V. 53. № 7. P. 2351–2356.
- 27. *Li S. et al.* // Materials Science and Engineering: C. 2015. V. 52. P. 235–241.
- Sagasti A., Lopes A.C., Lasheras A. et al. // AIP Advances. 2018. V. 8. P. 047702.
- Coimbrão D.D., Zepon G., Koga G.Y. et al. // Alloys Compd. 2020. V. 826. P. 154123.
- Garip Y., Ozdemir O. // Alloys Compd. 2019. V. 780. P. 364–377.
- 31. *Matsushita J.-I., Satsukawa T., Iwamoto N., Wang X., J. et al.* // Mater. Sci. Forum 2016. V. 868. P. 38–42.
- 32. *Wang G. et al.* // J. Iron and Steel Research International. 2016. V. 23. № 7. P. 699–704.

ФИЗИКОХИМИЯ ПОВЕРХНОСТИ И ЗАЩИТА МАТЕРИАЛОВ том 58 № 5 2022

- 33. *Hong W. U. et al.* // Transactions of Nonferrous Metals Society of China. 2016. V. 26. № 6. P. 1629–1637.
- 34. *Paul T. et al.* // Lasers in Manufacturing and Materials Processing. 2015. V. 2. № 4. P. 231–241.
- *Zhang H. et al.* // J. non-crystalline solids. 2014. V. 406. P. 37–44.
- 36. *Liu L., Zhang C. //* Thin Solid Films. 2014. V. 561. P. 70–86.
- 37. An Y. et al. // Vacuum. 2014. V. 107. P. 132-140.
- Yugeswaran S. et al. // J. alloys and compounds. 2013. V. 551. P. 168–175.

- 39. Zhang C. et al. // Intermetallics. 2012. V. 29. P. 80-85.
- 40. Guo R. Q. et al. // Intermetallics. 2012. V. 30. P. 94-99.
- 41. *Li X. et al.* // J. Non-Crystalline Solids. 2020. V. 537. P. 120018.
- 42. *Nayak S. K. et al.* // J. Alloys and Compounds. 2020. V. 825. P. 154120.
- 43. *Liang D. et al.* // Surface and Coatings Technology. 2020. V. 387. P. 125535.
- 44. Ji X. et al. // Wear. 2019. V. 438. P. 203113.