__ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ _____

УДК 66.081:54.71:547.458.88

АНАЛИЗ СОРБЦИОННОЙ АКТИВНОСТИ ЯБЛОЧНОГО ПЕКТИНА, МОДИФИЦИРОВАННОГО ОРГАНИЧЕСКИМИ ФАРМАКОФОРАМИ ПО ОТНОШЕНИЮ К КАТИОНАМ *d*-МЕТАЛЛОВ (Cu²⁺, Co²⁺, Mn²⁺)

© 2022 г. Р. Х. Мударисова^{1, *}, А. Ф. Сагитова², О. С. Куковинец²

¹Уфимский институт химии УФИЦ РАН, Уфа, Россия ²Башкирский государственный университет, Уфа, Россия *e-mail: mudarisova@anrb.ru Поступила в редакцию 27.01.2022 г. После доработки 30.05.2022 г. Принята к публикации 06.06.2022 г.

Представлены результаты изучения сорбции катионов *d*-металлов (Cu²⁺, Co²⁺ и Mn²⁺) из водных растворов их солей сорбентами на основе яблочного пектина, модифицированного органическими фармакофорами (салициловой, антраниловой, 5-аминосалициловой, никотиновой кислотами). Определено влияние структуры введенного фармакофора в пектиновую матрицу на кинетику и термодинамику распределения ионов *d*-металлов в гетерофазной системе водный раствор—биополимерный сорбент. Выявлено увеличение эффективности извлечения ионов *d*-металлов фармакофор-содержащими пектиновыми сорбентами по сравнению с исходным полисахаридом. Подобраны оптимальные условия сорбции ионов Cu²⁺, Co²⁺ и Mn²⁺ исследуемыми сорбентами (время контакта фаз, pH среды, температура). Предложен механизм взаимодействия ионов *d*-металлов с модифицированным пектиновым сорбентом.

Ключевые слова: сорбция, изотермы, кинетические кривые, термодинамические параметры, пектин, фармакофоры, ионы *d*-металлов

DOI: 10.31857/S0044185622050175

введение

Природный полисахарид пектин (ПК) является одним из наиболее распространенных и эффективных биосорбентов, обладающих комплексом полезных свойств - низкой токсичностью, разнообразной биологической активностью, способностью к биодеградации и может быть получен из доступного, дешевого и возобновляемого природного сырья [1-3]. Благодаря наличию свободных карбоксильных групп в мономерных фрагментах основной цепи полимера, пектиновые полисахариды образуют с металлами стойкие малодиссоциирующие соединения – хелаты, которые не распадаются и не подвергаются метаболизму при прохождении через желудочно-кишечный тракт. Данное свойство пектинов широко используется для выведения тяжелых металлов и радионуклидов из организма человека [4-9]. Следует отметить, что нативный ПК не удовлетворяет всему широкому спектру требований, предъявляемых сегодня к сорбционным материалам, что ограничивает возможности его применения в ряде перспективных областей. Для повышения сорбционной активности ПК широко применяют различные способы его модификации [10-16]. Одним из эффективных способов является комплексообразование ПК путем введения в полимерную матрицу биологически активных органических соединений, имеющих сорбционноактивные функциональные группы [17–19]. При этом наблюдается изменение гидрофильности, заряда макромолекулы полимера, комплексообразующей способности, морфологических и структурных характеристик пектина, что может отражаться на его сорбционных свойствах [20–25].

В связи с этим, целью настоящей работы является изучение сорбционных свойств яблочного пектина, модифицированного органическими фармакофорами (салициловой, антраниловой, 5-аминосалициловой и никотиновой кислотами) по отношению к ионам *d*-металлов (Cu^{2+} , Co^{2+} , Mn^{2+}) и установление взаимосвязи структуры биосорбентов с его сорбционной активностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве сорбента выбран яблочный пектин товарной марки Unipectine XPP 240 с молекулярной массой 26 кDa и степенью этерифицирования 66.0%.

Структурная формула макромолекулы пектина

В качестве модифицирующих агентов исполь- 5-аминосалициловую (5ACK) и салициловую зовали никотиновую (HK), антраниловую (АК), (СК) кислоты марки "ч. д. а.".

В качестве источников ионов Cu^{2+} , Co^{2+} и Mn^{2+} использовали сернокислую медь- $CuSO_4$ · \cdot $5H_2O$, хлористый кобальт – $CoCl_2$ · $6H_2O$, хлористый марганец – $MnCl_2$ · $4H_2O$ марки "ч. д. а.".

Методика получения пектиновых сорбентов: растворяли 1.0 г ПК (5.68 осново-ммоль) в 20 мл дистиллированной воды и 5.68 ммоль фармакофора (ФК) в 20 мл дистиллированной воды и доводили рН до 7.0 \pm 0.1 раствором 0.1 М NaOH. К раствору ПК при постоянном перемешивании прикапывали раствор ФК при температуре 25°С и выдерживали в течение 4–5 ч. По окончании реакции продукт выделяли осаждением ацетоном, переосаждали в этиловый спирт, осадок отделяли и промывали еще три раза этиловым спиртом, затем диэтиловым эфиром и высушивали в вакууме. Изучение структуры фармакофорсодержащих пектинов представлено в работе [17].

Структурно-адсорбционные характеристики фармакофорсодержащих пектинов (ФП) представлены в табл. 1. Пористость W сорбентов находили методом суммарной пористости по ацетону, а площадь удельной поверхности S_{yq} определяли по адсорбции метиленового синего [26]. Характеристическую вязкость [η] водных растворов ПК и ФП измеряли при 25.0 ± 0.1°C в вискозиметре Уббелоде с висячим уровнем [27]. Значения характеристической вязкости рассчитывали методом двойной экстраполяции зависимостей η_{yq}/C к нулевой концентрации. Ошибка определения составляет 3–5%. ИК-спектры образцов записывали

на спектрометре Shimadzu IR-Prestige-21 (700-3600 см⁻¹, вазелиновое масло). УФ-спектры водных растворов соединений снимали в кварцевых кюветах толщиной 1 см на спектрофотометре UV-VIS SPECORD M-40. Кислотность растворов контролировали на рН-метре "АНИОН 4100". Необходимую кислотность раствора создавали растворами HCl и NaOH. Величину удельного вращения измеряли на поляриметре "Perkin-Elmer" (модель 141). Содержание свободных карбоксильных групп в образцах определяли по методике [28]. Фармакофорсодержащие пектиновые сорбенты анализировали на азот, углерод и водород на анализаторе марки EUKO EA-3000. Диаметры частиц образцов определяли в вазелиновом масле методом лазерного рассеяния на приборе Sald 7101 (Shimadzu). Длина волны полупроводникового лазера 375 нм. Рабочий диапазон измерения диаметров частиц 10 нм-300 мкм. Измерения проводили в специальных кварцевых кюветах Sald-BC с механическим вертикальным перемешиванием при комнатной температуре. В кювете и камере для измерения создавали инертную атмосферу с помощью сухого очищенного аргона. Для сравнительной характеристики частиц по размеру были взяты медианные размеры частиц, соответствующие точке на дифференциальной кривой распределения, слева и справа от которой находится по 50% площади под кривой распределения. Ошибка измерения составляет 1%.

Константы кислотной диссоциации pK_a (табл. 1) определяли методом потенциометрического тит-

Показатели	Полисахаридная матрица					
Показатель	ПК	ПК-СК	ПК-АК	ПК-5АСК	ПК-НК	
$\overline{C_{_{ m ЭКСП}}/C_{ m reop}},\%$	40.3/42.1	47.2/46.2	46.0/44.4	45.3/44.3	44.8/42.9	
$H_{ m 3 K c m}/H_{ m Teop},\%$	5.5/4.9	5.0/4.6	5.2/4.7	5.0/4.9	4.8/4.2	
$N_{ m skcn}/N_{ m teop},$ %	—	_	4.9/3.5	5.0/3.4	5.4/3.6	
$W, cm^3/r$	0.63	0.90	0.75	0.77	0.87	
$S_{\rm yg~(reop.)},{\rm m}^2/{\rm f}$	210.8	240.8	228.7	219.2	218.2	
<i>D</i> , мкм	1.79	0.71	1.08	0.84	1.40	
[η], дл/г	2.3	0.9	1.1	0.8	3.5	
pK _a	4.5	2.5	3.9	3.6	4.1	
Свободные СООН-группы, %	7.65	5.54	7.56	7.25	6.17	
λ _{max} , нм	210	303	304	310	265	
α _D ²⁰ (град см ³)/(дм г)	$+180 \pm 2$	$+84 \pm 2$	$+47 \pm 1$	$+52 \pm 2$	$+115 \pm 2$	

Таблица 1. Физико-химические характеристики биосорбентов

рования раствором 0.5 М NaOH [29]. Расчет значений констант кислотной диссоциации функциональных групп биополимера проводили с использованием уравнения Гендерсона— Гассельбаха: $pK_a = pH + lg[HA]/[A^-]$ (1), где [HA] — концентрация ФП, оставшаяся после добавления каждой кратной порции раствора 0.5 М NaOH; [A⁻] — концентрация иона пектата после нейтрализации OH-группы в результате титрования добавлением 0.1 части раствора 0.5 М NaOH.

Изучение процесса сорбции $\Phi\Pi$ ионов Cu²⁺, Co^{2+} , Mn^{2+} осуществляли в статических условиях при перемешивании и термостатировании при 298 К и при оптимальном значении рН для каждой сорбционной системы. Для получения кинетических кривых сорбции в серию пробирок (V = 20 мл) помещали навески сорбента по 0.1 г, заливали их 2 мл водного раствора сульфата меди(II) или хлорида кобальта(II) или хлорида марганца(II) с начальной концентрацией 0.1 моль/л, доводили до 20 мл дистиллированной водой и выдерживали от 15 до 240 мин. Начальная концентрация (Со) ионов Cu²⁺, Co²⁺ и Mn²⁺ составляла 0.01 моль/л. Через каждые 15 мин раствор отделяли от сорбента фильтрованием и определяли в нем текущую концентрацию (C_{τ}) ионов Cu^{2+} методом йодометрического титрования [30], ионов Со²⁺ – титрованием броматом калия в присутствии индигокармина [31], ионов Mn²⁺ – спектрофотометрическим методом [30].

Сорбционную емкость (A_t) сорбентов в момент времени *t* рассчитывали по формуле: $A_t = (C_0 - C_t)$ V/m. В условиях установившегося равновесия в системе определяли равновесную концентрацию ионов металла (M^{2+}) в растворе (C_p) и рассчитывали равновесную сорбционную емкость (A_p): $A_p = (C_0 - C_p)$ V/m. Степень извлечения ионов металлов (II) определяли по формуле: $\alpha = (C_0 - C_p) \times 100\%/C_0$.

Термодинамические параметры сорбции рассчитывали по уравнениям [32]:

$$KD = \frac{A_{\text{равн}}}{C_{\text{равн}}},\tag{1}$$

$$\ln KD = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT},$$
(2)

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}. \tag{3}$$

Уравнение (2) показывает, что в графической форме температурная зависимость $\ln K_D = f(1/T)$ представляет собой прямую, тангенс угла наклона которой позволяет найти $\Delta H^{\circ}/R$, а отсечение на графике дает $\Delta S^{\circ}/R$. Изменение свободной энергии Гиббса ΔG° вычисляли по уравнению (3).

Относительная погрешность экспериментов рассчитывалась на основании данных равновесных и кинетических опытов, в которых каждая точка представляет собой среднее значение из трех параллельных опытов. Погрешность эксперимента не превышала 5–7%.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для определения предельной сорбционной емкости ФП получены экспериментальные изотермы сорбции ионов Cu²⁺, Co²⁺ и Mn²⁺ из водных растворов их солей (рис. 1), которые обработаны в рамках двух уравнений адсорбции: Ленгмюра и Фрейндлиха, наиболее часто используемых исследователями при описании полученных изотерм сорбции ионов различных металлов пектинсодержащими материалами [33–37]. Обнаружено, что по сравнению с моделью Фрейндлиха модель Ленг-

Рис. 1. Изотермы сорбции ионов Mn^{2+} биосорбентами из водного раствора хлорида марганца(II).

мюра дает хорошую сходимость с экспериментальными результатами, о чем свидетельствуют высокие коэффициенты корреляции, полученные при линеаризации экспериментальных изотерм (табл. 2). Это свидетельствует в пользу того, что на поверхности сорбента образуется мономолекулярный сорбционный слой и все активные центры энергетически эквивалентны. Константа сорбционного равновесия К_D в уравнении Ленгмюра и параметр К в уравнении Фрейндлиха характеризуют химическое сродство сорбата к сорбенту. Сролство сорбата к сорбенту опрелеляется его свойствами и, следовательно, степень влияния сорбента на величину сорбционной емкости определяется химической природой его поверхности и размером пор. Из полученных результатов видно, что наибольшим сродством к катионам М²⁺ обладает сорбент ПК-СК (табл. 2), что закономерно для данной системы, обладающей самой высокой сорбционной емкостью и площадью удельной поверхности (табл. 1).

Исследование кинетических закономерностей сорбции ионов Cu²⁺, Co²⁺ и Mn²⁺ из водных рас-

Рис. 2. Интегральные кинетические кривые сорбции ионов Co²⁺ биосорбентами из водного раствора хлорида кобальта(II).

творов их солей пектиновыми сорбентами показало, что время достижения равновесия в системе "фармакофорсодержащий пектин-водный раствор соли металла (II)" сокращается по сравнению с нативным пектином в 1.3-6.0 раз, а степень извлечения (α) ионов M^{2+} увеличивается до 12.5% в зависимости от природы ФП и иона M²⁺ (рис. 2, табл. 3). Различие в сорбционной способности ФП по отношению к катионам M²⁺ можно объяснить появлением новых функциональных групп, ответственных за взаимодействие с катионами M²⁺, а также изменением структурно-адсорбционных характеристик ФП (табл. 1), что приводит к повышению доступности активных центров сорбентов. На примере сорбции ионов Co²⁺ фармакофорсодержащими пектинами видно (рис. 2), что в начальный период процесса количество сорбирующегося на поверхности ФП катионов Co^{2+} увеличивается быстро, а затем, по мере приближения к равновесию, сорбционный процесс замедляется, что может указывать на быстрый массоперенос катионов М²⁺ из раствора к активным центрам сорбентов с последующим химиче-

Биосорбент -	Обработка изотерм по уравнению Ленгмюра			Обработка изотерм по уравнению Фрейндлиха			
	A_{∞}	<i>K</i> _D , л/ммоль	R^2	К, ммоль/г	п	<i>R</i> ²	
ПК	1.59	0.53	0.998	0.62	1.18	0.979	
ПК-СК	1.78	0.67	0.996	0.78	1.64	0.978	
ПК-АК	1.73	0.65	0.996	0.76	1.55	0.974	
ПК-5АСК	1.60	0.63	0.996	0.68	1.31	0.985	
пк-нк	1.74	0.61	0.990	0.73	1.54	0.957	

Таблица 2. Параметры обработки изотерм сорбции ионов Co²⁺ биосорбентами по уравнению Ленгмюра и Фрейндлиха

Показатель	Биосорбент					
	ПК	ПК-СК	ПК-АК	ПК-5АСК	ПК-НК	
α (Cu ²⁺), %	83.0	95.5	84.4	85.7	83.6	
$A_{ m эксп}$, ммоль/г	1.66	1.91	1.69	1.71	1.67	
<i>t</i> , мин	60	10	45	15	45	
α (Co ²⁺), %	79.5	89.1	86.7	80.1	87.2	
$A_{ m эксп}$, ммоль/г	1.59	1.78	1.73	1.60	1.74	
<i>t</i> , мин	60	45	40	45	45	
α (Mn ²⁺), %	74.4	86.0	85.2	80.1	74.5	
$A_{ m эксп}$, ммоль/г	1.49	1.72	1.70	1.60	1.49	
<i>t</i> , мин	120	90	90	90	60	

Таблица 3. Сорбционные характеристики биосорбентов по отношению к ионам Cu²⁺, Co²⁺, Mn²⁺

ским связыванием катионов M²⁺ с активными центрами пектиновых сорбентов на их поверхности.

Процесс сорбции ионов М²⁺ исследуемыми сорбентами зависит от многих факторов, таких как рН среды, температура, природа биосорбента, которая, в свою очередь, определяется природой и содержанием функциональных групп, надмолекулярной структурой, поверхностными свойствами и т.д. Известно [5], что кислотность среды оказывает решаюшее влияние на ионный обмен и комплексообразование, электростатические взаимодействия при физической адсорбции и заряд поверхности сорбента. Зависимость степени извлечения ионов М²⁺ биосорбентами от кислотности водной фазы имеет экстремальный характер с максимумом сорбции в интервале рН 6.0-7.0 для ионов Cu²⁺ (рис. 3), рН 4.0-7.2 для ионов Co²⁺, pH 4.0-6.0 для ионов Mn²⁺ в зависимости от структуры введенного в пектин фармакофора. В области низких рН отсутствие сорбции ионов Cu^{2+} , Co^{2+} и Mn^{2+} можно объяснить конкуренцией за сорбционные центры сорбента между ионами M²⁺ и H⁺. С ростом рН среды возрастает количество свободных сорбшионных центров на сорбенте, что приводит к существенному росту величины сорбционной емкости. В области максимума сорбционно-активные группы сорбента находятся в лиссоциированном состоянии (COO⁻). В сильно щелочной области рН происходит образование осадка гидроксида металла (II).

Обнаружено, что с увеличением температуры от 273 до 333 К степень извлечения ионов M^{2+} фармакофорсодержащими пектинами заметно снижается. Термодинамические параметры ΔH° , ΔS° и ΔG° сорбционного процесса представлены в табл. 4. Значения ΔH° имеют отрицательные величины, что свидетельствует об экзотермичности

процесса сорбции, который можно рассматривать как обратимую хемосорбцию с участием сорбционных центров и молекул растворителя в реакциях сольватации и комплексообразования [38]. Отрицательное значение ΔG° свидетельствует о смещении равновесия в сторону перехода ионов M²⁺ из водного раствора в фазу сорбента. Что касается энтропии, то она принимает как положительные, так и отрицательные значения в зависимости от природы компонентов сорбционной системы. Так, в случае сорбции ионов Cu²⁺ нативным пектином, ПК-5АСК, ПК-АК и ПК-НК, значения ΔS° положительны, что, вероятно, связано с изменением структуры биополимерного материала, приводящего к росту беспорядка системы, тогда как отрицательные величины энтропии в процессах сорбции ионов Co²⁺ и Mn²⁺ пектиновыми сорбентами могут указывать на увеличение упорядоченности при взаимодействии

Рис. 3. Зависимость степени извлечения ионов Cu^{2+} биосорбентами от рН водного раствора.

Сорбционная система	ΔH° , кДж/моль	ΔS° , Дж/моль К	ΔG_{298}° , кДж/моль
ПК-Cu ²⁺	-6.2 ± 0.2	35.9 ± 0.8	-16.7 ± 0.4
ПК-CK-Cu ²⁺	-27.2 ± 0.5	-27.9 ± 0.7	-19.0 ± 0.2
ΠK-AK-Cu ²⁺	-4.7 ± 0.1	41.8 ± 0.2	-16.9 ± 0.2
ПК-5ACK-Cu ²⁺	-10.4 ± 0.5	22.4 ± 0.6	-16.9 ± 0.2
ПК-HK-Cu ²⁺	-11.7 ± 0.2	16.3 ± 0.4	-16.5 ± 0.3
ПК-Co ²⁺	-34.9 ± 0.5	-68.3 ± 0.8	-14.9 ± 0.5
ПК-СК-Со ²⁺	-31.5 ± 0.5	-46.5 ± 0.4	-17.8 ± 0.4
ПК-АК-Со ²⁺	-21.1 ± 0.6	-14.0 ± 0.6	-17.0 ± 0.1
ПК-5ACK-Co ²⁺	-22.7 ± 0.5	-25.2 ± 0.4	-15.4 ± 0.2
ПК-НК-Со ²⁺	-36.9 ± 0.2	-68.8 ± 0.3	-16.7 ± 0.5
$\Pi K - Mn^{2+}$	-24.3 ± 0.5	-26.8 ± 0.4	-16.4 ± 0.1
ΠK-CK-Mn ²⁺	-48.7 ± 0.4	-113.7 ± 0.7	-15.4 ± 0.2
$\Pi K-AK-Mn^{2+}$	-45.6 ± 0.6	-100.5 ± 0.5	-16.2 ± 0.3
ПК-5ACK-Mn ²⁺	-37.5 ± 0.7	-74.0 ± 0.6	-15.7 ± 0.5
ПК-НК-Mn ²⁺	-23.4 ± 0.5	-29.5 ± 0.7	-14.7 ± 0.2

Таблица 4. Термодинамические параметры сорбции ионов Cu^{2+} , Co^{2+} и Mn^{2+} биосорбентами

иона M^{2+} с поверхностью сорбента. Таким образом, исследование равновесия сорбции ионов Cu^{2+} , Co^{2+} , Mn^{2+} фармакофорсодержащими пектинами в интервале температур 273–333 К показало, что оптимальные условия процесса для каждого образца индивидуальны и зависят от температурного режима.

Разнообразие моделей и механизмов сорбции, описывающих распределение веществ между фазами, во многом определяется многообразием природы межмолекулярных взаимодействий. Чтобы определить характер взаимодействия металлов с исследуемыми сорбентами, важно установить какие функциональные группы отвечают за связывание ионов M²⁺. Известно [7, 10, 24, 39], что активными центрами пектиновых полисахаридов могут служить карбоксильные, гидроксильные и гликозидные группы элементарного звена ПК, связывающие ионы M²⁺ по механизму ионного обмена и комплексообразования.

Возможность комплексообразования $\Phi\Pi$ с катионами Cu²⁺, Co²⁺ и Mn²⁺ изучали методами УФ- и ИК-спектроскопии. Так, при взаимодействии $\Phi\Pi$ с ионами M²⁺ образуются комплексные соединения, что подтверждается смещением их λ_{max} в УФ-спектрах и увеличением интенсивности полос поглощения (ПП) по сравнению с индивидуальными компонентами системы [40]. Методом ИК-спектроскопии выявлены спектральные области, в которых наиболее заметно наблюдались различия в характере и интенсивности полос поглощения ФП по сравнению с их металлокомплексами. Первая область изменений относится к ПП валентных колебаний гидроксильных групп, ассоциированных водородной связью (3400-3200 см⁻¹). Значительный сдвиг ПП v(OH-) в низкочастотную область в присутствии катионов M^{2+} (10–150 см⁻¹) свидетельствует о координации катионов М²⁺ к гидроксильным группам ФП, что приводит к образованию прочных хелатных комплексов. Во второй области ИК-спектров наблюдается исчезновение ПП карбоксильных групп 1740–1700 см⁻¹ и появление характерной ПП для карбоксианиона 1610-1590 см⁻¹. В третьей из наблюдаемых областей в ИК-спектрах металлокомплексов происходит изменение контура ПП v(С-О) пиранозного цикла (1200-1000 см⁻¹), наблюдается высокочастотный сдвиг, обусловленный образованием связи ионов указанных M²⁺ с кислородным атомом пиранозного цикла. Данные УФ- и ИК-спектров свидетельствуют о координационном взаимодействии ПК и $\Phi\Pi$ с катионами M^{2+} не только за счет СООН-групп, но и посредством ОН- и С-О групп полимерной матрицы.

На основании литературных [4, 7, 10, 24, 37] и полученных нами экспериментальных данных, можно предположить, что механизмом сорбции ионов *d*-металлов фармакофорсодержащими пектинами является ионный обмен и комплексообразование по следующей схеме (рис. 4).

МУДАРИСОВА и др.

Рис. 4. Схема взаимодействия ионов M²⁺ с фармакофорсодержащим пектином (на примере системы ПК-СК).

ЗАКЛЮЧЕНИЕ

Таким образом, путем модифицирования яблочного пектина органическими фармакофорами получены новые биосорбенты, обладающие высокой сорбционной активностью по отношению к ионам Cu²⁺, Co²⁺, Mn²⁺. Рядом физико-химических методов анализа изучены структурно-адсорбционные характеристики полученных сорбентов. Обнаружено, что модификация пектина фармакофорами приводит к увеличению пористости и удельной поверхности, уменьшению размера частиц и изменению кислотно-основных свойств в зависимости от природы органической кислоты, что обуславливает более высокую ад-

487

сорбционную способность фармакофорсодержащих пектинов по отношению к ионам Cu^{2+} , Co^{2+} , Mn²⁺ по сравнению с нативным пектином. Установлено, что сорбшионная емкость фармакофорсолержащих пектинов изменяется в рялах: ΠK - $CK > \Pi K$ - $5ACK > \Pi K$ - $AK > \Pi K$ - $HK > \Pi K$ при извлечении ионов Cu²⁺; ПК-СК > ПК-НК > ПК-АК > ПК-5АСК > ПК при извлечении ионов >Co²⁺; ПК-CK > ПК-AK > ПК-5ACK > ПК-HK > ПК при извлечении ионов Mn²⁺. Показано, что зависимость величины сорбционной емкости от равновесной концентрации ионов Cu²⁺, Co²⁺ и Mn²⁺ подчиняется уравнению Ленгмюра. Увеличение степени сродства ионов M²⁺ к поверхности ФП изменяется в ряду $Cu^{2+} > Co^{2+} > Mn^{2+}$, что соответствует эмпирическому ряду Ирвинга-Уильямса, который отражает влияние электростатических эффектов на величины сорбционной емкости сорбентов. Подобраны оптимальные условия проведения процесса сорбции ионов Cu²⁺, Co²⁺ и Mn² исследуемыми сорбентами, при которых достигаются максимальные значения сорбционной емкости (время контакта фаз – 10– 90 мин. pH 4.0-6.0. T = 273 K). Согласно рассчитанным термодинамическим параметрам процесса сорбции ионов Cu^{2+} , Co^{2+} и Mn^{2+} пектиновыми сорбентами установлено, что сорбция ионов М²⁺ полисахаридными материалами представляет собой экзотермический процесс, который можно рассматривать как химическую адсорбцию. На основании полученных результатов предложен механизм сорбции ионов d-металлов (Cu²⁺, Co²⁺) и Mn²⁺) фармакофорсодержашими пектинами. который представляет собой сложный процесс, включающий как ионный обмен, так и образование металлокомплексов.

Анализы (измерения и расчеты) выполнены на оборудовании ЦКП "Химия" УФИХ РАН и РЦКП "Агидель" УФИЦ РАН. Статья подготовлена в рамках выполнения программы ФНИ государственных академий на 2013–2020 гг. Гос. задание № 1021062311391-0-1.4.4.

СПИСОК ЛИТЕРАТУРЫ

- Bush P.L. Pectin. Chemical properties. Uses and health benefits. Nova Science Publishers, Inc. New York, 2014. 268 p.
- 2. *Sriamornsak P. //* Silpakorn University International Journal. 2003. V. 3. P. 206–228.
- Thakur B.R., Singh R.K., Handa A.K. // Critical Reviews in Food Science and Nutrition. 1997. V. 37. P. 47–73.
- Кайшева Н.Ш., Кайшев А.Ш. Фармакохимические основы применения пектинов и альгинатов. Пятигорск: РИА-КМВ, 2016. 260 с.; Kaisheva N.S., Kaishev A.S. Pharmacokhimicheskie osnovy primeneniya pectinov i alginatov (Pharmacochemical bases of appli-

cation of pectins and alginates), Pyatigorsk: RIA-KMV, 2016. 260 p.

- 5. Хотимченко Ю.С., Одинцова М.В., Ковалев В.В. Полисорбовит. Томск: Изд-во НТЛ, 2001. 132 с.; *Khotimchenko Yu.S., Odintsova M.V., Kovalev V.V.* Polysorbovit, Tomsk: NTL, 2001. 132 р.
- 6. *Uryash V.F., Kokurina N.Yu., Gruzdeva A.E. et al.* // J. General Chemistry. 2017. V. 87. № 13. P. 3212–3219.
- Khotimchenko M.Y., Kolenchenko E.A., Khotimchenko Y.S. et al. // Colloids and Surfaces B: Biointerfaces. 2010. V. 77. P. 104–110.
- Aleeva S.V., Chistyakova G.V., Lepilova O.V. et al. // Russian J. Physical Chemistry A. 2018. V. 92. № 8. P. 1583–1589.
- 9. *Balaria A., Schiewer S.* // Separation and Purification Technology. 2008. V. 63. № 3. P. 577–581.
- 10. *Kupchik L.A., Kartel N.T., Bogdanov E.S. et al.* // Russian J. Applied Chemistry. 2006. V. 79. № 3. P. 457–460.
- 11. *Yamada M., Shiiba S.* // J. Applied Polymer Science. 2015. V. 132. № 24. P. 42056.
- Gong J.-L., Wang X.-Y., Zeng G.-M. et al. // Chemical Engineering J. 2012. V. 185–186. P. 100–107.
- 13. Zauro S., Vashalakshi B. // Separation Science and Technology. 2018. V. 53. № 14. P. 2170–2185.
- 14. *Sivagangi R.N., Rao K.M., Vani T.S. et al.* // Desalination and Water Treatment. 2016. V. 57. № 14. P. 1–12.
- 15. *Li F.T., Yang H., Zhao Y. et al.* // Chinese Chemical Letters. 2007. V. 18. P. 325–328.
- Guo J.J., Zhang J.Y., Yue Y. et al. // Bulgarian Chemical Communications. 2014. V. 46. P. 801–805.
- Mudarisova R., Kukovinets O., Sagitova A. et al. // Biointerface Research in Applied Chemistry. 2020. V. 10. № 4. P. 5724–5732.
- 18. Минзанова С.Т., Чекунков Е.В., Милюков В.А. и др. // Докл. Российской академии наук. Химия, науки о материалах. 2020. Т. 491. № 1. С. 49–54; *Minzanova S.T., Chekunkov E.V., Milyukov V.A. et al.* // Doklady Physical Chemistry. 2020. Т. 491. № 1. Р. 24–28.
- Мударисова Р.Х., Куковинец О.С., Колесов С.В. и др. // Журн. физической химии. 2021. Т. 95. № 9. С. 1379–1384; Mudarisova R.Kh., Kukovinets O.S., Kolesov S.V. et al. // Russian J. Physical Chemistry A. 2021. V. 95. № 9. Р. 1835–1840.
- Aqdas N., Zill-i-Huma N., Javeria A. et al. // International J. Biological Macromolecules 2017. V. 101. P. 254–272.
- 21. Wang R., Liang R., Dai T. // Trends in Food Science Technology. 2019. V. 91. P. 319–329.
- 22. Bhuyan M., Okabe H., Hidaka Y. et al. // J. Applied Polymer Science. 2018. V. 135. P. 45906.
- Praveen Sharma, Kshipra Sen, Pankaj Thakur, Manoj Chauhan, Kalpana Chauhan // International J. Biological Macromolecules. 2019. V. 140. P. 78–90.
- 24. Сагитова А.Ф., Мударисова Р.Х., Куковинец О.С., Ахметишна Л.И // Вестник Башкирского университета. 2018. Т. 23. № 2. С. 323–328; Sagitova A.F., Mudarisova R.Kh., Kukovinets O.S., Akhmetshina L.I. // Bulletin of Bashkir University. 2018. V. 23. № 2. Р. 323–328.
- 25. *Liang R., Li Y., Huang Li, et al.* // Carbohydrate Polymers. 2020. V. 234. P. 115911.

- 26. *Hang P.T., Brindley G.W.* // Clays and Clay Minerals. 1970. V. 18. P. 203–212.
- Рафиков С.Р., Будтов В.Т., Монаков Ю.Б. Введение в физико-химию растворов полимеров. М.: Наука, 1978. 328 с.; Rafikov S.R., Budtov V.T., Monakov Yu.B. Vvedenie v phiziko-khimiyu rastvorov polimerov (Introduction to the physico-chemistry of polymer solutions), Moscow: Nauka, 1978. 328 p.
- Донченко Л.В. Технология пектинов и пектинопродуктов. М.: ДеЛи, 2000. 256 с.; Donchenko L.V. Technologiya pectinov i pectinoproductov (Technology of pectins and pectin products), Moscow: DeLi, 2000. 256 p.
- Альберт А., Сержент Е. Константы ионизации кислот и оснований. Москва, Ленинград: Химия, 1964. 380 с.; Albert A., Sergeant E. Konstanty ionizacii kislot i osnovanii (Ionization constants of acids and bases), Moscow, Leningrad: Chemistry, 1964. 380 p.
- Золотов Ю.А. Основы аналитической химии. Практическое руководство. М.: Высшая школа, 2001. 463 с.; *Zolotov Yu.A.* Osnovy analiticheskoy khimii. Practicheskoe rukovodstvo (Fundamentals of analytical chemistry. Practical guide), Moscow: Higher School, 2001. 463 p.

- 31. *Korenman I.M.* New titrometric methods. M.: Chemistry, 1983. 173 p.
- Hawari A., Rawajfih Z., Nsour N. // J. Hazardous Materials. 2009. V. 168. P. 1284–1289.
- Koksharov S.A., Aleeva S.V., Lepilova O.V. // J. Molecular Liquids. 2019. V. 283. P. 606–616.
- 34. *Nikiforova T.E., Kozlov V.A.* // Protection of metals and physical chemistry of surfaces. 2016. V. 52. № 3. P. 399–424.
- 35. *Khotimchenko M.Y., Kolenchenko E.A., Khotimchenko Yu.S.*//J. Colloid and Interface Science. 2008. V. 323. P. 216–222.
- Nikiforova T.E., Kozlov V.A., Sionikhina A.N. // Protection of metals and physical chemistry of surfaces. 2019. V. 55. № 5. P. 849–857.
- Lia J., Yang Z., Ding T. et al. // Carbohydrate Polymers. 2022. V. 276. P. 118789.
- Farooq U., Kozinski J, Mishabul A. et al. // Bioresource Technology. 2010. V. 101. P. 5043–5053.
- 39. Wang R., Liang R., Dai T. // Trends in Food Science Technology. 2019. V. 91. P. 319–329.
- Мударисова Р.Х., Сагитова А.Ф., Куковинец О.С. и др. // Журн. общей химии. 2020. Т. 90. № 4. С. 604–612; *Mudarisova R.Kh., Sagitova A.F., Kukovinets O.S. et al.* // Russian J. General Chemistry. 2020. V. 90. №. 4. P. 660–666.