____ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ ____ НА МЕЖФАЗНЫХ ГРАНИЦАХ _____

ХИМИЧЕСКИЙ СОСТАВ ПРИПОВЕРХНОСТНОГО СЛОЯ МЕТАЛЛИЧЕСКИХ ПОДЛОЖЕК ПО ДАННЫМ РФЭС И ЕГО ВЛИЯНИЕ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА АКРИЛОВЫХ ПОЛИМЕРОВ

© 2022 г. Т. Р. Асламазова^{1, *}, О. Д. Графов¹, В. А. Котенев¹

¹Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Ленинский пр., 31, корп. 4, Москва, 119071 Россия *e-mail: t.aslamazova@yandex.ru Поступила в редакцию 14.08.2022 г. После доработки 02.10.2022 г. Принята к публикации 05.10.2022 г.

С использованием метода рентгеновской фотоэлектронной спектроскопии проведен анализ химического состава и энергетического состояния металлической поверхности с целью выявления содержания кислородсодержащих (окисных/гидроокисных) соединений в приповерхностном слое металлических (алюминиевой, латунной и медной) фольг и их влияния на физико-механические свойства эластичных акрилатных полимеров.

Ключевые слова: поверхность, металл, полимер, температура стеклования, локальные диссипативные процессы, поверхностная энергия

DOI: 10.31857/S0044185622060031

введение

Латексные полимерные акриловые составы представляют большой интерес как при приготовлении покрытий на металлических поверхностях различного назначения, так и при использовании в металл-полимерных композитах. Такие составы нетоксичны и пожаробезопасны, пленки из них обладают уникальными физико-химическими и физико-механическими свойствами [1–3].

В работах [4-7] показано влияние металлических подложек и металлических наполнителей на физико-химические и физико-механические свойства полимеров. Была выявлена возможность анализировать эффект физико-механических характеристик металлических поверхностей с покрытием и металл-полимерных композитов (в том числе пленкообразующих) с привлечением метода динамической релаксационной спектроскопии. Релаксационные исследования проводились с учетом физико-химических свойств поверхности металлов, характеризуемых высокими значениями поверхностной энергии (σ), которые существенно зависят от примесных и легирующих элементов в их составе, и латексных пленкообразующих полимерных акриловых пленок, характеризуемых низкими значениями σ.

Известно, что поверхность металлов характеризуется высокими значениями поверхностной энергии (σ) [8–14], тогда как латексные акрило-

вые пленкообразующие — низкими значениями σ [15, 16]. Благодаря значениям поверхностной энергии (σ) металлы хорошо контактируют с жидкостями и в следствие этого легко смачиваются: капля воды полностью растекается по поверхности, что обеспечивает хорошую адгезию к ним различных материалов с низкой поверхностной энергией, к которым относятся латексные акрилатные пленкообразующие полимеры. С учетом поверхностного натяжения акриловых латексов при их нанесении на металлическую поверхность достигается хорошее смачивание и адгезия полимера.

В процессе высыхания латекса и пленкообразования на металлической поверхности происходит освоение свободных зон поверхности, что сопровождается снижением свободной поверхностной энергии [17]. Процесс адсорбции термодинамически неминуемое явление, так как вследствие адсорбции происходит снижение уровня поверхностной энергии металла. Поверхностно-активные элементы полимерного материала стремятся покрыть все свободные элементы поверхности металла, внедряясь во все его дефекты. Полимер не просто покрывает поверхность, а проникает в нее, т.е. связывается с поверхностью, особенно с металлической, на молекулярном уровне. Следует отметить, что полимерные защитные покрытия характеризуются устойчивостью к деформации, о чем свидетельствует отсутствие обсыпания и лущения покрытия с поверхности во время повреждения металлического изделия.

Помимо рассмотрения поверхностной активности металлов к полимерному покрытию, при описании поверхностного слоя металла важно отметить теоретические работы [8, 9], в которых рассматривается конфигурация их кристаллов в поверхностном слое. Конфигурация может различаться параметрами кристаллической решетки, которые определяют различие в площади соприкосновения всех граней металла и образование вакансий с их перемещением с поверхности кристалла в объем. В работах [10–14] при расчете поверхностной энергии о учитывалось число граней, ограничивающих вакансионные полости в объеме и на поверхности кристалла.

Различие в типе кристаллической решетки металлических подложек может определить специфические свойства поверхности металла, на которой формируется окисная пленка, в т.ч. значение поверхностной энергии и взаимодействие поверхности с низкоэнергетическим полимерным материалом [10-14, 17]. Это может проявляться в толщине оксидных пленок, образующихся на поверхности металлов, которая составляет на железе 1.5-15 нм и на алюминии 5-20 нм [17]. На основании этого, авторы высказывали предположение о том, что химическое состояние металлической поверхности является важным фактором в проявлении ее эффекта на физикохимические и физико-механические свойства полимера.

В работах [4, 5, 18] различие в поверхностных характеристиках металлических подложек было подтверждено данными о физико-механических свойствах локализованных на них полимерных покрытий. Была обнаружена корреляция поверхностной энергии металлических поверхностей с упругостью и температурой стеклования полиакриловых полимеров, полученных с привлечением метода динамической механической релаксационной спектроскопии (ДМРС)¹.

В данной работе исследован химический состав и энергетическое состояние металлических поверхностей с целью выявления содержания кислородсодержащих (окисных/гидроокисных) соединений в приповерхностном слое алюминиевой, латунной и медной фольг с использованием метода рентгеновской фотоэлектронной спектроскопии (РФЭС). Проведено сопоставление полученных данных с поверхностной энергией металлов. Показан вклад содержания кислородсодержащих соединений в приповерхностном слое металлов на физико-механические свойства эластичных акрилатных полимеров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследования были привлечены эластичные пленкообразующие латексные акрилатные полимеры с температурой стеклования ($T_{\rm cr}$) 5 и 10°С, далее именуемые A₅ и A₁₀ соответственно.

Концентрация латексов A_5 и A_{10} составляет 30 и 45% соответственно

Поверхностное натяжение латекса, соответствующее поверхностной энергии полимера, измерено с привлечением метода методом отрыва кольца. Поверхностное натяжение латексных полимеров составляло 27 и 32 дин/см соответственно [2].

В качестве металлической поверхности использовали металлические фольги толщиной ~0.1 мм:

• алюминиевая — (ГОСТ 4784-74) сплав алюминия АД1, содержащий основной металл и прочие примеси: хрома до 0.1%, марганца до 0.4— 1.0%, железо до 0.7%, медь 3.5—4.8%, кремния до 0.2—0.8%, цинк до 0.3%, титан до 0.15%;

• латунная — (ГОСТ 2208-2007) сплав Л63, представляющего собой сплав меди с цинком с содержанием 34.22—37.55%, Zn 62—65% Си и прочие примеси, количество которых не выходит за рамки ~0.5%;

• медная — (ГОСТ 5638-75) сплав М1, содержащий в своем составе основной металл и прочие примеси: железа до 0.002%, никеля до 0.002%, серы до 0.004%, мышьяка до 0.002%, свинца до 0.005%, цинка до 0.004%, кислорода до 0.05%, висмута до 0.001%, олова до 0.02%, сурьма до 0.002.

Подготовку поверхности фольги проводили следующим образом. Их промывали при перемешивании в этиловом спирте в течение 8 ч при комнатной температуре с последующей сушкой до постоянного веса. Затем на подложку наносился латексный полимер с последующим высушиванием до постоянного веса. Толщина полимерного слоя на подложках составляла 0.01 мм.

Электронные микрофотографии поверхности металлических подложек получены с привлечением сканирующего электронного микроскопа Quanta650.

Поверхностное смачивание металлов характеризовали с учетом литературных данных о поверхностной энергии (σ) алюминия и меди, значения которой для используемых металлов можно оценить как от 800 до 1200 дин/см² [8–14].

Химический состав поверхностного слоя металлических подложек проводили с применением метода рентгеновской фотоэлектронной спектроскопии РФЭС на спектрометре OMICRON ESCA+ с алюминиевым анодом, снабженным монохроматическим источником рентгеновского излучения AIK α XM1000 с энергией излучения 1486.6 эВ и мощностью 252 Вт (Германия) [21].

¹ Аналогичные исследования проводились при сравнении акрилатных полимеров, наполненных порошком цинк и оксида цинка [19, 20].

Энергия пропускания анализатора составляла 20 эВ. Спектрометр калибровали по линии Au4f 7/2 при 84.1 эВ. Все РФЭ-спектры были получены при возбуждении AlK α при 14 кВ (252 Вт). Давление в камере анализатора не превышало 10⁻⁹ мбар. Все спектры накапливались не менее трех раз. Флуктуация положения пиков не превышала ±0.1 эВ.

Спектры РФЭС получены при облучении металла пучком рентгеновских лучей с регистрацией зависимости количества испускаемых электронов от энергии связи. Исследуемые электроны эмитируются на глубину 10 нм проникновения в исследуемый образец с использованием мягкого рентгеновского излучения. По фотоэлектронным спектрам анализируется химическое состояние поверхности исследуемых фольг.

Температурно-частотные зависимости были сняты ранее в температурном интервале от –100 до +100°С с применением метода ДМРС [22, 23], который позволяет получать развертку свободно затухающего колебательного процесса, протекающего в исследуемом композите при импульсном возбуждении на горизонтальном крутильном маятнике, устройство которого подробно описано в работе [24]. В работах [4, 5, 18, 29] установлена слабая от металлической подложки реакция полимера на внешнее воздействие.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Целесообразность привлечения метода рентфотоэлектронной геновской спектроскопии (РФЭС) к исследованию химического состава и энергетического состояния приповерхностного слоя металлов основано на его высокой чувствительности, достигаемой проникновением первичного рентгеновского излучения в область поверхности толщиной 2-3 нм как результат длины свободного пробега электрона. Остальные электроны сливаются с неупругим фоном спектра. Фотоэлектронные линии имеют тонкую структуру. Она практически полностью характеризуется химическими сдвигами, если не происходит наложения разных фотоэлектронных пиков друг на друга. Это является важным преимуществом метода и позволяет диагностировать различные химические соединения в исследуемых образцах и проводить их количественную оценку, в связи с чем метод РФЭС получил еще название электронной спектроскопии для химического анализа [21].

В некоторых работах приводятся данные расчета состава по фотоэлектронным спектрам с точностью анализа до 0.1 ат. % [25] и даже 0.01 ат. % [26].

До недавнего времени метод РФЭС являлся исключительно методом слоевого анализа с использованием рентгеновского облучения всей поверхности образца и, соответственно, эмиссии фотоэлектронов со всей поверхности. В работе [27, 28] представлены исследования с использованием анализатора энергий электронов, который имеет область сбора вторичных электронов с поверхности ~100 нм и может фокусировать ее в разных точках области анализа. Тем самым оказалось возможным получить информацию о распределении элементов и химических соединений по поверхности с нанометровым разрешением.

В работе [5] метод РФЭС был использован для оценки химического состава и энергетического состояния приповерхностного состояния медной фольги до и после ее температурной обработки при высокой температуре и влияния обработки на физико-механические свойства высокоэластичного акрилового полимера, характеризующегося низким значением поверхностной энергии. В результате применения этого метода установлено повышение содержания кислородсодержаших соединений (оксидов/гидроксидов) в приповерхностном слое металла, что коррелирует с большей активностью отожженной поверхности к проявлению ее эффекта на механические свойства полимера. Обнаружено повышение температуры стеклования полимера, локализованного на отожженной медной подложке, свидетельствуя о снижении его эластичности. На основании этого сделан вывод о том, что термообработка металла сопровождается ростом концентрации оксидов/гидроксидов на поверхности подложки. Последнее коррелирует с ее поверхностной активностью [8–14]. Установленные характеристики меди после ее отжига указывают на изменение подвижности макроцепей вблизи поверхности контакта.

В данной работе с применением метода РФЭС изучен химический состав и энергетическое состояния приповерхностного слоя различных металлических (алюминиевой, латунной и медной) фольг. Проведено их сопоставление с поверхностной энергией металлов, приведенной в работах [4, 5, 18], и их структурным состоянием, исследованным с привлечением методов сканирующей микроскопии. Показано влияние физикохимических характеристик приповерхностного слоя металла на физико-механические свойства (адгезионные) свойства полимерного покрытия на примере температурно- частотной зависимости колебательного процесса, полученных ранее в работах [4, 5, 18] с использованием метода ДМРС, позволяющего получить оценить его температуру стеклования и упругость.

На рис. 1 представлены микрофотографии поверхности металлических фолыг (формообразующих подсистем), полученные с применением сканирующего микроскопа. Видно, что наблюдаемая текстура поверхности характеризуется особенностями промышленного проката металла.

Рис. 1. Поверхность металлических фольг, полученных с применением сканирующей микроскопии при масштабировании 10 мкм: (а) алюминий, (б) латунь, (в) медь.

Так как микрофотографии текстуры поверхности фольг не дают ясного представления о физико-химических свойствах поверхности металлов, далее было проведено рентгеноструктурное исследования ее химического состава с применением метода РФЭС.

В табл. 1 представлен химический состав и энергетическое состояние поверхностного слоя исследуемых металлических фольг, полученный с использованием РФЭС метода. Таблица включает в себя название пика на РФЭ-спектре (Peak name); положение пика (Eb-binding energy), которое выражается как энергия связи в эВ; интегральную площадь пика после вычитания фона (Area/cps, что соответствует площади, выраженной в количестве точек/с); коэффициент чувствительности (Senc. factor); нормализованную площадь (Norm. area); количество в атомных процентах по химической связи и элементу в целом (Quant./at. %).

ls and 2p соответствуют электронным уровням, из которых выбираются электроны при облучении.

В методе РФЭ-спектроскопии состояние химических элементов (С, О, Сl и т.д.) определяется по положению максимумов на РФЭ-спектрах. К примеру, приведенный в таблице углерод ls-уровня обозначен как Cls. Справа от этих уровней указаны связи наиболее близкие к пикам с учетом их положения.

Как следует из табл. 1, поверхностный слой фольг содержит оксидные и гидроксидные соединения металла одно-, двух- и трехвалентного состояния, которые могут быть активны к функциональным соединениям полиакрилатов. Кроме того, он обогащен углеродсодержащими соединениями.

Наибольший интерес представляют данные таблицы, показывающие суммарное содержание

оксидных и гидроксидных соединений металлов одно-, двух- и трехвалентного состояния металлов в поверхностном слое и их суммарная концентрация в алюминии, латуни и меди, равная 3.55; 3.73 и 4.03 ат. %, соответственно. Такое содержание этих соединений в приповерхностном слое металлов, способных проявлять свою поверхностную активность к функциональным группам акрилового полимера, хорошо коррелирует со значением поверхностной энергии алюминия, латуни и меди, оцениваемого как 800, 840 и 1103 дин/см² [4, 5, 18].

С учетом литературных данных [8–14] соотношение значений о (дин/см²) в ряду латунь—алюминий—медь составляет 8.0 : 8.4 : 11.03. Эти данные были использованы при сопоставлении поверхностных свойств металлов и релаксационного поведения полимера в области температуры стеклования.

Наглядным подтверждением изменения содержания кислородсодержащих (оксидных/гидрооксидных) соединений в приповерхностном слое металлов могут явиться РФЭ-спектры, представленные на рис. 2.

Анализ РФЭ-спектров позволяет получить дополнительную информацию о содержании поверхностно-активных к полимеру соединений металлов, а также наглядно демонстрирует энергетическое состояние алюминия, латуни и меди, характеризуемое гораздо более высокой энергией связи в последнем случае.

Суммарное содержание кислородсодержащих соединений в приповерхностном слое металлических фольг, описываемое их суммарной энергией связи и интегральной площадью пиков на РФЭ-спектре, представлено в табл. 2 по состояниям алюминия, латуни и меди, а также с учетом всех имеющихся в приповерхностном слое соединений. Видно, что суммарная энергия связи и

АСЛАМАЗОВА и др.

Таблица 1. Химический состав поверхностного слоя алюминия, латуни и меди по данным РФЭС

Металл	Химический состав поверхностного слоя по данным РФЭС						
Алюминий	Peak name	Eb/eV	Area/cps eV	Sens. fact	Norm. area	Quant./at %	
	Cls CH ₂ CH ₂	285.01	48067.441	18.768	2561.1381	39.05	64.49
	Cls C–O	286.45	20427.817	18.75	1089.4835	16.61	
	Cls O–C=O	288.82	10853.413	18.742	579.09581	8.83	
	Nls atm. ads.	400.35	4302.2030	32.69	131.60608	2.01	2.01
	Ols O(2–)	530.5	207.09226	51.085	4.0538762	0.06	23.89
	Ols OH/C=O	531.7	13003.780	51.105	254.45221	3.88	
	Cls C–O/C–O–C	532.62	52134.708	51.075	1020.7480	15.56	
	Cls H ₂ O	533.55	14685.381	51.065	287.58213	4.39	
	S2p SO ₄ (2–)	169.14	1299.1884	32.396	40.103360	0.61	0.61
	Fls F(1-)	685.66	9122.1889	73.029	124.91186	1.9	1.9
	Si2p SiO ₂	102.83	927.69553	16.04	57.836380	0.88	0.88
	Na1s Na(1+)	1072.16	1237.7426	113.72	10.883837	0.17	0.17
	Ca2p CaO	347.89	10579.642	93.478	113.17789	1.73	2.34
	Ca2p CaSO ₄	348.3	3761.7516	93.529	40.220162	0.61	
	Al2p Al(0)	73.9	372.89236	10.61	35.145369	2.28	
	Al2p Al(3+)	75.43	1589.2603	10.613	149.74657	2.28	
	Al2p AlF ₃	76.49	509.41088	10.608	48.021387	0.73	
	Zn2p3 Zn(2+)	1022.44	2564.8816	261.96	9.7907832	0.15	0.15
	Peak name	Eb/eV	Area/cps eV	Sens. fact	Norm. area	Quant./at %	
	Cls CH ₂ CH ₂	285.05	54359.215	18.768	2896.3776	50.92	69.54
	Cls C–O	286.5	13780.035	18.75	734.93523	12.92	
	Cls O–C=O	288.8	6081.4869	18.742	324	48441	5.7
	Nls atm. ads.	400.29	2623.9110	32.69	80.266474	1.41	1.41
	Ols Oxides	530.7	421.90111	51.085	8.2588061	0.15	22.83
	Ols Hydroxides	531.8	23608.093	51.105	461.95272	8.12	
Латунь	Cls C–O	532.6	31647	263	51.075	619.62336	10.89
	Cls H ₂ O	533.6	10652.924	51.065	208.61498	3.67	
	S2p-S-	163.5	436.12394	32.464	13.434079	0.24	1.01
	S2p SO ₄	169.06	1414.7435	32.396	15.311931	0.27	0.27
	Cl2p Cl(-)	199.37	671.10664	43.829	15.311931	0.27	0.27
	Nals Na(+)	1072.01	1394.9785	113.72	12.266459	0.22	0.22
	Ca2p CaO	348.24	2834.5603	93.478	30.323288	0.53	0.53
	Cu2p3 CuO	933.76	11161.185	244.83	45.586001	0.8	3.73
	Cu2p3 Cu(OH) ₂	935.6	21080.662	244.57	86.193744	1.52	
	Cu2p3 Sat. Cu(II)	941.15	8272.0071	243.98	33.904447	0.6	
	Cu2p3 Sat. Cu(II)	944.33	11 173.127	243.46	45.892883	0.81	
	Zn2p	1022.43	10724.758	397.66	26.969601	0.47	0.47

604

Металл	Химический состав поверхностного слоя по данным РФЭС						
Медь	Peak name	Eb/eV	Area/cps eV	Sens. fact	Norm. area	Quant./at %	
	Cls CH ₂ CH ₂	284.97	55887.045	0.296	188807.58	48.13	71.28
	Cls C–O	286.4	19470.317	0.296	65778.101	16.77	
	Cls O–C=O	288.7	7412.7429	0.296	25043.050	6.38	
	Nls atm. ads.	400.31	3000.8318	0.477	6291.0520	1.6	1.6
	Ols Oxides	530.9	828.15667	0.711	1164.7773	0.3	22.54
	Ols Hydroxides	531.88	27978.658	0.711	39351.136	10.03	
	Cls C–O	532.7	22249.522	0.711	31293.280	7.98	
	Cls H ₂ O	533.6	11806.798	0.711	16605.905	4.23	
	Cl2p Cl(-)	199.4	1236.5630	0.77	1605.9260	0.41	0.41
	Ca2p CaO	347.71	855.78108	1.634	523.73383	0.13	0.13
	Cu2p3 Cu(0)Cu ₂ O	932.5	654.26924	3.198	204.58700	0.05	4.03
	Cu2p3 CuO	933.9	6774.2841	3.198	2118.2877	0.54	
	Cu2p3 Cu(OH) ₂	935.25	21904.460	3.198	6849.4246	1.75	
	Cu2p3 Sat. Cu(II)	941.3	14434.588	3.198	4513.6300	1.15	
	Cu2p3 Sat. Cu(II)	944.58	6732.3526	3.198	2105.1759	0.54	

Таблица 1. Окончание

Таблица 2. Суммарная энергия связи (эВ), соотнесенная с содержанием оксидных/гидроксидных соединений в приповерхностном слое исследованных металлов

Металл	Кислородсодержащие соединения металлов в приповерхностном слое фольг	Ат. %	Суммарная энергия связи по состояниям всех поверхностных соединений (эВ)
Алюминий	$Al(0)Al(3+): Al_2O_3 + Al(OH)_3AlF_3$	17.31 75.17 7.52	267.2
Латунь*	CuOCu(OH)2Cu + Cu2OZnO + Zn(OH)2	19 36 33 12	1762.4
Медь	CuOCu(OH)2Cu + Cu2O	21 79 2	3320.1

* Данные представлены для сплава меди с цинком при их соотношении, равном 30 : 70.

суммарная интегральная площадь пиков гораздо выше в случае медной поверхности.

Как следует из табл. 2, рост содержания окисей и гидроокисей, коррелирующий с увеличением интенсивности соответствующих пиков на РФЭспектрах, характеризуется увеличением суммарной интегральной площади пиков, относящихся к их содержанию и энергетическому состоянию в приповерхностном слое металлов при переходе от алюминия к латуни и далее к меди. Даже с учетом всех соединений, обнаруживаемых в приповерхностном слое металлов, энергетическое состояние алюминиевой поверхности гораздо ниже, чем медной поверхности. Это коррелирует с данными работ [10–14] о поверхностной активности этих металлов.

Для подтверждения влияния приповерхностного слоя металлов на физико-механические свойства проведена их корреляция с данными метода динамической механической релаксационной спектроскопии, которые был использован при

Рис. 2. РФЭ-спектры поверхности металлических фольг: (а) алюминий Al2p: $1 - Al^{3+}$; $2 - Al^{0}$; $3 - AlF_{3}$; $4 - суммарная кривая; <math>5 - \phi$ он; (б, в) медь и цинк в латуни: (б) медь Cu2p3: 1 - CuO; $2 - Cu(OH)_2$; 3 - Cu(II); $4 - суммарная кривая; <math>5 - \phi$ он; (в) цинк ZnLMM: 1 - ZnO; $2 - Zn(OH)_2$; $3 - суммарная кривая; <math>4 - \phi$ он; (г) медь Cu2p3/2: 1 - CuO; $2 - Cu(OH)_2$; $3 - суммарная кривая; <math>4 - \phi$ он; (г) медь Cu2p3/2: 1 - CuO; $2 - Cu(OH)_2$; $3 - суммарная кривая; <math>4 - \phi$ он.

исследовании полимерных образцов, локализованных на металлических подложках [4, 5, 18].

В рамках этих исследований [4, 5, 18] была проведена оценка дефекта модуля, характеризующего неупругость полимерного материала, а также температура стеклования на основе анализа температурных зависимостей частоты колебательного процесса в полимерах различной эластичности при их локализации на металлических подложках.

Дефект модуля оценивается по изменению частоты колебательного процесса на температурночастотной зависимости релаксационного процесса вблизи температуры стеклования полимера и рассчитывается по величине отрезка, отсекаемого касательными к кривой температурной зависимости. Удельное значение дефекта модуля ΔG , отнесенное к одному температурному градусу, пропорционально соотношению ($v_2 - v_1$)/($T_2 - T_1$) = $= \Delta v / \Delta T$, где v_1 , v_2 – значения частоты колебательного процесса, соответствующие окончанию и началу спада кривых зависимости при температурах T_1 и T_2 [4, 5, 18].

Рис. 3. Температурно-частотные зависимости в полимерах A_5 : (а) и A_{10} (б), локализованных на подложках: (1) латунь, (2) алюминий, (3) медь.

Температура стеклования полимеров оценивается как температура, соответствующая ее значению на середине температурной области спада частоты колебательного процесса.

На рис. За, 3б представлены температурно-частотные зависимости диссипативных процессов в композитах полимеров A_5 и A_{10} , локализованных на металлических подложках, вблизи температуры стеклования.

Резкое снижение модуля сдвига для обоих полимеров указывает существенное изменение дефекта модуля ΔG . Значение дефекта модуля рассчитано из данных рисунка на температурном отрезке в 45°.

Таблица 3. Физико-химические и физико-механические свойства полимеров, локализованных на металлических подложках, в области температуры стеклования

Полимер	Фольга	$T_{\lambda \max}$, °C	$\Delta G \times 10^3$	
A ₅	Алюминий	_	_	
	Латунь	17.5	3.11	
	Медь	20.5	0.67	
A ₁₀	Алюминий	18.9	4.89	
	Латунь	19.9	3.49	
	Медь	21.3	2.89	

В табл. 3 представлены физико-механические свойства полимеров A_5 и A_{10} , локализованных на металлических подложках с различным содержанием оксидов/гидроксидов в приповерхностном слое. Наблюдается корреляция удельных значений дефекта модуля обоих полимеров при переходе от алюминия к латуни и далее к меди. Снижение дефекта модуля свидетельствует о росте упругости (снижении высокоэластичности) обоих полимеров с изменением химического состава и энергетического состояния поверхности металлических подложек.

Расчет температуры стеклования проводится на температурном отрезке в 45°, поэтому характеризуется относительными значениями. В табл. 3 наблюдается смещение температуры стеклования полимера в положительную температурную область при переходе от алюминия к латуни и далее к меди, что коррелирует со снижением дефекта модуля (рост упругости) полимера.

ЗАКЛЮЧЕНИЕ

Из полученных данных следует, что химический состав приповерхностного слоя металла коррелирует с литературными данными по его поверхностной активности.

С использованием метода РФЭ-спектроскопии установлен химический состав поверхностного слоя алюминиевой, латунной и медной фольг, свидетельствующий об увеличении кислородсодержащий соединений (оксидов/гидроксидов) в указанном ряду, коррелируя с поверхностной активностью металлов к полиакрилату, а также энергетическим состоянием поверхности.

Проведена корреляция содержания кислородсодержащих соединений (оксидов/гидроксидов) в приповерхностном слое металлических подложек и физико-механических свойств локализованных на них латексных полимеров различной эластичности.

В качестве механических свойств привлечены данные об упругости полимеров, характеризуемой значениями дефекта модуля системы, оцениваемыми на основе анализа и обработки температурных зависимостей частоты колебательного релаксационного процесса в полимере, локализованном на различных металлических подложках.

На основе графического расчета дефекта модуля полимеров, характеризующего их упругие свойства, установлено снижение его значения при локализации полимера на подложках в ряду алюминий-латунь-медь, что коррелирует с характером температурно-частотных зависимостей.

Обнаружено также смещение температуры стеклования полимера, локализованного на поверхности металлических фольг, в положительную температурную область при переходе от алюминия к латуни и далее к меди, что коррелирует со снижением его эластичности и зависимостью релаксационного поведения полимерного материала от содержания оксидных и гидроксидных соединений в приповерхностном слое металлов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Кербер М.Л., Виноградов В.М., Головкин Г.С. и др.* Полимерные композиционные материалы: структура, свойства, технологии. Под ред. Берлина А.А. СПб.: Профессия, 2008, 560 с.
- 2. *Елисеева В.И*. Полимерные дисперсии. М.: Химия, 1980. 295 с.
- 3. *Асламазова Т.Р.* // Физикохимия поверхности и защита материалов. 2021. Т. 57. № 6. С. 640–649.
- Асламазова Т.Р., Ломовская Н.Ю., Котенев В.А. // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 2. С. 207–215.
- Асламазова Т.Р., Высоцкий В.В., Графов О.Ю., Котенев В.А., Ломовская Н.Ю. // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 4. С. 371–379.
- 6. Асламазова Т.Р., Котенев В.А., Ломовской В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 5. С. 499–508.
- 7. Асламазова Т.Р., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2021. Т. 57. № 4. С. 417-424.

- 8. *Кунин Л.Л.* Поверхностные явления в металлах. М., 1955.
- 9. Миссол В. Поверхностная энергия раздела фаз в металлах. М., 1978.
- 10. *Егоров С.Н.* // Известия вузов. Северо-Кавказский регион. Технические науки. 2003. № 3. С. 132–134.
- Поверхностная энергия разных материалов. Серия обучающих материалов об адгезии // Наука об адгезии. ЗМРоссия. www.3mrussia.
- 12. Олешко В.С., Пиговкин И.С. // Интернет-журнал "Науковедение". 2016. Т. 8. № 3. (май-июнь). http://naukovedenie.ru.
- Ferrante J., Smit J.R. // Phys. Rev. 1972. B6. № 3. P. 875–887.
- 14. *Кобелева Р.М., Гельчинский Б.Р., Ухов В.Ф.* // Физика металлов и материаловедения. 1978. Т. 48. № 1. С. 25–32.
- Елисеева В.И., Иванчев С.С., Кучанов С.И., Лебедев А.В. Эмульсионная полимеризация и ее применение в промышленности. М.: Химия, 1976. 210 с.
- 16. *Еркова Л.Н., Чечик О.С.* Латексы. М.: Химия, 2005. 224 с.
- 17. Вакилов А.Н., Потерин Р.В., Прудников В.В. // Физика металлов и материалов. 1995. Т. 79. № 4. С. 13-22.
- Асламазова Т.Р., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Физическая химия. А. 2022. Т. 96. № 5. С. 707-725.
- Асламазова Т.Р., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 6. С. 625-631.
- 20. Асламазова Т.Р., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2021. Т. 57. № 3. С. 284–294.
- 21. Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений. М.: Химия. 1984. 256 с.
- Бартенев Г.М., Ломовской В.А., Ломовская Н.Ю. // Высокомол. соед. 1994. Т. 36(9). С. 1529–1535.
- 23. *Тагер А.А.* Физикохимия полимеров (Физическая химия полимеров). М.: Научный мир, 2007. 545 с.
- 24. *Ломовской В.А.* // Научное приборостроение. 2019. Т. 29(1). С. 33–46.
- Hüfner S. // Fresenius' Zeitschrift f
 ür analytische Chemie. 1978. V. 291. № 2. P. 97–107.
- Barbé J., Xie L., Leifer K., Faucherand P., Morin C., Rapisarda D., De Vito E. // Thin Solid Films. 2012. V. 522. P. 136–144.
- Xia G., Ma Z.Y., Jiang X.F., Yang H.F., Xu J., Xu L., Li W., Chen K.J., Feng D. // Journal of Non-Crystalline Solids. 2012. V. 358. P. 2348–2352.
- Escher M., Weber N., Merkel M., Ziethen C., Bernhard P., Schnhense G., Schmidt S., Forster F., Reinert F., Funnemann B.Kr.D. // Journal of Physics: Condensed Matter. 2005.
- Асламазова Т.Р., Золотаревский В.И., Котенев В.А., Ломовская Н.Ю., Ломовской В.А., Цивадзе А.Ю. // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 1. С. 78-84.