МЕТОДЫ ИЗУЧЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СИСТЕМ

УДК 543.544

ОСОБЕННОСТИ ХРОМАТОГРАФИЧЕСКОЙ ЭФФЕКТИВНОСТИ АДСОРБЕНТОВ НА ОСНОВЕ ЭНАНТИОМОРФНЫХ КРИСТАЛЛОВ РЕТГЕРСИТА В УСЛОВИЯХ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ

© 2022 г. Ю. Ф. Шарафутдинова^{1, *}, Э. В. Белоногов¹, В. Ю. Гуськов¹

¹Башкирский государственный университет, ул. З. Валиди, 32, Уфа, 450076 Россия

*e-mail: ms.shaihitdinova94@gmail.com Поступила в редакцию 21.07.2022 г. После доработки 29.07.2022 г. Принята к публикации 10.08.2022 г.

При разделении энантиомеров на хиральных кристаллах ахиральных веществ, сравнительно высокая энантиоселективность сопровождается низкой эффективностью любых колонок. Поэтому в работе была проведена оценка влияния коэффициентов уравнения ван-Деемтера на уширение пиков энантиомеров камфоры на хиральной неподвижной фазе на основе энантиморфных кристаллов α -NiSO₄·6H₂O (ретгерсита). Из экспериментальной кривой ван-Деемтера были рассчитаны вклады вихревой, продольной диффузии, а также сопротивления массопереносу в значение приведенной величины, эквивалентной теоретической тарелке (h). Показано, что правая ветка кривой для энантиомеров камфоры различается. Установлено, что данное различие вызвано разными значениями сопротивления массопереносу в неподвижной фазе C_s , вызванное отличием в коэффициентах диффузии в поровом пространстве.

Ключевые слова: хиральная хроматография, жидкостная хроматография, ретгерсит, α -NiSO₄·6H₂O, уравнение ван-Деемтера

DOI: 10.31857/S0044185622060171

введение

Проблема разделения рацемических смесей на сегодняшний день остается актуальной. Одним из методов разделения оптически активных веществ является хиральная хроматография. Ранее были предложено использовать в качестве неподвижных фаз энантиоморфные кристаллы ряда ахиральных веществ, таких как цитозин, гиппуровая кислота, ретгерсит и др. [1-3]. Такие кристаллы, несмотря на отсутствие асимметрического атома углерода, обладают поверхностью с супрамолекулярной (надмолекулярной) хиральностью, то есть, зеркально-поворотная ось симметрии отсутствует не у молекулы, но у группы взаимно ориентированных молекул. Из изученных кристаллов, только неорганические кристаллы ретгерсита могут применяться в нормальнофазовой жидкостной хроматографии по причине их нерастворимости в органических растворителях и большей, чем у органических кристаллов, механической прочности. В условиях жидкостной хроматографии на кристаллах α -NiSO₄·6H₂O были получены разделения энантиомеров пентанола-2 [3]. Было показано, что хиральное распознавание ретгерсита обусловлено различием в изотермах адсорбции энантиомеров [2]. Однако оставалось неизвестным, отличается ли при этом их кинетика адсорбции. Одним из методов оценки закономерностей массопереноса при хроматографическом разделении является анализ кривой ван-Деемтера. Оценка индивидуальных вкладов составляющих уравнения ван-Деемтера в величину. эквивалентную теоретической тарелке (Н, мм) может быть легко проведена с использованием современных программ [4-6]. При этом обычно предполагается, что коэффициенты А и В уравнения ван-Деемтера для разных энантиомеров должны быть одинаковы, а коэффициент С, включающий в себя вклад сопротивления массопереносу в подвижной и неподвижной фазах, может быть различным [7]. Поэтому, представляет интерес выяснить, различаются ли кривые ван-Деемтера для энантиомеров на кристаллах ретгерсита, и если различие наблюдается, то оценить, какие процессы вносят вклад в это различие.

ТЕОРИЯ

Зависимость *H* от различных факторов выражается уравнением ван-Деемтера:

$$H = A + B/u + (C_s + C_m)u,$$
(1)

$$h = a + \frac{b}{v} + (c_s + c_m)v, \qquad (2)$$

где u — линейная скорость подвижной фазы, A вихревая диффузия, B — продольная диффузия, C представляет собой сопротивление массопереносу в неподвижной фазе (C_s) или в подвижной фазе (C_m). Уравнение (2) представляет собой безразмерную форму уравнения (1) за счет использования приведенных ВЭТТ (h) и приведенных скоростей (v), где $h = H/d_p$ и $v = ud_p/D_m$, где d_p — размер частиц, D_m — коэффициент молекулярной диффузии аналита [8].

Уравнение (2) можно также записать более явным образом, используя выражение, обычно обозначаемое как общая модель высоты эквивалентной теоретической тарелке, которая была впервые введена Лапидусом и Амундсоном [9] и далее использована во многих работах [10–12]. Данная модель может быть выражена следующим образом [13]:

$$h = h_{a} + \frac{2\gamma_{eff} (1 + k'')}{v_{i}} + 2 \frac{k''^{2}}{(1 + k'')^{2}} \frac{v_{i}}{\alpha} \frac{1}{Sh_{m}} \frac{\varepsilon}{1 - \varepsilon} + 2 \frac{k''^{2}}{(1 + k'')^{2}} \frac{v_{i}}{\alpha} \frac{1}{Sh_{part}} \frac{D_{m}}{D_{pz}},$$
(3)

где v_i — приведенная скорость, h_a — вклад в расширение полосы, обусловленный неоднородностью слоя, γ_{eff} — эффективная продольная диффузия, Sh_m и Sh_{part} , соответственно, коэффициенты массопереноса подвижной зоны и зоны частиц (также известные как числа Шервуда). Кроме того, α — коэффициент формы частиц, ε внешняя пористость колонки, D_{pz} — коэффициент диффузии в поровом пространстве и k'' — коэффициент удерживания хроматографической зоны.

В упрощенной форме уравнение (3) также может быть записано аналогично уравнению (2) [8]:

$$h = h_a + h_b + h_{cm} + h_{cs}.$$
 (4)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве адсорбента использовались кристаллы α -NiSO₄·6H₂O, полученные из семиводного сульфата никеля (98%, Кыштымский медеэлектролитный завод, Кыштым, Россия, CAS 10101-98-1). Для приготовления растворов NiSO₄·6H₂O использовалась высокоочищенная вода с проводимостью 10 мкс/м, полученная на деионизаторе воды ДВ-10UV (Цветхром, Дзержинск, Россия).

Хиральные кристаллы α-NiSO₄·6H₂O были получены по ранее использованной методике [2]: насыщенный раствор семиводного сульфата никеля термостатировался при 40°C при интенсивном размешивании с добавлением стеклянных шариков до полного испарения воды, далее кристаллы отфильтровывались, высушивались в эксикаторе. Затем хиральные кристаллы наносили на поверхность силикагеля (Chemapol, Praha, Czech Republic, размер частиц 5–40 мкм), масса кристаллов составляла 10% от массы силикагеля. Применяемые подходы приводили к реализации процесса созревания Виедмы и образованию гомохиральных кристаллов [14].

Полученным сорбентом наполнялась стальная колонка длиной 25 см и внутренним диаметром 4.6 мм. Для заполнения использовалась суспензия модифицированного адсорбента в октаноле-1, через колонку элюировался н-гептан со скоростью потока 10 мл/мин. Процедура повторялась до плотного заполнения всей колонки.

Исследование проводилось методом высокоэффективной жидкостной хроматографии в нормально-фазовом режиме (нф-ВЭЖХ) на хроматографе Agilent 1100 (AgilentTechnologies, USA) с детектором на диодной матрице. В качестве элюента был выбран н-гептан (>99.5%, Экос-1, Москва, Россия, CAS 142-82-5). Перед использованием н-гептан очищался согласно общепринятым методикам [15]. В качестве тест-сорбата использовались D-камфора (97%, Acros Organics, New Jersey, USA, CAS 464-49-3) и L-камфора (97%, Acros Organics, New Jersey, USA, CAS 464-48-2). Анализ проводился при длине волны 220 нм. Ввод пробы с концентрацией 10 мг/мл осуществляли при помощи полуавтоматического инжектора. Объем петли составлял 20 мкл. Скорость элюирования составляла от 0.15 до 1.10 мл/мин.

Из полученных хроматограмм было рассчитано число теоретических тарелок и значения *H* для *L*- и *D*-камфоры. Аппроксимация экспериментальной кривой проводилась в программе Origin. Индивидуальные коэффициенты уравнения ван-Деемтера рассчитывались с использованием уравнения (3). Графики строились с использованием программы SigmaPlot.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кривые ван-Деемтера для энантиомеров камфоры представлены на рис. 1. Из графика видно, что левые ветки кривых, характеризующие вклад продольной диффузии, совпадают, а правые ветки кривых, показывающие вклад сопротивления массопереносу как в подвижной, так и в неподвижной фазе — различаются. Тангенсы угла наклона правой ветки кривых ван-Деемтера составляли для *L*-камфоры 0.29 \pm 0.01, а для *D*-камфоры 0.319 \pm 0.009. Это говорит о том, что при разделении *D*- и *L*-камфоры на кристаллах ретгерсита, нанесенных на силикагель, сопротивление массопереносу энантиомеров различается. При этом

Рис. 1. Кривые ван-Деемтера для энантиомеров камфоры на изучаемом адсорбенте.

правее минимума на кривой сопротивление массопереносу вносит заметно больший вклад в размывание пиков, чем вихревая диффузия (на примере *L*-камфоры, рис. 2). Поскольку коэффициент *C* представляет собой сумму сопротивления массопереноса в различных зонах колонки, то представляет интерес выяснить, какая из составляющих вносит вклад в различие массопереноса.

Приведенные линейные скорости *v*, приведенная высота эквивалентная теоретической тарелке *h*, вклады в *h* продольной диффузии (h_b), сопротивления массопереносу в подвижной фазе (h_{C_m}) и сопротивления массопереносу в неподвижной фазе (h_{C_n}) представлены в табл. 1–2. По рассчи-

Рис. 2. Вклады различных факторов в кривую ван-Деемтера для *L*-камфоры.

танным данным были построены зависимости составляющих кривой ван-Деемтера от приведенной линейной скорости подвижной фазы (рис. 3–5). Из рис. 3 видно, что вклады продольной диффузии в h совпадают. Вклады сопротивления массопереносу в подвижной фазе также идентичны для двух энантиомеров (рис. 4). Это объясняется тем, что подвижная фаза ахиральна и диффузия молекул энантиомеров камфоры в подвижной фазе одинакова.

В то же время, вклады сопротивления массопереносу в неподвижной фазе отличаются (рис. 5). Данное отличие обусловлено различием в коэффициентах диффузии в поровом пространстве. Так, коэффициент диффузии в поровом простран-

Приведенная скорость (v)	Приведенная ВЭТТ (<i>h</i>)	Продольная диффузия (<i>h_b</i>) ×10 ²	Сопротивление массопереносу в ПФ (h_{C_m}) × 10	Сопротивление массопереносу в НФ (h_{C_s}) × 10
34.6	156.3	23.3	4.9	1.0
46.2	133.9	17.5	6.2	1.3
57.7	118.7	14.0	7.4	1.6
69.3	111.2	11.6	8.6	1.9
80.8	105.3	10.0	9.7	2.3
92.4	111.6	8.7	10.8	2.6
103.9	115.4	7.8	11.8	2.9
115.5	119.7	7.0	12.9	3.2
161.7	134.8	5.0	16.8	4.5
207.9	147.0	3.9	20.5	5.8
231.0	157.1	3.5	22.3	6.5

Таблица 1. Экспериментально рассчитанные значения вкладов различных параметров кривой ван-Деемтера (продольной диффузии h_b , сопротивления массопереносу в подвижной фазе h_{C_m} , а также сопротивления массопереносу в неподвижной фазе h_{C_m}) при различных приведенных скоростях *v* для *L*-камфоры при $\lambda = 220$ нм

Приведенная скорость (v)	Приведенная ВЭТТ (<i>h</i>)	Продольная диффузия $(h_b) \times 10^2$	Сопротивление массопереносу в ПФ $(h_{C_m}) \times 10$	Сопротивление массопереносу в НФ $(h_{C_s}) \times 10$			
34.9	157.6	23.9	5.1	8.6			
46.5	130.0	17.9	6.4	11.5			
58.1	115.5	14.4	7.6	14.4			
69.7	110.2	12.0	8.8	17.3			
81.3	104.0	10.3	10.0	20.2			
92.9	107.9	9.0	11.1	23.0			
104.6	111.4	8.0	12.1	25.9			
116.2	114.4	7.2	13.2	28.8			
162.6	125.8	5.1	17.2	40.3			
209.1	140.0	4.0	21.0	51.8			
232.3	149.5	3.6	22.9	57.6			

Таблица 2. Экспериментально рассчитанные значения вкладов различных параметров кривой ван-Деемтера (продольной диффузии h_b , сопротивления массопереносу в подвижной фазе h_{C_m} , а также сопротивления массопереносу в неподвижной фазе h_{cs}) при различных приведенных скоростях *v* для *D*-камфоры при $\lambda = 220$ нм

стве D_{pz} для *L*-камфоры оказался равен 5.4 × 10⁻⁹, а для *D*-камфоры D_{pz} составил 4.9 × 10⁻⁹. В то же время коэффициенты диффузии Sh_{part} , характеризующие диффузию на поверхности частицы, одинаковы (Sh_{part} (*L*-камфоры) = 10 и Sh_{part} (*D*-камфоры) = 10).

Полученные данные свидетельствуют о том, что причиной различия правых веток кривых ван-Деемтера для энантиомеров камфоры является отличие скорости массопереноса энантиомеров в поровом пространстве. При нанесении шестиводного сульфата никеля из суспензии на частицы силикагеля, микрокристаллы ретгерсита способны образовываться в крупных транспортных макропорах. Вероятно, именно в поровом пространстве силикагеля, частично заполненном ретгерситом, и происходит хиральное распознавание. Скорее всего, различие коэффициентов диффузии энантиомеров камфоры является следствием разных скоростей адсорбции и/или десорбции камфоры на ретгерсите. Механизм хирального супрамолекулярного распознавания сопровождается образованием упорядоченного слоя адсорбированных энантиомеров на поверхности кристаллов [1]. При этом, скорость образования и разрушения адсорбционного слоя может различаться. Вероятно, различие в D_{pz} обусловлено тем, что один из энантиомеров либо слишком

Рис. 3. Вклад продольной диффузии в *h*.

Рис. 4. Вклад сопротивления массопереносу в подвижной фазе в *h*.

641

Рис. 5. Вклад сопротивления массопереносу в неподвижной фазе в *h*.

медленно образует адсорбционный слой, либо слишком быстро десорбируется из слоя в объём элюента.

Из рис. 5 следует, что с повышением линейной скорости различие в h_{C_m} между энантиомерами возрастает. Это также является следствием того, что различие в h_{C_s} обусловлено разной скоростью массопереноса в поровом пространстве. Таким образом, различие в диффузии в поровом пространстве является определяющим фактором в различии правых веток кривых ван-Деемтера. Его эффект проявляется в h_{C_s} члене, через значение для D_{pz} , которое относится к диффузии в поровом пространстве.

ЗАКЛЮЧЕНИЕ

В работе была получена в условиях созревания Виедмы хиральная неподвижная фаза на основе энантиоморфных кристаллов ретгерсита. Анализ кривой ван-Деемтера для энантиомеров камфоры показал, что тангенсы угла наклона правой ветки кривой статистически значимо различаются. Это обусловлено отличием в коэффициентах диффузии в поровом пространстве. Результаты работы показывают, что при адсорбции энантиомеров на супрамолекулярно хиральной поверхности энантиоморфных кристаллов в условиях жидкостной хроматографии наблюдаются различия не только в термодинамических параметрах, но и в коэффициентах диффузии. Полученные данные обуславливают необходимость дальнейшего изучения особенностей кинетики адсорбции энантиомеров на поверхностях с супрамолекулярной хиральностью.

Работа выполнена за счет гранта Российского научного фонда (проект № 19-73-10079).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gus'kov V.Yu., Shayakhmetova R.Kh., Allayarova D.A. et al.* // Phys. Chem. Chem. Phys. 2021 V. 23. P. 11968
- Gus'kov V.Yu., Allayarova D.A., Garipova G.Z. et al. // New J. Chem. 2020. V. 44. P. 17769.
- 3. Шарафутдинова Ю.Ф., Ганиева А.Ш., Гуськов В.Ю. // Журн. аналит. химии. 2021. Т. 76. № 9. С. 1–6.
- Geibel C., Dittrich K., Woiwode U. et al. // J. Chromatography A. 2019. V. 1603. P. 130–140.
- Schmitt K., Woiwode U., Kohout M. et al. // J. Chromatography A. 2018. V. 1569. P. 149–159.
- Klimova Y.A., Asnin L.D. // J. Chromatography A. 2021. V. 1635. P. 461771.
- 7. van Deemter J.J., Zuiderweg F.J., Klinkenberg A. // Chem. Eng. Sci. 1956. V. 5. P. 271–289.
- Andrés A., Broeckhoven K., Desmet G. // Analytica Chimica Acta. 2015. V. 894. P. 20–34.
- Lapidus L., Amundson N.R. // J. Phys. Chem. 1952. V. 56. P. 984–988.
- Horváth C., Lin H.-J. // J. Chromatogr. A. 1976. V. 126. P. 401–420.
- 11. Felinger A. // J. Chromatogr. A. 2006. V. 1126. P. 120-128.
- 12. Kučera E. // J. Chromatogr. A. 1965. V. 19. P. 237-248.
- Desmet G., Broeckhoven K. // Anal. Chem. 2008. V. 80. P. 8076–8088.
- Viedma C. // Physical Review Letters. 2005. V. 94. № 6. P. 065504.
- Рудаков О.Б., Селеменев В.Ф. Физико-химические системы сорбат—сорбент-элюент в жидкостной хроматографии. Воронеж: РИЦ ВГУ, 2003. С. 242.