____ ФИЗИКО-ХИМИЧЕСКИЕ ПРОБЛЕМЫ _____ ЗАЩИТЫ МАТЕРИАЛОВ

УДК 620.193.21

ПРИМЕНЕНИЕ АЛГОРИТМА "СЛУЧАЙНЫЙ ЛЕС" ДЛЯ ПРЕДСКАЗАНИЙ КОРРОЗИОННЫХ ПОТЕРЬ АЛЮМИНИЯ ЗА ПЕРВЫЙ ГОД ЭКСПОЗИЦИИ В РАЗЛИЧНЫХ РЕГИОНАХ МИРА

© 2023 г. М. А. Гаврюшина^{1, *}, А. И. Маршаков¹, Ю. М. Панченко¹

¹Институт физической химии и электрохимии имени А.Н. Фрумкина Российской академии наук, Москва. 119071 Россия

*e-mail: maleeva.marina@gmail.com Поступила в редакцию 17.11.2022 г. После доработки 22.11.2022 г. Принята к публикации 09.12.2022 г.

С помощью алгоритма "случайный лес" (**RF**) получены две модели для предсказаний первогодовых коррозионных потерь (K_1) алюминия в открытой атмосфере в различных регионах мира. Модель RF1 получена с использованием объединенных баз данных международных программ ISO CORRAG и MICAT и испытаний на территории России и предназначена для оценки K_1 в различных типах атмосферы в различных регионах мира. Модель позволяет предсказать K_1 только в континентальных районах мира. Для всех типов атмосфер проведено сравнение точности прогноза K_1 по модели RF1 и функции "доза–ответ" (ФДО), представленной в стандарте ISO 9223. Для континентальных мест сравнение достоверности прогноза дано по модели RF2 и функциям "доза–ответ", представленной в стандарте ISO 9223 и новой ФДО. Показано, что достоверность предсказаний по обеим моделям RF существенно лучше, чем с использованием функций "доза–ответ".

Ключевые слова: атмосферная коррозия, машинное обучение, случайный лес, алюминий **DOI:** 10.31857/S0044185623700249, **EDN:** SZJHKA

1. ВВЕДЕНИЕ

Коррозионные потери металлов в атмосфере могут варьироваться в больших интервалах в зависимости от агрессивности окружающей среды. По этой причине оправдан интерес к аналитическим и численным моделям, которые позволяют предсказывать массопотери металлов в различных климатических регионах мира и типах атмосферы. Наличие в атмосфере значительного числа агрессивных агентов, многостадийность, нелинейность и взаимное влияние физико-химических процессов, протекающих в тонком слое электролита на поверхности металла, делают задачу создания предиктивных моделей атмосферной коррозии очень трудной. Вместе с тем, для решения инженерных задач, таких как предсказание коррозионной стойкости материала конструкций, срока их службы, выбора средств антикоррозионной зашиты, требуется разработка моделей. которые использовали бы минимальный набор параметров атмосферы. В идеале, для предсказания коррозионных потерь должны использоваться параметры, которые определяются на метеорологических станциях и на станциях, следящих за загрязнениями атмосферы, на всей территории Земного шара. В настоящее время этому требованию отвечают функции доза-ответ (**ФДО**), которые позволяют предсказать массопотери металлов за первый год экспозиции (K_1) в зависимости от ограниченного числа климатических и аэрохимических параметров атмосферы. Величины K_1 необходимы для определения коррозионной агрессивности атмосферы [1] и для предсказаний долговременных коррозионных потерь в различных регионах мира без проведения натурных испытаний образцов металлов [2–4].

Модели для предсказания величин K_1 типовых металлов, а именно, низкоуглеродистой стали, цинка, меди и алюминия, в различных регионах мира представлены в международном стандарте ($\Phi \mathbf{ДO}^{\mathbf{C}}$) [1]. Новые $\Phi \mathbf{ДO}$ ($\Phi \mathbf{ДO}^{\mathbf{H}}$) для континентальных районов мира даны в [5]. $\Phi \mathbf{ДO}^{\mathbf{C}}$ были получены регрессионным анализом баз данных, которые включали экспериментальные коррозион-

ные первогодовые потери типовых металлов ($K_1^{\text{экс}}$), метеорологические и аэрохомические параметры мест испытаний по программе ISO CORRAG [6], проекту MICAT [7] и результатам российских исследований, проведенных в приморских и континентальных районах Дальнего Востока. При разработке ФДО^H для стали и цинка использовались

данные программ ЕСЕ ООН [8] и РФ [9], для меди – данные проекта MICAT и программ ЕСЕ ООН и РФ, для алюминия – данные проекта MI-САТ и программы РФ.

Предсказание коррозионных потерь алюминия с помощью ФДО является более сложной задачей по сравнению с предсказанием K_1 других типовых металлов. Атмосферная коррозия алюминия имеет ярко выраженный локальный характер с относительно небольшими потерями массы, а образование питтингов, как стохастический процесс, прогнозируется с меньшей точностью в любых коррозионных средах. Поэтому предсказания K_1 алюминия по стандарту [1] имеют больший допустимый интервал неопределенности, то есть, относительную ошибку в прелелах от -50% до +100%, по сравнению с другими типовыми металлами, для которых допустимая ошибка предсказаний K_1 находится в пределах от -30%до +50% [1]. Однако, сопоставление рассчитанных по $\Phi \Box O^{C}$ значений K_1 алюминия с величина-

ми $K_1^{\text{экс}}$, полученными в континентальных местах испытаний проекта MICAT и программы РФ, показало, что в значительном числе мест ошибка предсказаний K_1 больше допустимой ошибки [5]. Предсказания K_1 алюминия по ФДО^H в континентальных районах являются, как правило, более достоверными [5], однако надо учесть, что ФДО^H была разработана на основе базы данных вышеуказанных испытательных программ. В приморской атмосфере предсказания K_1 алюминия с использованием ФДО^C также имеют ошибку, значительно превышающую допустимый интервал неопределенности согласно стандарта [1], при этом не удалось разработать новую ФДО, применимую в приморских местах всего мира [10].

В связи с этим, представляется необходимым дальнейший поиск моделей для прогноза атмосферной коррозии алюминия. Для этого можно использовать алгоритм случайного леса (**RF**) — один из популярных методов машинного обучения [11].

Случайный лес состоит из отдельных деревьев – моделей. Дерево решений — это метод представления решающих правил в иерархической структуре, состоящей из элементов двух типов — узлов и листьев. В узлах находятся решающие правила и производится проверка соответствия примеров этому правилу по какому-либо атрибуту обучающего множества. Число деревьев является гиперпараметром модели.

Алгоритм RF использовался для построения предиктивных моделей атмосферной коррозии малолегированных сталей [12, 13]. Скорости коррозии сталей, предсказанные RF моделью, искусственной нейронной сетью, методами регрессии опорных векторов и логистической регрессии, были сопоставлены с экспериментальными значениями, полученными в 6 местах экспозиции на территории Китая [12]. Оценка достоверности предсказаний скорости коррозии по таким статистическим показателям, как коэффициент детерминации (R^2), средняя абсолютная процентная ошибка (МАРЕ) и корень из среднеквадратичной ошибки (RMSE), показала преимущество RF модели [13]. RF модель, построенная на основе базы данных, полученной при экспозиции тринадцати видов низколегированной стали в трех местах Японии в открытой атмосфере и под навесом, также показала более точные предсказания скорости коррозии сталей по сравнению с другими методами машинного обучения [13]. В этом случае достоверность моделей оценивалась по величинам R^2 и срелней абсолютной ошибке (MAE). Надо отметить, что RF модель, обученная по данным двух мест экспозиции, показала существенно большую ошибку предсказаний в третьем месте экспозиции, данные которого не использовались для обучения этой модели [13].

Алгоритм RF позволяет определить наиболее значимые параметры атмосферы, влияющие на коррозию металлов [12-14]. Это позволяет уменьшить число параметров во входных наборах, которые используются другими методами машинного обучения. Модель, в которой были объединены RF и алгоритм машинного обучения с учителем, была использована для предсказаний скорости коррозии углеродистой стали в 10 местах на территории Китая и показала высокую точность предсказаний [14]. Вместе с тем, достоверность RF моделей [12-14] не была проверена в различных регионах мира, то есть, в местах испытаний, результаты которых не были использованы при разработке этих моделей. Необходимо отметить, что применение в вышеуказанных работах параметра R^2 может приводить к неправильной оценке достоверности предсказанных величин K_1

$(K_1^{\text{пр}})$ в сравнении с $K_1^{\text{экс}}$ [15].

Целью настоящей работы является разработка RF модели на основании результатов годовых коррозионных испытаний алюминия по программам [6, 7, 9], проведенных в различных регионах мира в местах с различным типом атмосферы, а также сопоставление величин K_1 алюминия, предсказанных по RF модели и функциям доза ответ [1, 5], с экспериментальными данными.

2. МЕТОДИКА РАБОТЫ

2.1. Базы данных натурных коррозионных испытаний алюминия

Для разработки RF моделей использованы базы данных одногодовых экспозиций в каждом месте испытаний по программе ISO CORRAG [6]

Программа	Код мест испытаний
ISO CORRAG [5]	ARG1, ARG2, ARG3, ARG4, AGR5, CND1, CS1, CS2, CS3, D1, E1, E2, E3, E4, F1, F2, F3, F4, F5, F6, F7, F8, JAP1, JAP2, JAP3, N1, N2, N3, N4, N5, N6, S1, S2, S3, SF1, SF2, SF3, UK1, UK4, US1, US3, US6, SU1, SU2, SU3, SU4
MICAT [6]	A1, A2*, A4*, A5, A6*, B2, B3, B4, B5, B6*, B7, B9, CH1, CH2, CH3, CH4, CO1, CO2*, CR1, CR2, CR3, CR4, CU1, CU2, CU3, E1*, E4*, E7, E8*, EC1*, EC3, EC5, M1*, M2*, M4, PE2, PE3, PE4*, PE5*, PE6*, PO1, PO2, PO3, U1*, U2, U3*, U4, U5, V3, V4, V5
RUS [4, 8]	Армань, Апапельхино, Аян, Чумикан, о. Айон, Оха, Охотск, У-Хайрюзово, П-Камч, о. Байдуков, м. Шмидта, Невельск, м. Чаплина, м. Гамов, Владивосток, ДВКС1, ДВКС2, ДВКС3, СКС1, СКС2, СКС3, Никольское, м. Лопатка, ГЦКИ1, ГЦКИ2, ГЦКИ3, Билибино*, Оймякон*, Усть-Омчуг*, Атка*, Сусуман*, Тында*, Ключи*, Алдан*, Победино*, Яковлевка*, Пограничный*, Комсомольк-на-Амуре*

Таблица 1. Коды мест испытаний программ, данные которых использованы при разработке RF моделей. * отмечены континентальные места испытаний

(далее БД ISO), проекту MICAT [7] (далее БД МІ-САТ) и по российским программам [9] (далее БД RUS).

Из БД ISO использованы 258 наборов данных, полученных в 46 местах за разные одногодовые испытания, включающих коррозионные потери алюминия, $K_1^{3\kappa c}$ (мкм) и соответствующие этому году среднегодовые значения параметров агрессивности атмосферы: температуры (T, °C) и относительной влажности воздуха (RH, %), концен-

трации SO₂ в воздухе ([SO₂], мкг/м³) и скорости осаждения хлоридов Cl⁻ ([Cl⁻], мг/(м² сут)). Значения *RH* в отдельных местах приведены в соответствии с [16, 17]. В случае, если в местах экспозиции отсутствовали данные о концентрации SO₂

и скорости осаждения хлоридов, а $K_1^{\text{экс}}$ были небольшие, то были приняты фоновые значения: $[SO_2] = 1 \text{ мкг/м}^3 \text{ и } [Cl^-] = 1 \text{ мг/(м}^2 \text{ сут)}.$

Из БД МІСАТ использовано 129 наборов данных, полученных в 52 местах испытаний. В набор данных входят величины $K_1^{3\kappa c}$, *T*, *RH*, [SO₂], [Cl⁻] и среднегодовое количество атмосферных осадков (*Prec*, мм). В базу данных не включены результаты, полученные в местах испытаний с кодами АЗ, В1, В10, В11, В12, СОЗ, Е5, МЗ. Обоснование выбраковки мест испытаний дано в [18].

БД RUS состоит из 38 наборов данных, полученных в 38 местах испытаний. В набор данных входят величины $K_1^{\text{экс}}$, *T*, *RH*, [SO₂], [Cl⁻] и *Prec*.

Для разработки модели RF1 для всех типов атмосфер и сопоставления ее результатов с прогнозом K_1 , сделанным по модели ФДО^С, объединены БД ISO, БД MICAT и БД RUS в общую базу данных (БД INT), которая включает 425 наборов данных. Коды мест испытаний в соответствии с программами представлены в табл. 1. Для разработки модели RF2 для континентальных мест и сопоставления ее результатов с предсказаниями K_1 , сделанными по модели ФДО^С и ФДО^Н, объединены данные, полученные в континентальных местах испытаний по проекту MICAT и РФ, и сформирована база данных БД CON, которая включает 52 набора данных. Коды мест испытаний, которые попали в БД CON, отмечены в табл. 1 звездочкой.

В табл. 2 приведены интервалы среднегодовых параметров атмосферы и первогодовых коррозионных поражений алюминия, для мест испытаний, включенных в БД INT и БД CON.

2.2. Функции доза-ответ

Для прогнозирования коррозионный потерь алюминия за первый год использованы функции доза-ответ, разработанные для двух температурных интервалов.

 $\Phi \Box O^{C}$ для атмосфер, содержащих SO₂ и Cl⁻, представлены в виде уравнения (1) [1]:

$$\begin{aligned} r_{corr} &= 0.0042 P_d^{0.73} \times \\ &\times \exp[0.025 R H + 0.009 (T - 10)] + \\ &+ 0.0018 S_d^{0.60} \exp(0.02 R H + 0.094 T), \\ &\quad \Pi \text{pm} \ T \leq 10^{\circ} \text{C}, \\ r_{corr} &= 0.0042 P_d^{0.73} \times \\ &\times \exp[0.025 R H - 0.043 (T - 10)] + \\ &+ 0.0018 S_d^{0.60} \exp(0.02 R H + 0.094 T), \\ &\quad \Pi \text{pm} \ T > 10^{\circ} \text{C}, \end{aligned}$$
(1)

где *r_{corr}* (мкм/год) – скорость коррозии алюминия за первый год экспозиции; *T* – среднегодовая температура, °С; *RH* – среднегодовая относитель-

Параметр	Симрол	Единицы	Интервал		
Параметр	Символ	измерения	БД ІМТ	БД СОМ	
Температура воздуха	Т	°C	от —17.1 до +28.2	от -16.6 до +26.9	
Относительная влажность воздуха	RH	%	от 33 до 98	от 33 до 98	
Количество атмосферных осадков	Prec	мм/год	—	от 17 до 1810	
Концентрация диоксида серы	[SO ₂]	мкг/м ³	от 1 до 214.6	от 1 до 67.2	
Скорость выпадения хлоридов	[Cl ⁻]	мг/(м ² сут)	от 1 до 1093	_	
Первогодовые коррозионные потери Al	$K_1^{ m > \kappa c}$	МКМ	от 0.01 до 5.47	от 0.01 до 0.68	

Таблица 2. Параметры атмосферы и коррозионные потери алюминия, их символы, единицы измерения, интервалы среднегодовых значений для мест испытаний, включенных в БД INT и БД CON

ная влажность воздуха, %; P_d и S_d – среднегодовые выпадения SO₂ и Cl⁻ соответственно, мг/(м²сут).

 $\Phi \Box O^{H}$ для атмосфер, содержащих SO₂, представлены в виде уравнения (2) [5,18]:

$$K_{1}^{np} = 0.01[SO_{2}]^{0.67} \times \\ \times \exp[0.039RH + 0.032(T - 10) - \\ - 0.0001Prec], T \le 10^{\circ}C, \\ K_{1}^{np} = 0.01[SO_{2}]^{0.67} \times \\ \times \exp[0.039RH - 0.065(T - 10) - \\ - 0.0001Prec], T > 10^{\circ}C, \end{cases}$$
(2)

где $K_1^{\text{пр}}$ (г/м²) — коррозионные массопотери алюминия за первый год экспозиции; [SO₂] — среднегодовая концентрация SO₂ в воздухе, мкг/м³; *Prec* — среднегодовое количество атмосферных осадков, мм/год.

Для пересчета K_1 , выраженной в г/м² (2), в мкм использована плотность алюминия, равная 2.70 г/см³. Для (1) сделан пересчет скорости осаждения SO₂ (P_d , мг/(м²сут)) в концентрацию SO₂ в воздухе ([SO₂], мкг/м³) по соотношению [1]: $P_d = 0.8$ [SO₂].

2.3. Модель "случайный лес"

В машинном обучении принята следующая терминология: каждый набор данных в БД является объектом, что соответствует местам испытаний. Объект характеризуется признаками (входные данные для модели, то есть параметры атмосферы) и величиной прогноза (выходные данные, то есть, величина *K*₁).

Реализация алгоритма "случайный лес" проводилась при помощи библиотеки scikit-learn [19]. Обучение деревьев проводилось на основе обучающей выборки, которая составляет 70% от всей базы данных. Каждое из деревьев получало на вход свою подвыборку, которая с помощью бутстрапа получалась из исходной обучающей подвыборки. Бутстрап — один из популярных подходов к построению подвыборок. Он заключается в том, что из обучающей выборки длины L(длина выборки — количество принадлежащих ей объектов) выбирают с возвращением L объектов. При этом новая выборка также будет иметь длину L, но некоторые объекты в ней будут повторяться, а некоторые объекты из исходной выборки в нее не попадут.

Размер выборки был равен размеру обучающей выборки (т.е. часть данных дублировалась). Ветвление производили по случайно выбранным признакам (количество которых является гиперпараметром) до исчерпания данных. Ветвление производилось в согласии с критерием информативности (среднеквадратичной ошибкой) так, чтобы дисперсия значений в листе была минимальной.

В тестовой выборке (30% объектов БД) каждое из деревьев давало величину прогноза на основании признаков каждого объекта из этой выборки. В итоге прогнозом для объекта тестовой выборки становилось среднее значение прогноза по всем деревьям.

Значения глобальных гиперпараметров (число признаков для ветвления и число деревьев в лесу) подбирали с помощью функции GridSearchCV [20]: число деревьев в лесу от 50 до 600 с шагом 50, число признаков: от 1 до 5. Лучший набор соответствовал наименьшему значению средней относительной ошибки МАРЕ по пяти тестовым выборкам.

Расчет важности признаков, показывающих влияние каждого из признаков на величину прогноза коррозионных потерь, проводился с помощью библиотеки scikit-learn [19].

2.4. Статистические критерии достоверности прогноза

Для оценки достоверности предсказаний моделей использовали следующие статистические критерии

Название модели	База данных	Число о	бъектов	Гиперпараметры		
		обучающая выборка	тестовая выборка	число деревьев	число признаков для ветвления	
RF1	БД INT	297	128	50	3	
RF2	БД СОМ	36	16	50	3	

Таблица 3. Гиперпараметры, использованные при построении моделей "случайный лес"

(1) Средняя абсолютная процентная ошибка (МАРЕ):

MAPE
$$(x, y) = \frac{1}{N} \sum_{i=1}^{N} \frac{|x_i - y_i|}{|x_i|} \times 100,$$
 (3)

где x_i и y_i — экспериментальное и прогнозное значения K_1 , соответственно, N — количество объектов в БД. Чем меньше МАРЕ, тем меньше модель ошибается в прогнозе.

(2) Симметричная средняя абсолютная процентная ошибка (SMAPE):

SMAPE
$$(x, y) = \frac{2}{N} \sum_{i=1}^{n} \frac{|x_i - y_i|}{|x_i| + |y_i|} \times 100.$$
 (4)

Преимущество SMAPE по сравнению с МАРЕ в том, что SMAPE учитывает возможную погрешность не только прогноза, но и экспериментального значения.

(3) Обобществленный коэффициент детерминации $(R_{\mu_{0B}}^2)$ [15]

$$R_{\text{HOB}}^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \frac{(yx)_{\text{cp}}}{(x^{2})_{\text{cp}}} x_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - x_{i})^{2}},$$
(5)

где $(yx)_{cp} = \frac{1}{n} \sum_{i=1}^{n} y_i x_i, (x^2)_{cp} = \frac{1}{n} \sum_{i=1}^{n} x_i^2.$

Коэффициент R_{HOB}^2 показывает, насколько хорошо распределение точек с координатами x_i и y_i описывается функцией y = x. Значения R_{HOB}^2 изменяются от 0 до 1; при $R_{HOB}^2 = 0$ все точки $(x_i; y_i)$ попадают на биссектрису, то есть, на прямую y = x. Увеличение коэффициента R_{HOB}^2 показывает, что точки $(x_i; y_i)$ наилучшим образом описываются прямой y = ax, где коэффициент $a \neq 1$.

Необходимость использования коэффициента $R_{\text{нов}}^2$ связана с тем, что стандартный коэффициент детерминации (R^2) не подходит для определения достоверности модели путем сравнения прогнозного и истинного значения [15]. Коэффициент R^2 показывает, насколько хорошо линейная модель вида y = ax + b описывает данные в сравнении с

моделью y = b, но при $R^2 = 1$ условие a = 1 не обязано выполняться. Так, например, если прогноз будет всегда вдвое больше, чем ожидаемое значение, коэффициент R^2 будет в точности таким же, как и в случае, когда прогноз совпадает с ожидаемым значением.

(4) Процент удовлетворительных значений у (PSV):

$$PSV = \frac{M}{N} \times 100,$$
 (6)

где M — число y_i , значения которых находятся в интервале от $0.5x_i$ до $2.0x_i$. На графике с координа-

тами $y = K_1^{\text{пр}}, x = K_1^{\text{экс}}$ значения $K_1^{\text{пр}}$ должны находиться между линиями относительных ошибок $K_1^{\text{пр}}$, равных –50% и +100%, соответственно. Этот интервал относительных ошибок прогноза соответствуют интервалу неопределенности расчета первогодовых коррозионных потерь алюминия по стандарту [1]. Чем ближе PSV к единице, тем

большее число $K_1^{\text{пр}}$ лежит между линиями указанных относительных ошибок прогноза, и, следовательно, модель является более достоверной.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. Получение моделей "случайный лес" на объединенных базах данных БД INT и БД CON

Базы данных были случайном образом разделены на обучающую (70% объектов БД) и тестовую (30% объектов БД) выборки данных (табл. 3). Величины подобранных гиперпараметров для БД INT и БД CON представлены в табл. 3. Таким образом, на основе объединенных баз данных получены две модели "случайный лес": RF1 и RF2. В дальнейшем эти модели будут применяться как к объединенным БД, так и к БД различных программ натурных испытаний.

При обучении моделей были рассчитаны значения важности признаков — параметров атмосферы, которые представлены в табл. 4. Нужно отметить, что этот параметр не характеризует важность признаков для решения задачи, но лишь для настройки конкретной модели: RF1 или RF2. Видно, что в случае RF1 наибольшее влияние на величину коррозионных потерь оказывает относительная влажность воздуха, чуть меньшее —

ГАВРЮШИНА и др.

Модель	Значение важности признака					
	[SO ₂]	[Cl ⁻]	Т	RH	Prec	
RF1	0.240	0.280	0.140	0.340	—	
RF2	0.65	_	0.126	0.030	0.194	

Таблица 4. Важность признаков моделей, полученных на основе алгоритма "случайный лес"

Таблица 5. Значения статистических критериев достоверности модели RF1 и ФДО^С, полученных на БД INT

Модель	Число объектов	Характер выборки	$R_{\rm new}^2$	MAPE, %	SMAPE, %	PSV, %
	425	БД ІМТ	0.44	47	32	85
RF1	297	Обучение	0.46	35	23	93
	128	Тест	0.59	76	52	68
ФДО ^С	425	БД ІМТ	0.30	125	70	53
	128	Тест	0.52	101	71	50

скорость осаждения хлоридов и содержание SO_2 , и еще меньше — температура воздуха. В случае RF2 величину коррозионных потерь в первую очередь определяет содержание SO_2 в воздухе, в гораздо меньшей степени влияют количество осадков и температура, и еще меньше — относительная влажность воздуха.

INT. Сопоставляя предсказанные величины с экспериментальными значениями $K_1^{\text{экс}}$ (рис. 1), были рассчитаны показатели достоверности этих моделей (табл. 5). Сплошная линия на рис. 1 отвечает условию $K_1^{\text{пр}} = K_1^{\text{экс}}$.

3.2. Сравнение достоверности моделей RF1 и ФДО^С для БД INT

Величины K_1^{np} были рассчитаны в соответствии с моделью RF1 и $\Phi Д O^C$ (1), используя БД

Модель RF1 была получена на 70% объектов БД INT (обучающая выборка), а ее проверка на оставшихся 30% объектов (тестовая выборка) этой базы данных. ФДО^С была получена, используя наборы данных, большая часть которых входит в БД INT. Поэтому для корректного сравнения достоверности моделей RF1 и ФДО^С, значе-

Рис. 1. БД INT. Соответствие между экспериментальными и предсказанными значениями K_1 : по RF1 (а) и ФДО^С (б). Линия соответствует $K_1^{np} = K_1^{3\kappa c}$. Выделенная область показывает относительную ошибку предсказаний в интервале от -50% до + 100%.

ния K_1^{np} были рассчитаны по обеим моделям, как для всей базы данных, так и для тестовой выборки. Тестовая выборка, на которой определялись критерии достоверности моделей RF1 и $\Phi \Box O^C$, включала одни и те же объекты.

Полученные результаты (табл. 5) свидетельствуют, что предсказания по модели RF1 для всей БД INT являются более точными, чем для ФДО^C: коэффициенты MAPE и SMAPE имеют меньшие значения, а PSV – большее, величины R_{new}^2 сопоставимы. Применение обеих моделей к тестовым выборкам данных показывает, что RF1 также имеет лучшие значения PSV, MAPE и SMAPE (табл. 5). Величины R_{new}^2 сопоставимы и значительно больше нуля, что можно объяснить несимметричным расположением точек относительно

линии $K_1^{_{\mathfrak{SKC}}} = K_1^{_{\mathfrak{TP}}}$ (рис. 1a).

Модель RF1 дает значения PSV = 85 и 68% для всей базы данных и тестовой выборки, соответственно. Это означает, большая часть значений $K_1^{\text{пр}}$ лежит в интервале от $0.5K_1^{\text{экс}}$ до $2.0K_1^{\text{экс}}$. Функция "доза-ответ" может предсказать не более 50–53% значений $K_1^{\text{пр}}$, которые попадают в интервал допустимых ошибок прогноза [1].

3.3. Сравнение достоверности моделей RF2, функций "доза-ответ" ФДО^Н и ФДО^С

Сопоставление рассчитанных по модели RF2 и функциям ФДО^н и ФДО^С значений первогодовых коррозионных потерь алюминия в континентальных местах испытаний (БД CON) с соответствующими экспериментальными величинами $K_1^{_{9KC}}$ показано на рис. 2. Значения статистических критериев достоверности всех моделей были рассчитаны как для всей БД СОЛ, так и для 30% тестовой выборки объектов этой базы данных (табл. 6). Как видно, в обоих случаях модель RF2 дает более точный прогноз K_1^{np} : низкие значения R_{new}^2 , мень-шие значения MAPE, SMAPE и большее значение PSV. При использовании RF2 величина R_{new}^2 близка к нулю, то есть, прогноз K_1^{np} дает наиболее симметричный разброс точек вокруг линии $K_1^{\text{пр}} = K_1^{\text{экс}}$ как при малых, так и при больших величинах K_1^{np} . Это означает, что RF2 точнее предсказывает коррозионные потери алюминия, если рассматривать весь диапазон полученных экспериментальных данных (рис. 2а).

Сравнивая достоверность двух функций дозаответ, можно отметить, что разброс значений $K_1^{\text{пр}}$, рассчитанных по ФДО^Н, более симметричен вокруг линии $K_1^{\text{пр}} = K_1^{\text{экс}}$ по сравнению с разбро-

Модель	Число точек	Характер выборки	$R_{\rm new}^2$	MAPE, %	SMAPE, %	PSV, %
RF2	52	БД СОМ	0.20	38	30	89
	36	Обучение	0.39	33	25	92
	16	Тест	0.001	49	42	81
ФДО ^н	52	БД СОМ	0.27	56	48	65
	16	Тест	0.03	51	53	56
ФДО ^С	52	БД СОМ	0.87	50	69	60
	16	Тест	0.71	51	76	56

Таблица 6. БД CON. Значения статистических критериев достоверности модели RF2, ФДО^Н и ФДО^С

Таблица 7. Значения статистических критериев достоверности моделей, примененных к различным базам данных

БД	Модель	Число точек	Признаки	$R_{\rm new}^2$	MAPE, %	SMAPE, %	PSV, %
10.0	RF1	258	$T, RH, [SO_2], [Cl^-]$	0.0004	44	29	90
150	ФДОС	258		0.002	156	71	53
	RF1	129	<i>T</i> , <i>RH</i> , $[SO_2]$, $[Cl^-]$	0.63	57	40	75
	ФДО ^С	129		0.75	85	65	58
MICAI	RF2	40	<i>T</i> , <i>RH</i> , [SO ₂], <i>Prec</i>	0.20	46	36	85
	ФДО ^н	40		0.31	66	56	58
	RF1	38	$T, RH, [SO_2], [Cl^-]$	0.0008	37	25	90
RUS	ФДО ^С	38		0.94	56	83	39
	RF2	12	<i>T</i> , <i>RH</i> , [SO ₂], <i>Prec</i>	0.15	11	12	100
	ФДО ^н	12		0.0001	24	21	92

сом предсказаний по ФДО^С (рис. 26 и 2в), поэтому R_{new}^2 для тестовой выборки БД СОN равен 0.03 и 0.71 для ФДО^Н и ФДО^С, соответственно (табл. 2). Величины МАРЕ и PSV для обоих ФДО примерно равны, а значения SMAPE для ФДО^Н меньше как для тестовой выборки, так и для всей БД СОN (табл. 2). Следовательно, по совокупности стати-

стических критериев ФДО^н является более достоверной функцией доза-ответ.

3.4. Оценка достоверности моделей "случайный лес" и ФДО на базах данных различных программ натурных испытаний

Программы натурных испытаний типовых металлов ISO CORRAG, MICAT и РФ, результаты которых были объединены в БД INT и БД CON, были проведены в разные годы в различных климатических регионах мира. Естественно, что БД отдельных испытательных программ существенно отличаются, и достоверность предсказаний

 K_1^{np} может быть различна. Необходимо проверить достоверность моделей RF1 и RF2 в случае их применения к БД различных испытательных про-

грамм. Как и в случае объединенных баз данных (п. 3.2 и 3.3), достоверность K_1^{np} по моделям RF сравнивали с точностью предсказаний K_1^{np} , полученных при использовании $\Phi Д O^C$ и $\Phi Д O^H$. $\Phi Д O^C$ применяли для мест испытаний с любым типом атмосферы, $\Phi Д O^H$ – только для континентальных мест.

БД ISO. В эту БД вошли 258 результатов испытаний с любым типом атмосферы. Для предсказаний K_1 использовали RF1 и ФДО^С. Соответствие фактических и прогнозных значений K_1 представлено на рис. 3. Статистические критерии достоверности моделей даны в табл. 7. Ошибки МАРЕ и SMAPE для модели RF1 более, чем в 2 раза меньше, чем для ФДО^С. 90% предсказанных моделью RF1 значений K_1^{np} укладываются в допустимый интервал ошибок (табл. 7). Величины R_{new}^2 для обеих моделей примерно одинаковы и близки к нулю.

БД MICAT. Статистические критерии были рассчитаны для всей базы данных проекта MICAT (129 объектов) по моделям RF1 и ФДО^С и только для континентальных мест испытаний (40 объек-

Рис. 3. БД ISO. Соответствие между экспериментальными и предсказанными значениями K_1 по RF1 (а) и $\Phi Д O^C$ (б).

Рис. 4. БД МІСАТ. Соответствие между экспериментальными и предсказанными значениями K_1 по RF1 (a), $\Phi ДO^C$ (б), RF2 (в), ΦDO^H (г).

Рис. 5. БД RUS. Соответствие между измеренными и предсказанными значениями по RF1 (a), $\Phi Д O^C$ (б), RF2 (в), $\Phi Q O^H$ (г).

тов) по моделям RF2 и ФДО^Н (табл. 7). Соответствие фактических и прогнозных значений K_1 представлено на рис. 4. Все критерии достоверности модели RF1 для БД MICAT несколько хуже, чем для БД ISO (табл. 7). Однако, модель RF1 дает более точные предсказания K_1 в местах испытаний проекта MICAT, чем ФДО^С: ошибка МАРЕ и SMAPE меньше, а коэффициент PSV – больше. Для континентальной выборки БД MICAT статистические критерии достоверности модели RF2 также лучше, чем для ФДО^Н (табл. 7).

БД RUS. Статистические критерии достоверности всех моделей были рассчитаны для полной базы данных (38 объектов) и континентальной выборки (12 объектов). Соответствие фактических и прогнозных значений K_1 представлено на рис. 5. Для полной БД RUS точность прогноза K_1 при использовании RF1 значительно выше, чем для ФДО^С (рис. 5а, 5б). Результат прогноза по модели RF1 характеризуют меньшие значения МАРЕ и SMAPE, чем для ФДО^С (табл. 7). Число предсказанных K_1 , которые имеют допустимую ошибку для обеих моделей отличается значительно: коэффициент PSV = 90 и 39% для RF1 и ФДО^С, соответственно.

Для континентальных объектов БД RUS предсказания K_1 по обеим моделям сопоставимы и достаточно высоки (рис. 5в, 5г), что отражается в показателях достоверности моделей (табл. 7). Так, число предсказанных по ФДО^н значений K_1 , которые имеют допустимую ошибку, равно 92%, что является лучшим результатом для функций "доза—ответ" для всех рассмотренных баз данных. Однако, все значения $K_{1,}$ рассчитанные по RF2 попадают в интервал допустимых ошибок (PSV = 100%). Величины МАРЕ и SMAPE при использовании модели RF2 равны 11 и 12%, соответственно, и примерно в 2 раза ниже, чем для модели ФДО^H.

ЗАКЛЮЧЕНИЕ

С помощью алгоритма "случайный лес" получены две модели RF для предсказаний первогодовых коррозионных потерь (K_1) алюминия в открытой атмосфере в различных регионах мира. Модель RF1 получена на объединенной базе данных, которая включает данные программ ISO CORRAG, MICAT и RUS, и предсказывает величины K_1 по значениям T, RH, [SO₂], [Cl⁻]. Модель RF2 получена на объединенной базе данных, которая включает данные в континентальных местах испытаний программ MICAT и RUS, и предсказывает в континентальных местах испытаний программ MICAT и RUS, и предсказывает величины K_1 по значениям T, RH, Prec, [SO₂].

Достоверность предсказаний моделей RF оценивалась по совокупности статистических критериев: обобщенному коэффициенту детермина-

ции R_{new}^2 , MAPE, симметричной средней относительной ошибке SMAPE и коэффициенту CRV. Коэффициент CRV был предложен в этой работе и показывает долю предсказаний K_1 , относительная ошибка которых не выходит за интервал ошибок, допустимый в соответствии со стандартом [1].

Проведено сравнение точности предсказаний K_1 по моделям RF и двум функциям "доза—ответ" (ФДО): ФДО стандарта [1] для всех типов атмосферы и новой ФДО [5] для не морской атмосферы. Показано, что для объединенных баз данных достоверность обоих моделей RF лучше, чем ФДО.

Сопоставление точности прогнозов коррозионных потерь по моделям RF и ФДО, проведенное на базах данных отдельных испытательных программ, подтвердило, что модели RF дают более точный прогноз.

СПИСОК ЛИТЕРАТУРЫ

1. ISO 9223:2012(E). Corrosion of metals and alloys. Corrosivity of atmospheres. Classification, determina-

tion and estimation, International Standards Organization, Geneve, 2012.

- 2. ISO 9224:2012(E) Corrosion of metals and alloys. Corrosivity of atmospheres. Guiding values for the corrosivity categories, 2012.
- Panchenko Yu.M., Marshakov A.I. // Corr. Sci. 2016. V. 109. P. 217.
- Abramova M.G., Panchenko Y.M., Vetrova E.Y. et al. // Prot. Met. Phys. Chem. Surf. 2021. V. 57. № 7. P. 1272– 1282.
- Panchenko Yu.M., Marshakov A.I., Nikolaeva L.A., Igonin T.N. // Civil Eng. J. 2020. V. 6. № 8. P. 1503.
- Knotkova D., Boschek P., Kreislova K. In Atmospheric Corrosion, Kirk W.W. and Lawson H.H., Eds., Philadelphia, PA, USA: American Soc. Test. Mater., 1995. P. 38.
- Morcillo M., In Atmospheric Corrosion, Kirk W.W. and Lawson H.H., Eds., Philadelphia, PA, USA: American Soc. Test. Mater. 1995. P. 257.
- 8. *Tidblad J., Kucera V., Mikhailov A.A., Henriksen J., Kreislova K., Yaites T., Stöckle B., Schreiner M. //* Water, Air, and Soil Pollution. 2001. V. 130. P. 1457.
- 9. Панченко Ю.М., Шувахина Л.А., Михайловский Ю.Н. // Защита металлов. 1982. Т. 18. С. 575.
- Panchenko Yu.M., Marshakov A.I., Nikolaeva L.A., Igonin T.N. // Corr. Eng. Sci. Tech. 2020. V. 55. № 8. P. 655.
- 11. Breiman L. // Machine Learning. 2001. V. 45. P. 5.
- *Zhi Y., Fu D., Zhang D., Yang T., Li X. //* Metals. 2019.
 V. 9. № 3. P. 383.
- 13. *Yan L., Diao Y., Gao K.* // Materials. 2020. V. 13. № 15. P. 3266.
- Zhi Y., Jin Z., Lu L., Yang T., Zhou D., Pei Z., Wu D., Fu D., Zhang D., Li X. // Corrosion Science. 2021. V. 178. № 109084.
- Panchenko Yu.M., Marshakov A.I., Bardin I.V., Shklyaev A.V. // Prot. Metals Phys. Chem. Surf. 2019. V. 55. №. 4. P. 753.
- Mikhailov A.A., Tidblad J., Kucera V. // Prot. Metals. 2004. V. 40. № 6. P. 541.
- Tidblad J., Kucera V., Mikhailov A.A., Knotkova D. In Outdoor Atmospheric Corrosion, Townsend H.E., Eds., West Conshohocken, PA, USA: American Soc. Test. Mater., 2002, p. 73.
- Panchenko Yu.M., Marshakov A.I., Nikolaeva L.A., Kovtanyuk V.V. // AIMS Materials Sci. 2018. V. 5. № 4. P. 624.
- Scikit-learn. Machine Learning in Python // https://scikit-learn.org/stable/index.html
- 20. https://scikit-learn.org/stable/modules/generated/sk-learn.model_selection.GridSearchCV.html