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MOUNTAIN REGIONS ARE THE PUTATIVE PLACE OF ORIGIN 
OF MANY ARCTIC ANIMAL AND PLANT FORMS
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In this study, we tried to understand why the biota of northern regions is similar to that of southern mountain
regions. Phylogeographic studies of several Arctic-alpine plants (Arabis alpina, Bistorta vivipara, Carex atro-
fusca, Gentiana sect. Cruciata, Koenigia islandica, Oxyria digyna, Ranunculus glacialis, Saxifraga oppositifolia,
Sibbaldia procumbens, Trollius europaeus, Veronica alpina, Lagotis spp., and Pedicularis spp.), insects (Oeneis
spp. and Arcynopteryx dichroa), and a mammal species (Ovibos moschatus) indicate that the respective groups
emerged in the mountains of the temperate climatic zone and then migrated to the Arctic. As paleontological
findings indicate, the mountains of the temperate and tropical zones provided habitats for the ancestors of
several Salmonidae genera and at least some of the mammalian species common to the Eurasian mammoth
steppe (Mammuthus primigenius, Coelodonta antiquitatis, Bos (Poëphagus) baikalensis, Alopex lagopus, and
Panthera spelaea). A hypothesis is suggested to explain the crucial role of mountain regions in the evolution
of northern forms. Additionally, colonization events by Arctic taxa in the mountains of temperate climatic
zones have been demonstrated in a few studies.
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The expansion of organisms from one temperature
zone of Earth to another is a spectacular example of
adaptive evolution (review: Hoffmann, Parsons,
1997). Adaptive changes occur in numerous modern
populations as a response to global ecosystem and cli-
mate changes (reviewed in Pauls et al., 2013; Jaeschke
et al., 2014; Holyoak, Heath, 2016; De Meester et al.,
2018).

Examples of when living organisms colonized new
climatic zones in the past are also known. The most
intriguing example is provided by the formation of the
terrestrial and freshwater f lora and fauna in the Arctic.
Their origin is a matter of long-standing interest (re-
views: Tugarinov, 1935; Hultén, 1937; Kusnezov,
1938; Hulten, 1958; Tolmachev, 1960; Røen, 1994;

Murray, 1995; Weider, Hobæk, 2000; Abbott, Broch-
mann, 2003; Brochmann et al., 2013), but it was diffi-
cult to choose among several hypotheses of how living
organisms colonized the Arctic until a phylogeograph-
ic approach was developed. Additionally, research on
the evolution of Arctic biota is a topic of great impor-
tance for the conservation of Arctic ecosystems, which
have changed greatly under various anthropogenic im-
pacts over the past few decades (Dmitrenko et al.,
2008).

In the beginning of the 19th century, Alexander von
Humboldt (von Humboldt, Bonpland, 1807) drew at-
tention to the similarity among the f loras of the north-
ern regions and the mountains of the southern regions.
The taxa inhabiting both the Arctic and southern
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mountain regions are known as Arctic-alpine taxa and
are quite numerous. The most common current opin-
ion is that mountain taxa could have originated from
related Arctic taxa. Many studies have addressed the
cold-adapted forms that inhabit the mountains of the
temperate zone as relics of one of the glacial periods,
when their ancestors migrated from the Arctic to the
far south. Forbes (1846, p. 400) was the first to ad-
vance the hypothesis that “The alpine f loras of Eu-
rope and Asia, so far as they are identical with the f lora
of the Arctic and sub-arctic zones of the Old World,
are fragments of a f lora which was diffused from the
north…”.

Christ (1867) was the first to propose a different
hypothesis in which mountains, i.e., Asian mountain
ranges, are a prospective place of origin for Arctic flora.

Ample botanical evidence has accumulated to date
to support both Forbes’s and Christ’s hypotheses (re-
views: Murray, 1995; Abbott, Brochmann, 2003;
Brochmann et al., 2013; Wen et al., 2014; Sun et al.,
2017).

Kusnezov (1938) and Yakovlev (1964) assumed
that the mountains of the temperate zone were a place
of origin for several Arctic animal taxa. However,
among zoologists, the predominant concept is that
new taxa originate at equatorial or tropical latitudes,
with subsequent spreading to high (polar) latitudes
(Darlington, 1957). According to this hypothesis,
southern ancestral lineages spread northwards during
warm periods and then gradually adapt to the decrease
in temperature during cold periods (Valentine, 1968).
This phenomenon is referred to as the “equatorial
pump” (Meyen, 1987).

Here, we review data demonstrating that a plethora
of Arctic plant and animal taxa originated in mountain
regions in temperate and even in tropical zones. We
demonstrate that Forbes’s (1846) and Christ’s (1867)
ideas are both true, and they supplement one another.
We also propose a novel hypothesis that combines the
assumptions that northern forms originate from
mountains (Christ, 1867), with the concept of the
“equatorial pump” (Valentine, 1968; Meyen, 1987).

METHODS
To review the body of available literature, we

searched databases such as the Web of Science
(https://apps.webofknowledge.com) and the Russian
Scientific Electronic Library (https://elibrary.ru) us-
ing the following word combinations: “Arctic-alpine”,
“Arctic evolution”, “Polar evolution”, “Arctic ori-
gin”, “Polar origin”, and “Glacial relict”. In summa-
ry, 66 appropriate references were analyzed.

Over the course of the literature analysis, we iden-
tified two groups of Arctic-alpine taxa, namely groups
of mountain origin and groups of Arctic origin. The
primary criterion for determining the center of origin
using phylogeographic data was the presence of the

most ancient haplotypes of mitochondrial and chloro-
plast DNA and variants in the sequences of different
nuclear DNA fragments. For the paleontological stud-
ies, we combed the records of the most ancient repre-
sentatives and/or their fossils for the groups under
consideration. Studies in which the results preclude
the migration paths of the respective taxa to be deter-
mined with sufficient accuracy were excluded from
consideration.

An assessment of the putative time of origin for
Arctic plant and animal species is beyond the scope of
our study, as are the taxonomic ranks of related Arctic
and mountain forms. The extent of divergence varies
among pairs of Arctic and related mountain taxa, be-
cause the divergence of different Arctic-alpine taxa
started during different periods and the evolutionary
rate was not constant. Moreover, recent morphologi-
cal and molecular data on various groups of animals
indicate that many Arctic forms and those living in
more southern mountain regions could be close to one
another. In some cases, they have even been shown to
be conspecific (Den Bakker et al., 2007; Varga,
Schmitt, 2008; Sher et al., 2011; Tiberti, 2011; Barrio
et al., 2013; Makarova, 2013; Artamonova et al., 2015;
Kotov, 2016; Lindholm et al., 2016; Abeli et al., 2018;
Makhrov et al., 2019a).

The term Central Asia, which is often used here,
requires explanation. Von Humboldt (1843) coined
the term in his well-known monograph, and then von
Richthofen (1877, p. 7) was the first to demarcate this
vast region as follows: “vom Hochland von Tibet im
Süden zum Altai im Norden, und von der Wasser-
scheide am Pamir im Westen zu derjenigen der Rie-
senströme von China und dem Gebirge Khingan im
Osten [from the highlands of Tibet in the south to the
Altai in the north, and from the watershed on the
Pamir in the west to those of the great rivers of China
and the Khingan Range in the east]”.

The majority of researchers (including the authors
of many studies referenced here) uses this definition.
The region earlier known as Middle Asia has come to
be named Central Asia in some recent studies. How-
ever, like any other change in terminology, this one of-
ten leads to misunderstandings and the term “Middle
Asia” is recommended for use by geographers (Biske,
Sevastyanov, 2003; Cowan, 2007). We use von Rich-
thofen’s classical definition of Central Asia here. This
region includes western China, Mongolia, and the
southern mountains of Asian Russia, but it does not
include Kazakhstan, Turkmenia, Kirgizia, Tadzhiki-
stan, Uzbekistan and India.

RESULTS

Southern origin of certain Arctic-alpine forms: phy-
logeographic evidence. Because it is virtually impossi-
ble for diploids to originate from polyploids, records of
diploid relatives of polyploid Arctic species in moun-
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tains of the temperate zone support the mountain ori-
gin of some Arctic-alpine species (review: Stebbins,
1984). However, polyploidy is most likely of adaptive
significance, and the selection for polyploids against
their diploid ancestors might have taken place in Arc-
tic regions.

The results of phylogeographic studies provide evi-
dence that many Arctic taxa originated in mountain
regions (table 1). The Arctic-alpine taxa of mountain
origin were even more numerous than the groups of
Arctic origin. It is important that Central Asia is the
primary center of origin for the Arctic-alpine species.

Analyzing the distribution of internal transcribed
spacer (ITS) and chloroplast DNA haplotypes of the
Arctic-alpine plant species Koenigia islandica L. has
led to the substantiated conclusion that the Qinghai-
Tibetan Plateau was its place of origin (Fan et al.,
2013; Long et al., 2014). Arctic-alpine Gentiana sect.
Cruciata plants also originated in this region (Zhang et
al., 2009). Amplified fragment length polymorphism
(AFLP) fingerprinting and a sequence analysis of
chloroplast DNA showed that the Arctic-alpine plant
Carex atrofusca Schkuhr most likely originated from
the mountains of Central Asia (Schönswetter et al.,
2006). The Arctic-alpine genus Lagotis also originated
in this region (Li et al., 2014). The Arctic-alpine plant
Sibbaldia procumbens L. “probably originated in the
mountains of South and East Asia” (Allen et al.,
2015). Bistorta vivipara (L.), another Arctic-alpine
plant, also seems to originate from Asian mountains
(Marr et al., 2013).

Mountain plants also colonized Arctic regions of
Europe. Arctic populations of the glacier buttercup
Ranunculus glacialis L. have been found to originate
from central European mountain populations, based
on the body of molecular researches (Schönswetter
et al., 2003; Ronikier et al., 2012).

A broad-scale study of nuclear and chloroplast
DNA diversity has shown that the Arctic taxa of the
hemiparasitic plant genus Pedicularis have evolved in-
dependently 12–14 times, and they primarily originat-
ed in the lineages that otherwise occur in the high
mountains of Eurasia and North America (Tkach et al.,
2014).

The sequence data from the trnH-psbA and trnT-
trnL fragments of chloroplast DNA spacer regions
made it possible to assume that the mountain sorrel
Oxyria digyna Hill, an Arctic-alpine plant, originated
in the North American mountains (Allen et al., 2012).
However, when additional samples were examined
and a fragment of chloroplast DNA matK and se-
quences from 11 nuclear loci were included in the
analysis, the results led to a conclusion that this plant
species most likely originated on the Qinghai-Tibetan
Plateau (Wang et al., 2016).

Chloroplast DNA diversity was studied in Arabis
alpina L., another Arctic-alpine plant species. It was
found that “All haplogroups occur within Anatolia,

and all intermediate haplotypes linking the three hap-
logroups are endemic to central Anatolia and Levant,
where haplotypic and nucleotide diversities exceeded
all other regions.” Those findings provided a basis for
believing that Anatolia is the cradle of origin for the
global genetic diversification of the species, including
its Arctic populations (Ansell et al., 2011).

A study on the Arctic-alpine plant Trollius europae-
us L. using AFLP markers made it possible to assume
that the Fennoscandian populations of this species
originated from the eastern Carpathian refugium (De-
spres et al., 2002). The Scandinavian population of Ve-
ronica alpina L. probably originated from a refugium
in the eastern Alps or Carpathians (Albach et al.,
2006).

Phylogeographic analyses of a plastid sequence da-
ta set and an AFLP data set for the Arctic-alpine plant
Saxifraga oppositifolia L. showed that Europe (proba-
bly the Alps) and Central Asia are most likely the an-
cestral areas of the two primary lineages (Winkler et al.,
2012).

Examples known in animals are congruent with the
examples in plants outlined above. According to the
distributions of mitochondrial DNA haplotypes and
the alleles of three nuclear genes, the Arctic-alpine
butterf ly genus Oeneis originated in the Central Asian
mountains (Kleckova et al., 2015).

An analysis of complete mitochondrial genomes
has shown that the closest relatives of the Arctic
muskox, Ovibos moschatus (Zimmermann), are spe-
cies belonging to the genera Capricornis (serow) and
Naemorhedus (goral), from the East Asian mountains
(Hassanin et al., 2009; Yang et al., 2013). With respect
to the high levels of genetic and morphological diver-
sity in both Capricornis and Naemorhedus, the Arctic
muskox could have originated from a mountain ancestor.

As inferred from a diversity analysis of mitochon-
drial sequence and nuclear microsatellite data, the
Arctic-alpine freshwater stonefly (Plecoptera) Arcy-
nopteryx dichroa (McLachlan) colonized Fennoscan-
dia from a refugium in the central European highlands
(Theissinger et al., 2013).

Southern origin of certain Arctic-alpine forms: con-
gruence of genetic and paleontological data. Salmonids
are typical inhabitants of northern waters. Arctic
charrs (Salvelinus), the name of which speaks for it-
self, appears to be the most ancient genus within this
group based on phylogenetic reconstructions (Arta-
monova et al., 2018). The species of this genus live in
Arctic and mountain water bodies and the cold, deep
waters of large lakes. The most ancient salmonid fos-
sils have been found in the mountain regions of North
America (Wilson, Li, 1999) and Kamchatka
(Sytchevskaya, 1986).

Several Salmonidae genera originated in temperate
mountains with a subsequent expansion into Arctic
water bodies, e.g., the genus Salmo originated in the
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Table 1. Taxa that have presumably migrated to the Arctic from temperate mountains based on molecular data

Mountains inhabited 
by ancestral taxon Taxon Method Reference

Qinghai-Tibetan Plateau Plant, Koenigia islandica Internal transcribed spacers (ITS) 
and chloroplast DNA haplotypes

Fan et al., 2013; 
Long et al., 2014

Plant, Oxyria digyna Three chloroplast DNA fragments 
(trnH-psbA, trnT-trnL and matK) 
and 11 nuclear loci

Wang et al., 2016

Plants, Gentiana 
sect. Cruciata

Four chloroplast DNA fragments Zhang et al., 2009

Mountains of Central Asia Plant, Carex atrofusca AFLP (amplified fragment length 
polymorphism) and sequences 
of chloroplast DNA

Schönswetter et al., 2006

Plants, Lagotis Chloroplast genes and ITS 
of nuclear ribosomal DNA

Li et al., 2014

Plant, 
Saxifraga oppositifolia

Plastid sequence data set 
and AFLP data set

Winkler et al., 2012

Butterflies, Oeneis Mitochondrial DNA haplotypes 
and alleles of three nuclear genes

Kleckova et al., 2015

Mountains of South 
and East Asia

Plant, 
Sibbaldia procumbens

Three plastid DNA non-coding 
regions (the atpI–atpH 
and trnL–trnF intergenic spacers 
and the trnL intron)

Allen et al., 2015

Mammal, 
Ovibos moschatus

Complete mitochondrial genome Hassanin et al., 2009; 
Yang et al., 2013

Anatolia Plant, Arabis alpina Sequences of the chloroplast DNA 
trnL-trnF region

Ansell et al., 2011

Mountains of Asia Plant, Bistorta vivipara Two chloroplast DNA spacer 
regions, trnH–psbA and trnS–G

Marr et al., 2013

Central European mountains Plant, 
Ranunculus glacialis

AFLP, noncoding plastid DNA 
regions and nuclear ribosomal ITS

Schönswetter et al., 2003; 
Ronikier et al., 2012

Eastern Carpathians Plant, Trollius europaeus AFLP markers Despres et al., 2002

Eastern Alps or Carpathians Plant, Veronica alpina Plastid DNA trnL-F sequences 
and AFLP fingerprints

Albach et al., 2006

Europe (probably the Alps) Plant, 
Saxifraga oppositifolia

Plastid sequence data set 
and AFLP data set

Winkler et al., 2012

Central European highlands Stonefly, Arcynopteryx 
dichroa

Mitochondrial sequence data 
and nuclear microsatellite data

Theissinger et al., 2013

Eurasia and North America 
(independently evolved of 
12–14 times)

Plants,
Pedicularis

Entire internal transcribed spacer 
region of the nuclear ribosomal 
DNA (ITS1-5.8S rRNA gene-ITS2) 
and chloroplast DNA matK–trnK 
region

Tkach et al., 2014
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Caucasus, according to molecular and paleontological
data (Makhrov, Bolotov, 2019).

Freshwater pearl mussels (Margaritifera), the lar-
vae (glochidia) of which parasitize fish gills, colonized
the Arctic water bodies together with their primary
hosts, salmonids. Paleontological records show that
the earliest members of the family Margaritiferidae in-
habited tropical and subtropical river systems in China
(Fang et al., 2009), Europe (Delvene, Araujo, 2009),
and northern Africa (Van Damme et al., 2015). Recent
species are widespread in mountainous regions, e.g.,
European mountain ranges, the Cumberland Plateau
in North America, the Atlas Mountains in Africa, and
several mountain ranges in central Indochina (Bolo-
tov et al., 2014; Lopes-Lima et al., 2018). The ranges
of three recent species extend from the temperate
highlands to the Arctic and Subarctic areas as follows:
Margaritifera margaritifera (L.) (the northwestern edge
of Europe, Newfoundland, and Labrador), M. falcata
(Gould) (Alaska), and M. middendorffi Rosen (Kam-
chatka and North Kurile Islands) (Makhrov et al.,
2014; Lopes-Lima et al., 2018).

The oldest remains of representatives from the
freshwater fish genus Prosopium (Coregonidae) were
found in the Pliocene sediments of Lake Idaho, in the
Rocky Mountains (Smith, 1975). Currently, this genus
is not only widespread throughout the northern part of
North America, but it also inhabits water bodies in Si-
beria.

Paleontological data on mammals provide strong
evidence to support the origin of several Arctic forms
from mountain species. Deng et al. (2011) and Wang
et al. (2014, 2016) described new Pliocene mammals
from high-altitude areas of the western Himalaya re-
gion. The Tibetan woolly rhinoceros Coelodonta thi-
betana Deng et al. belongs to the genus, other species
of which inhabited northern Eurasia. The Tibetan fox
Vulpes qiuzhudingi Wang et al. is closely related to the
Arctic fox Vulpes lagopus (L.). The Tibetan wild sheep
Protovis himalayensis Wang et al. appears to be an an-
cestral lineage of Ovis (a member of the Ice Age mega-
fauna). Deng et al. (2011) and Wang et al. (2014, 2016)
concluded that at least several mammalian species
common to the Eurasian mammoth steppe fauna orig-
inated in the rigorous climate of Tibet.

It should be noted that this conclusion was per-
ceived with skepticism by some theriologists, includ-
ing researchers with comprehensive experience in the
Tibetan Plateau and other regions of Central Asia
(Makhrov et al., 2019). In fact, the available paleonto-
logical data on fossil mammals from Tibet are still
scarce, and this group deserves further research effort.

The woolly mammoth Mammuthus primigenius
(Blumenbach) was the most charismatic member of
the north Eurasian fauna during the Ice Age. Mam-
muthus subplanifrons Osborn, the most ancient species
in the genus, lived during the late Miocene-early Plio-
cene. The earliest fossils of this species have been

found in the Middle Awash Valley of modern Ethio-
pia, in Africa (Sanders, Haile-Selassie, 2012), and its
fossil records seem to be confined to past mountain ar-
eas (WoldeGabriel et al., 2001). The earliest known
Mammuthus trogontherii (Pohlig) fossils have been
found in the Loess Plateau area of northern China
(Lister, Sher, 2015).

Northern origin of certain Arctic-alpine forms.
There is convincing evidence that several Arctic-al-
pine taxa colonized the southern (mountain) parts of
their ranges during glacial periods, when Arctic forms
spread far to the south. The taxa that have arisen in this
manner are termed glacial relicts.

This mechanism of range formation was initially
inferred from the broad distribution of recent Arctic-
alpine species in deposits from the glacial age. For ex-
ample, the terrestrial mollusk Vertigo genesii (Gre-
dler), which is common in European deposits of the
late Pleistocene age, is now widespread in Northern
Europe and has recently been found in England and
the Alpine highlands (Coles, Colville, 1980; Schen-
ková, Horsák, 2013 and references therein). Mollusks
and plants characteristic of the glacial-age deposits
still inhabit the mountains of southern Siberia
(Horsák et al., 2015) and North America (Miller,
1996). Similar examples are especially numerous in
earlier publications (review: Birks, 2008). However,
paleontological evidence for the Arctic origin of these
taxa is usually absent since fossil remains had no
chance of remaining in the glaciation zone under the
ice sheet. Therefore, evidence for the Arctic origin of
these Arctic-alpine taxa was only obtained using a mo-
lecular approach.

In several cases, molecular studies confirmed that
recent mountain taxa originated from Arctic ances-
tors, the ranges of which expanded southward during
one of the glacial periods. As shown in table 2, relict
Arctic-alpine forms have been found in European
mountains, the Himalayan-Hengduan Mountains,
North America and Japan.

It is important to note that the genetic differentia-
tion of mountain and Arctic taxa is high in some cases,
and that these mountain taxa can be considered relics
of cold stages from a more distant past (review:
Schmitt et al., 2010).

As indicated by molecular studies, several Arctic
forms of mountain origin secondarily migrated to the
mountains of another temperate region (the data are
not included in table 2). The Arctic-alpine plants Sax-
ifraga oppositifolia (Abbott et al., 2000), Bistorta vi-
vipara (Marr et al., 2013), and Oxyria digyna (Wang
et al., 2016) and the Arctic-alpine butterfly genus Oeneis
(Kleckova et al., 2015) probably originated in Central
Asia, from which they colonized the Arctic, and from
there they migrated to the temperate mountains of Eu-
rope and North America. Two plant taxa, Gentiana
sect. Cruciata (Zhang et al., 2009) and Carex atrofusca
(Schönswetter et al., 2006), similarly originated in
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Central Asia, but they colonized only Arctic and Eu-
ropean mountains.

Although the available data are still insufficient for
statistical analysis, the Tibetan Plateau and adjacent
regions seem to be the most important center of origin
of Arctic-alpine taxa. Consequently, these taxa mi-
grated mostly along the Tibetan sector of the Holarctic
to spread northward. Both the colonization of temper-
ate mountains by Arctic taxa and the oncoming migra-
tion of taxa of mountain origin to the Arctic occurred
widely in other Holarctic sectors, such as Europe, Ja-
pan, and North America.

DISCUSSION

Origin of Arctic-alpine taxa. The several examples
outlined above clearly demonstrate that a variety of
Arctic animal and plant taxa originated from ances-
tral forms inhabiting the mountains of the temper-
ate or even subtropical climatic zones (16 taxa and

27–29 cases of distribution, see table 1). Additionally,
molecular studies have confirmed that several recent
mountain taxa originated from Arctic ancestors
(12 taxa and 12 cases of distribution, see table 2). At
first glance, the known groups of Arctic origin are far
less numerous than the groups of mountain origin
among the Arctic-alpine taxa. A possible explanation
is that the terrestrial Arctic ecosystems are relatively
young, in that they originated only 2–3 million years
ago (review: Brochmann et al., 2013), and only a few
endemic species have originated in the Arctic so far.

In some cases, taxa originating in subtropical
mountains colonized not only the Arctic, but also the
temperate zone. Thus, the hypothesis of origin for ma-
ny Palearctic taxa in Central Asia (Matthew, 1939) has
received new support (review: Mosbrugger et al., 2018;
Poplavskaya et al., 2018). Several forms that originated
from the Tibetan Plateau currently share broader
ranges (reviews: Wen et al., 2014; Favre et al., 2016).

Table 2. Taxa that have presumably migrated to temperate mountains from the Arctic based on molecular data

Taxon Mountains inhabited by 
relict forms Method Reference

Plant, Comastoma tenellum 
(Rottb.) Toyok.

Alps (Europe) Amplified fragment length 
polymorphism (AFLP)

Schönswetter et al., 2004

Plant, Ranunculus pygmaeus 
Wahlenb.

Alps (Europe) AFLP and chloroplast DNA 
sequence

Schönswetter, et al., 2006a

Plant, Dryas octopetala L. Tatra Mountains, 
Carpathians (Europe)

AFLP Skrede et al., 2009

Plants, Cassiope Himalayan–Hengduan 
Mountains

Loci produced by restriction 
site associated DNA 
sequencing (RAD-seq)

Hou et al., 2016a

Plants, Diapensia Himalayan–Hengduan 
Mountains

Sequences of four plastid DNA 
markers and the nuclear 
ribosomal internal 
transcribed spacer

Hou et al., 2016

Plant, Phyllodoce nipponica 
Makino

Japan Sequences of two plastid DNA 
markers and multiple 
nuclear loci

Ikeda et al., 2014

Plants, Phyllodoce aleutica 
(Spreng.) A. Heller and P. glan-
duliflora (Hook.) Coville

East Asia and North 
America

Sequences of multiple 
nuclear loci

Ikeda, Setoguchi, 2017

Plant, Kalmia procumbens (L.) 
Gift & Kron

Southern Europe, Japan Sequences of multiple 
nuclear loci

Ikeda et al., 2017

Arctic fairy shrimp, Branchinecta 
paludosa O.F. Müller

Tatra Mountains, 
Carpathians (Europe)

Sequences of mitochondrial 
cytochrome c oxidase I subunit

Lindholm et al., 2016

Wolf spiders, Pardosa saltuaria 
(L. Koch) group

Central Alpine Region 
of Europe

Sequences of mitochondrial 
ND1 gene

Muster, Berendonk, 2006

Arctic charr Salvelinus alpinus L. Central Alpine Region 
of Europe

Sequences of mitochondrial 
control region

Brunner et al., 2001
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Mountain taxa were apparently not the sole source
of the terrestrial and freshwater fauna and flora of the
Arctic. The Arctic f lora includes not only taxa of
mountainous origins, but also subarctic, boreal,
mountain-steppe, and ancient Arctic taxa (Wulff,
1944). For example, the genus Saxifraga most likely
originated in North America (Ebersbach et al., 2017).
Aquatic taxa from plain water bodies in the temperate
climatic zone and invaders from marine habitats colo-
nized freshwater bodies of the European Arctic along
with taxa of mountain origin according to molecular
data (Makhrov, Bolotov, 2006). Mountain taxa still
played a substantial role in the formation of northern
biomes.

In particular, species of mountain origin account
for approximately one-third of the mammoth faunal
complex, which is a group of species that inhabited
northern Eurasia during the late Pleistocene (reviews:
Ukraintseva, 2013; Kahlke, 2014). Table 3 summarizes
the primary mammalian components of this fauna in
the Arctic zone of Eurasia. As shown, 6 out of 17 spe-
cies (approximately 35%) originated from ancestors
that inhabited the mountains of temperate or even
subtropical climatic zones.

The evolution of other species in the mammoth
faunal complex is poorly understood, although their
mountain origin cannot be excluded. For example,
phylogenetic reconstructions from inter-SINE PCR
in marmots (Marmota, Sciuridae, Rodentia) have
shown that Marmota himalayana (Hodgson) from the
Himalayas and Tibet is the closest relative of
M. camtschatica (Pallas), which is widespread in Sibe-
ria (Brandler et al., 2010).

Great mountain chains as places for the adaptation
of originally southern taxa to cold climatic conditions.
A review presented above suggests that vast upland ar-
eas could have played a significant role in the develop-
ment of high-latitude fauna and flora. A question re-
mains as to what factors could facilitate their adapta-
tion to the Arctic environment.

The gradual uplift of the Tibetan Plateau and other
mountain systems is well known to geologists, and it
might have contributed to the adaptation of the origi-
nally southern taxa to cold climatic conditions. In ad-
dition, climatic oscillations might act as “species
pumps”, thus facilitating the colonization of moun-
tain regions by species of lowland origin (reviewed in
Hoorn et al., 2013, 2018; Favre et al., 2015; Pellissier
et al., 2018; Deng et al., 2019; Muellner-Riehl, 2019).

Table 3. Origin of species of the mammoth faunal complex*

* Species in the mammoth faunal complex, the origin of which is unknown, are as follows: Pleistocene bison (Bison priscus occidentalis
(Lucas)), Cherskiy horse (Equus lenensis Russanov), brown lemming (Lemmus sibiricus Kerr), reindeer (Rangifer tarandus L.), northern
saiga (Saiga tatarica L.), wolf (Canis lupus L.), polar bear (Ursus maritimus Phipps), wolverine (Gulo gulo L.), cave bear (Ursus spelaeus
Rosenmüller), Pleistocene arctic hare (Lepus arcticus Ross). N/A – not available.

Species (according 
to Ukraintseva, 2013) Molecular data Paleontological data Mountain origin 

of the species

Woolly mammoth 
(Mammuthus primigenius) N/A

Ancestral species inhabited 
African mountains (Sanders, 
Haile-Selassie, 2012)

Yes

Woolly rhinoceros
(Coelodonta antiquitatis) N/A Ancestral species lived 

in Tibet (Deng et al., 2011) Yes

Kamchatka marmot 
(Marmota camtschatica)

The closest relative 
inhabits the Himalayas 
and Tibet 
(Brandler et al., 2010)

N/A

Possible
(it is unclear whether 
the northern or mountain 
species is ancestral)

Baikalian yak (Bos (Poëphagus) 
baikalensis Vereshchagin) N/A The species has not been found 

in plains (Malikov, 2015) Yes

Muskox (Ovibos moschatus)

The closest relatives inhabit 
East Asian mountains 
(Hassanin et al., 2009; 
Yang et al., 2013)

N/A Yes

Arctic fox (Alopex lagopus) N/A An ancestral species lived 
in Tibet (Wang et al., 2014) Yes

Cave lion 
(Panthera spelaea (Goldfuss)) N/A

An ancestor of the genus 
Panthera inhabited Tibet 
(Tseng et al., 2014)

Yes
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However, climatic oscillations have not always led
to speciation (Bennett, 2004). This variation is ex-
plained, among other factors, by the fact that periph-
eral populations decrease in size when exposed to ad-
verse environmental changes. А random dispersal
causes a gene f low from regions of high to low density
and therefore hampers adaptation in the peripheral ar-
eas (Kirkpatrick, Barton, 1997; Cassel-Lundhagen,
2010).

We believe that large mountain systems that ex-
tended in a latitudinal direction could similarly serve
as “gates” for the equatorial pump. Southern species
migrate to the regions north of the mountain chains
during a warm climate period (Dynesius, Jansson,
2000; Hewitt, 2004). During the subsequent cold cli-
mate period, they are “pressed” against the northern
slopes and forced to adapt to the cold environment.
Fisher and Ford (1950, p. 118) noted that the “Sub-di-

vision into small isolated or semi-isolated populations
is clearly favorable to evolutionary progress through
the variety of environmental conditions to which the
colonies are exposed”. Modern models (Garcia-Ra-
mos, Kirkpatrick, 1997) and field data (e.g. Fu et al.,
2016; Lagerholm et al., 2017) provide strong evidence
in favor of Fisher and Ford’s opinion. Moreover, pop-
ulations that were isolated in small northern refugia
could be involved in hybridization with related species
(Hassanin, 2015). Finally, during the next warm peri-
od, newly originated mountain species could expand
their ranges to the north (fig. 1).

The characteristic pattern in the distribution of
diploid and polyploid forms provides additional evi-
dence supporting this hypothesis. Diploid forms of in-
sects are common in the Alps, while polyploid forms
mostly inhabit northern Europe (Suomalainen et al.,
1976). Moreover, the distribution of the Arctic-alpine
plant Potentilla crantzii (Crantz) Beck ex Fritsch indi-
cates a ploidy-shaped Arctic-alpine disjunction, with
tetraploids being limited to the central and southern
European mountain chains and hexaploids restricted
to the subarctic. In addition, hexaploids occur in the
Alps and Carpathians (Paule et al., 2015). Upon ana-
lyzing data on the populations of Nepal and northern
regions, Hedberg (1992, p. 390) concluded that “The
ancestral population of Saxifraga hirculus L. in Central
Asia must evidently have been diploid and polyploid-
ization can only have occurred after the species
reached North America via Beringia”. Apparently, in-
creases in ploidy occurred in these insects and plants
during the Ice Age, when small populations were con-
fined to the areas immediately north of the Alps and
Himalayas.

CONCLUSION

In general, the current molecular and paleontolog-
ical findings fully support the hypothesis that several
plant and animal taxa of the Arctic originate from an-
cestors that inhabited the mountains of more southern
climatic zones. This finding explains in detail how, de-
spite the relatively short existence of Arctic biota, deep
adaptations by Arctic species arose in response to low
temperatures. These adaptations emerged from the
ancestors of Arctic species that inhabited the high-
lands. From this perspective, the comparison of Arctic
ecosystems, including those that disappeared and the
ecosystems of large highlands, primarily the Tibetan
Plateau, is a topic of great significance. Furthermore,
our findings are important for practical purposes,
namely for the acclimatization of economically valu-
able species. Thus, it should be expected that invasions
of Arctic ecosystems by species inhabiting the temper-
ate mountains can be successful.

Fig. 1. The “operation cycle” of a mountain “gate”. I and
III – climate warming periods, II – a climate cooling period.
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В настоящей работе мы поставили цель объяснить сходство биоты северных регионов и гор южных
регионов. Филогенетические исследования нескольких арктоальпийских растений (Arabis alpina,
Bistorta vivipara, Carex atrofusca, Gentiana sect. Cruciata, Koenigia islandica, Oxyria digyna, Ranunculus gla-
cialis, Saxifraga oppositifolia, Sibbaldia procumbens, Trollius europaeus, Veronica alpina, Lagotis spp., and Pe-
dicularis spp.), насекомых (Oeneis spp. и Arcynopteryx dichroa) и одного вида млекопитающих (Ovibos
moschatus) показывают, что эти группы возникли в горах умеренной климатической зоны и потом
мигрировали в Арктику. Палеонтологические данные показывают, что горы умеренной и тропиче-
ской зон были местообитанием предков нескольких родов лососевых рыб и по крайней мере части
видов млекопитающих, обычных для евразийской тундростепи (Mammuthus primigenius, Coelodonta
antiquitatis, Bos (Poëphagus) baikalensis, Alopex lagopus, и Panthera spelaea). Предложена гипотеза, объ-
ясняющая важную роль горных регионов в эволюции северных форм. Выявлено несколько случаев
заселения арктическими таксонами гор умеренной климатической зоны.

Ключевые слова: эволюция, филогеография, генетика, Арктика, арктоальпийский, биогеография,
экология, горы, Тибет
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