Физика Земли, 2023, № 3, стр. 3-32

Трение как фактор, определяющий излучательную эффективность подвижек по разломам и возможность их инициирования. Состояние вопроса

Г. Г. Кочарян 1*, А. Н. Беседина 1, Г. А. Гридин 1, К. Г. Морозова 1, А. А. Остапчук 1

1 Институт динамики геосфер имени академика М.А. Садовского РАН
г. Москва, Россия

* E-mail: gevorgkidg@mail.ru

Поступила в редакцию 25.10.2022
После доработки 05.12.2022
Принята к публикации 09.12.2022

Аннотация

В статье представлен концептуальный обзор состояния исследований сопротивления разломных зон сдвигу. Публикации последних лет проанализированы в контексте подходов, сформулированных в нескольких докладах, сделанных авторами на 6-й конференции “Триггерные эффекты в геосистемах”. Анализ результатов, полученных различными группами исследователей в последние два–три десятилетия, демонстрирует, что определяющее значение для закономерностей инициирования и распространения разрыва, играют фрикционные свойства материала-заполнителя зоны скольжения. Совершенствование методов обработки данных регистрации параметров слабой сейсмичности, направленных на оценку “медленности” микроземлетрясений, приуроченных к зоне разлома, может привести к созданию новых подходов к мониторингу разломных зон для получения косвенной информации о материальном составе зоны скольжения разлома, а, следовательно, и о его потенциальной “сейсмогенности”. В настоящее время подобные методы могут оказаться востребованы при решении задач снижения ущерба от землетрясений, инициированных техногенной деятельностью.

Ключевые слова: разлом, структура сейсмогенных разломов, режимы скольжения, трение, микросейсмический мониторинг.

Список литературы

  1. Батухтин И.В., Будков А.М., Кочарян Г.Г. Особенности старта и разрыва на разломах с гетерогенной поверхностью. Триггерные эффекты в геосистемах: материалы V международной конференции / Адушкин В.В., Кочарян Г.Г. (ред.) М.: ТОРУС ПРЕСС. 2019. С. 137–149.

  2. Бернштейн В.А. Механогидролитические процессы и прочность твердых тел. Л.: Наука. 1987. 320с.

  3. Беседина А.Н., Кишкина С.Б., Кочарян Г.Г., Куликов В.И., Павлов Д.В. Характеристики слабой сейсмичности, индуцированной горными работами на Коробковском месторождении Курской магнитной аномалии // Физико-технические проблемы разработки полезных ископаемых. 2020. № 3. С. 12–24. https://doi.org/10.15372/FTPRPI20200302

  4. Беседина А.Н., Кишкина С.Б., Кочарян Г.Г. Параметры источников роя микросейсмических событий, инициированных взрывом на Коробковском железорудном месторождении // Физика Земли. 2021. № 3. С. 63–81. https://doi.org/10.31857/S0002333721030030

  5. Богомолов Л.М., Сычева Н.А. Прогноз землетрясений в XXI веке: предыстория и концепции, предвестники и проблемы // Геосистемы переходных зон. 2022. Т. 6. № 3. С. 145–182. https://doi.org/10.30730/gtrz.2022.6.3.145-164.164-182

  6. Веттегрень В.И., Арора К., Пономарев А.В., Мамалимов Р.И., Щербаков И.П., Кулик В.Б. Изменение строения поверхностей базальта и гранита при трении // Физика твердого тела. 2018. Т. 60. № 5. С. 965–969.

  7. Веттегрень В.И., Пономарев А.В., Кулик В.Б., Мамалимов Р.И., Щербаков И.П. Разрушение кварцевого диорита при трении // Геофизические исследования. 2020. Т. 21. № 4. С. 35–50.

  8. Киссин И.Г. Флюиды в земной коре. Геофизические и тектонические аспекты. М.: Наука. 2015. 328 с.

  9. Козырев А.А., Жукова С.А., Батугин А.С. О влиянии обводненности массива на его сейсмическую активность при разработке апатитовых месторождений Хибин // Горный журнал. 2021. № 1. С. 31–36. https://doi.org/10.17580/gzh.2021.01.06

  10. Костров Б.В. Механика очага тектонического землетрясения. М.: 1975. 176 с.

  11. Кочарян Г.Г. Геомеханика разломов. М.: ГЕОС. 2016. 424 с.

  12. Кочарян Г.Г. Возникновение и развитие процессов скольжения в зонах континентальных разломов под действием природных и техногенных факторов. Обзор современного состояния вопроса // Физика Земли. 2021. № 4. С. 3–41. https://doi.org/10.31857/S0002333721040062

  13. Кочарян Г. Г., Будков А.М., Кишкина С.Б. Влияние структуры зоны скольжения разлома на скорость распространения разрыва при землетрясении // Физическая мезомеханика. 2022. Т. 25. № 4. С. 84–93. https://doi.org/10.55652/1683-805X_2022_25_4_84

  14. Кочарян Г.Г., Остапчук А.А. Влияние вязкости тонких пленок на закономерности фрикционного взаимодействия блоков горной породы // Докл. РАН. 2015. Т. 463. № 3. С. 343–346. https://doi.org/10.7868/S0869565215210148

  15. Кочарян Г.Г., Спивак А.А. Динамика деформирования блочных массивов горных пород. М.: ИКЦ “Академкнига”. 2003. 423 с.

  16. Кочарян Г.Г., Батухтин И.В. Лабораторные исследования процесса скольжения по разлому как физическая основа нового подхода к краткосрочному прогнозу землетрясений // Геодинамика и тектонофизика. 2018. Т. 9. № 3. С. 671–691. https://doi.org/10.5800/GT-2018-9-3-0367

  17. Кузьмин Ю.О. Индуцированные деформации разломных зон // Физика Земли. 2019. № 5. С. 61–75.

  18. Матвеев М.А., Смульская А.И., Морозов Ю.А. Особенности фрикционного плавления пород и кристаллизации расплава в ходе сейсмического процесса (на примере псевдотахилитов Приладожья)// Физика Земли. 2022. № 6. С. 134–161. https://doi.org/10.31857/S0002333722060096

  19. Морозов Ю.А., Букалов С.С., Лейтес Л.А. Механохимические преобразования шунгита в зоне динамической подвижки // Геофизические исследования. 2016. Т. 17. № 2. С. 5–18.

  20. Морозов Ю.А., Севастьянов В.С., Юрченко А.Ю., Кузнецова О.В. Углеродизация карбонатов и фракционирование стабильных изотопов углерода в зоне динамической подвижки // Геохимия. 2020. Т. 65. № 9. С. 835–848. https://doi.org/10.31857/S001675252009006X

  21. Морозова К.Г., Остапчук А.А. Связь состояния сдвиговой трещины в гранулированном материале и акустоэмиссионнных и деформационных данных // Акустический журнал. 2022. Т. 68. № 5. С. 543–549. https://doi.org/10.31857/S0320791922050082

  22. Мирзоев К.М., Николаев А.В., Лукк А.А., Юнга С.Л. Наведенная сейсмичность и возможности регулируемой разрядки накопленных тектонических напряжений в земной коре // Физика Земли. 2009. № 10. С. 49–68.

  23. Остапчук А.А., Кочарян Г.Г., Морозова К.Г., Павлов Д.В., Гридин Г.А. Особенности формирования динамического сдвига в тонком слое гранулированного материала // Физика Земли. 2021. № 5. С. 91–103. https://doi.org/10.31857/S0002333721050136

  24. Родкин М.В., Рундквист Д.В. Геофлюидогеодинамика. Приложение к сейсмологии, тектонике, процессам рудо- и нефтегенеза. Долгопрудный: Издательский Дом “Интеллект”. 2017. 288 с.

  25. Ружич В.В. Сейсмотектоническая деструкция в земной коре Байкальской рифтовой зоны. Новосибирск: изд-во СО РАН. 1997. 144 с.

  26. Ружич В.В., Вахромеев А.Г., Левина Е.А., Сверкунов С.А., Шилько Е.В. Об управлении режимами сейсмической активности в сегментах тектонических разломов с применение вибрационных воздействий и закачки растворов через скважины // Физическая мезомеханика. 2020. Т. 23. № 3. С. 55–69.

  27. Ружич В.В., Вахромеев А.Г., Сверкунов С.А., Иванишин В.М., Акчурин Р.Х., Левина Е.А. Изучение, прогноз и управляемое снижение сейсмической опасности в выявленных сегментах магистральных разломов циклическими закачками в них жидкости через глубокие многозабойные наклонно направленные скважины // Геодинамика и тектонофизика. 2022. Т. 13. № 3. https://doi.org/10.5800/GT-2022-13-3-0637

  28. Ружич В.В., Кочарян Г.Г. О строении и формировании очагов землетрясений в разломах на приповерхностном и глубинном уровне земной коры. Статья I. Приповерхностный уровень // Геодинамика и тектонофизика. 2017. Т. 8. № 4. С. 1021–1034. https://doi.org/10.5800/GT-2017-8-4-0330

  29. Ружич В.В., Кочарян Г.Г., Савельева В.Б., Травин А.В. О формировании очагов землетрясений в разломах на приповерхностном и глубинном уровне земной коры. Часть II. Глубинный уровень // Геодинамика и тектонофизика. 2018. Т. 9. № 3. С. 1039–1061. https://doi.org/10.5800/GT-2018-9-3-0383

  30. Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Гео. 2003. 243 с.

  31. Сидорин А.Я. Предвестники землетрясений. М.: Наука. 1992. 192 с.

  32. Соболев Г.А., Киреенкова С.М., Морозов Ю.А., Смульская А.И., Веттегрень В.И., Кулик Б.В., Мамалимов Р.И., Щербаков И.П. Нанокристаллы в горных породах. М.: ГЕОС. 2016. 110 с.

  33. Сырников Н.М., Тряпицын В.М. О механизме техногенного землетрясения в Хибинах // Докл. АН СССР. 1990. Т. 314. № 4. С. 830–833.

  34. Тёркот Д., Шуберт Дж. Геодинамика: Геологические приложения физики сплошных сред. Ч. 1: Пер. с англ. М.: Мир. 1985. 376 с.

  35. Тёркот Д., Шуберт Дж. Геодинамика: Геологические приложения физики сплошных сред. Ч. 2: Пер. с англ. М.: Мир. 1985. 360 с.

  36. Шерман С.И. Сейсмический процесс и прогноз землетрясений: тектонофизическая концепция. Новосибирск: Гео. 2014. 359 с.

  37. Alder S., Smith S.A.F., Scott J.M. Fault-zone structure and weakening processes in basin-scale reverse faults: the Moonlight Fault Zone, South Island, New Zealand // J. Structural Geology. 2016. V. 91. P. 177–194. https://doi.org/10.1016/j.jsg.2016.09.001

  38. Avouac J.P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle // Annual Review of Earth and Planetary Sciences. 2015. V. 43. P. 233–271. https://doi.org/10.1146/annurev-earth-060614-105302

  39. Barnes P.M., Wallace L.M., Saffer D.M., Bell R.E., Underwood M.B., Fagereng A., LeVay L.J et al. Slow slip source characterized by lithological and geometric heterogeneity // Science Advances. 2020. V. 6. № 13. https://doi.org/10.1126/sciadv.aay3314

  40. Barth N.C., Boulton C.J., Carpenter B.M., Batt G.E., Toy V.G. Slip localization on the southern Alpine fault, New Zealand // Tectonics. 2013. V. 32. № 3. P. 620–640. https://doi.org/10.1002/tect.20041

  41. Bedford J.D., Faulkner D.R., Lapusta N. Fault rock heterogeneity can produce fault weakness and reduce fault stability // Nature Communications. 2022. V. 13. P. 1-7. https://doi.org/10.1038/s41467-022-27998-2

  42. Blanpied M.L., Lockner D.A., Byerlee J.D. Frictional slip of granite at hydrothermal conditions // J. Geophysical Research: Solid Earth. 1995. V. 100. № B7. P. 13045–13064. https://doi.org/10.1029/95JB00862

  43. Boullier A.-M. Fault-zone geology: lessons from drilling through the Nojima and Chelungpu faults.// In book Geology of the Earthquake Source. Editors: A. Fagereng & V. Toy Geological Society of London Special Publications. 2011. 359. 17–37. https://doi.org/10.1144/SP359.2.

  44. Boulton C., Yao L., Faulkner D.R., Townend J., Toy V.G., Sutherland R., Ma S., Shimamoto T. High-velocity frictional properties of Alpine fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation // J. Structural Geology. 2017. V. 97. P. 71–92. https://doi.org/10.1016/j.jsg.2017.02.003

  45. Brodsky E.E., Ma K.F., Mori J. et al. Rapid Response Drilling: Past, Present, and Future // Scientific Drilling. 2009. V. 8. P. 66–74. https://doi.org/10.2204/iodp.sd.8.11.2009

  46. Budkov A.M., Kocharyan G.G. Experimental Study of Different Modes of Block Sliding along Interface. Part 3. Numerical Modeling // Physical Mesomechanics. 2017. V. 20. № 2. P. 203–208. https://doi.org/10.1134/S1029959917020102

  47. Bürgmann R. The Geophysics, geology and mechanics of slow fault slip // Earth and Planetary Science Letters. 2018. V. 495. P. 112–134. https://doi.org/10.1016/j.epsl.2018.04.062

  48. Byerlee J. Friction of rocks // Pure and Applied Geophysics. 1978. V. 116. P. 615–626. https://doi.org/10.1007/BF00876528

  49. Carpenter B.M., Marone C., Saffer D.M. Weakness of the San Andreas Fault revealed by samples from the active fault zone // Nature Geoscience. 2011. V. 4. № 4. P. 251–254. https://doi.org/10.1038/NGEO1089

  50. Carpenter B.M., Saffer D.M., Marone C. Frictional properties of the active San Andreas fault at SAFOD: implications for fault strength and slip behavior // J. Geophysical Research: Solid Earth. 2015. V. 120. № 7. P. 5273–5289. https://doi.org/10.1002/2015JB011963

  51. Chen X., Carpenter B.M., Reches Z. Asperity failure control of stick–slip along brittle faults // Pure and Applied Geophysics. 2020. V. 177. P. 3225–3242. https://doi.org/10.1007/s00024-020-02434-y

  52. Chen X., Madden A.S., Bickmore B.R., Reches Z. Dynamic weakening by nanoscale smoothing during high-velocity fault slip // Geology. 2013. V. 41. № 7. P. 739–742. https://doi.org/10.1130/G34169.1

  53. Chester F.M., Chester J.S. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California // Tectonophysics. 1998. V. 295. № 1–2. P. 199–221. https://doi.org/10.1016/S0040-1951(98)00121-8

  54. Chester J.S., Chester F.M. Kronenberg A.K. Fracture surface energy of the Punchbowl fault, San Andreas system // Nature. 2005. V. 437. P. 133–136. https://doi.org/10.1038/nature03942

  55. Chouneta A., Valléea M., Causseb M., Courboulex F. Global catalog of earthquake rupture velocities shows anticorrelation between stress drop and rupture velocity // Tectonophysics. 2017. V. 733. № 9. P. 148–158. https://doi.org/10.1016/j.tecto.2017.11.005

  56. Collettini C., Barchi M.R., De Paola N. et al. Rock and fault rheology explain differences between on fault and distributed seismicity // Nature Communications. 2022. V. 13. P. 1–11. https://doi.org/10.1038/s41467-022-33373-y

  57. Collettini C., Holdsworth R.E. Fault zone weakening processes along low-angle normal faults: insights from the Zuccale Fault, Isle of Elba, Italy // J. Geological Society. 2004. V. 161. P. 1039–1051. https://doi.org/10.1144/0016-764903-179

  58. Collettini C., Niemeijer A., Viti C., Marone C.J. Fault zone fabric and fault weakness // Nature. 2009. V. 462. № 7275. P. 907–910. https://doi.org/10.1038/nature08585

  59. Collettini C., Niemeijer A., Viti C., Smith S.A.F., Marone C. Fault structure, frictional properties and mixed-mode fault slip behavior // Earth and Planetary Science Letters. 2011. V. 311. № 3-4. P. 316–327. https://doi.org/10.1016/j.epsl.2011.09.020

  60. Collettini C., Tesei T., Scuderi M.M., Carpenter B.M., Viti C. Beyond Byerlee friction, weak faults and implications for slip behavior // Earth and Planetary Science Letters. 2019. V. 519. P. 245-263. https://doi.org/10.1016/j.epsl.2019.05.011

  61. Collettini C., Viti C., Smith S.A.F., Holdsworth R.E. The development of interconnected talc networks and weakening of continental low-angle normal faults // Geology. 2009. V. 37. № 6. P. 567–570. https://doi.org/10.1130/G25645A.1

  62. Collettini C., Viti C., Tesei S., Mollo S. Thermal decomposition along natural carbonate faults during earthquakes // Geology. 2013. V. 41. № 8. P. 927–930. https://doi.org/10.1130/G34421.1

  63. Collettini C., Carpenter B.M., Viti C., Cruciani F., Mollto S., Tesei T., Trippetta F., Valoroso L., Chiaraluce L. Fault structure and slip localization in carbon-ate bearing normal faults: an example from the Northern Apennines of Italy // J. Structural Geology. 2014. V. 67. P. 154–166. https://doi.org/10 .1016 /j.jsg.2014.07.017

  64. Cornelio C., Violay M. Effect of fluid viscosity on earthquake nucleation // Geophysical Research Letters. 2020. V. 47. № 12. https://doi.org/10.1029/2020GL087854

  65. De Barros L., Daniel G., Guglielmi Y., Rivet D., Caron H., Payre X., Gourlay M. Fault structure, stress, or pressure control of the seismicity in shale? Insights from a controlled experiment of fluid-induced fault reactivation // J. Geophysical Research: Solid Earth. 2016. V. 121. № 6. P. 4506–4522. https://doi.org/10.1002/2015JB012633

  66. Dębski W. Dynamic Stress Drop for Selected Seismic Events at Rudna Copper Mine, Poland // Pure and Applied Geophysics. 2018. V. 175. P. 4165–4181. https://doi.org/10.1007/s00024-018-1926-6

  67. De Paola N., Collettini C., Faulkner D.R., Trippetta F. Fault zone architecture and deformation processes within evaporitic rocks in the upper crust // Tectonics. 2008. V. 27. № 4. https://doi.org/10 .1029 /2007TC002230

  68. De Paola N., Holdsworth R.E., Viti C., Collettini C., Bullock R. Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation? // Earth and Planetary Science Letters. 2015. V. 431. P. 48–58. https://doi.org/10.1016/j.epsl.2015.09.002

  69. Dieterich J.H. Modeling of rock friction 1. Experimental results and constitutive equations // Journal of Geophysical Research: Solid Earth. 1979. V. 84. № B5. P. 2161–2168. https://doi.org/10.1029/JB084iB05p02161

  70. Domanski B., Gibowicz S.J. Comparison of source parameters estimated in the frequency and time domains for seismic events at the Rudna copper mine, Poland // Acta Geophysica. 2008. V. 56. P. 324–343. https://doi.org/10.2478/s11600-008-0014-1

  71. Ellsworth W., Malin P. (2011) Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves. Geological Society of London Special Publications 359, 39–53.

  72. Evans J.P., Chester F.M. Fluid-rock interaction in faults of the San Andreas system: inferences from San Gabriel fault rock geochemistry and microstructures // J. Geophysical Research: Solid Earth. 1995. V. 100. № B7. P. 13007–13020.

  73. Fagereng A., Toy V.G., Rowland J.V. Geology of the Earthquake Source: A Volume in Honour of Rick Sibson. London: Geological Society. 2011. V. 359. https://doi.org/10.1144/SP359

  74. Fagereng Å. Frequency size distribution of competent lenses in a block-inmatrix mélange: Imposed length scales of brittle deformation? // J. Geophysical Research. 2011. V. 116. № B5. https://doi.org/10.1029/2010JB007775

  75. Fagereng A., Cooper A.F. The metamorphic history of rocks buried, accreted and exhumed in an accretionary prism: an example from the Otago Schist, New Zealand // J. Metamorphic Geology. 2010. V. 28. № 9. P. 935–954. https://doi.org/10.1111/j.1525-1314.2010.00900.x

  76. Fagereng Å., Ikari M.J. Low temperature frictional characteristics of chloriteepidote amphibole assemblages: Implications for strength and seismic style of retrograde fault zones // J. Geophysical Research: Solid Earth. 2020. V. 125. № 4. https://doi.org/10.1029/2020JB019487

  77. Fagereng A., Sibson R.H. Melange rheology and seismic style // Geology. 2010. V. 38. № 8. P. 751–754. https://doi.org/10.1130/G30868.1

  78. Faulkner D.R., Jackson C.A.L., Lunn R.J., Schlische R.W., Shipton Z.K., Wibberley C.A.J., Withjack M.O. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones // Journal of Structural Geology. 2010. V. 32. № 11. P. 1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009

  79. Faulkner D.R., Mitchell T.M., Rutter E.H., Cembrano J. On the structure and mechanical properties of large strike-slip faults // Geological Society, London, Special Publications. 2008. V. 299. P. 139–150. https://doi.org/10.1144/SP299.9

  80. Faulkner D.R., Lewis A.C., Rutter E.H. On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeaster Spain. Tectonophysics. 2003. V. 367. № 3–4. P. 235–251. https://doi.org/10.1016/S0040-1951(03)00134-3

  81. Fondriest M., Smith S.A.F., Candela T., Nielsen S.B., Mair K., Di Toro G. Mirror-like faults and power dissipation during earthquakes. Geology. 2013. V 41. № 11. P. 1175–1178. https://doi.org/10 .1130 /G34641.1

  82. Filippov A.E., Popov V.L., Psakhie S.G., Ruzhich V.V., Shilko E.V. Converting Displacement Dynamics into Creep in Block Media // Technical Physics Letters. 2006. V. 32. P. 545–549. https://doi.org/10.1134/S1063785006060290

  83. Fossum A.F., Freund L.B. Nonuniformly moving shear crack model of a shallow focus earthquake mechanism // J. Geophysical Research. 1975. V. 80. № 23. P. 3343–3347. https://doi.org/10.1029/JB080i023p03343

  84. Guglielmi Y., Cappa F., Avouac J.-P., Henry P., Elsworth D. Seismicity triggered by fluid injection-induced aseismic slip // Science. 2015. V. 348. № 6240. P. 1224–1226. https://doi.org/10.1126/science.aab0476

  85. Hayman N.W. Shallow crustal rocks from the Black Mountains detachments, Death Valley, CA // J. Structural Geology. 2006. V. 28. № 10. P. 1767–1784. https://doi.org/10.1016/j.jsg.2006.06.017

  86. He C., Wang Z., Yao W. Frictional sliding of gabbro gouge under hydrothermal conditions // Tectonophysics. 2007. V. 445. № 3–4. P. 353–362. https://doi.org/10.1016/j.tecto.2007.09.008

  87. He C., Yao W., Wang Z., Zhou Y. Strength and stability of frictional sliding of gabbro gouge at elevated temperatures // Tectonophysics. 2006. V. 427. № 1–4. P. 217–229. https://doi.org/10.1016/j.tecto.2006.05.023

  88. Heesakkers V., Muphy S., Reches Z. Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa // Pure and Applied Geophysics. 2011. V. 168. P. 2395–2425. https://doi.org/10.1007/s00024-011-0354-7

  89. Hirose T., Hamada Y., Tanikawa W., Kamiya N., Yamamoto Y., Tsuji T. et al. High fluid-pressure patches beneath the décollement: A potential source of slow earthquakes in the Nankai Trough off Cape Muroto // J. Geophysical Research: Solid Earth. 2021. V. 126. № 6. https://doi.org/10.1029/2021JB021831

  90. Holdsworth R.E., van Diggelen E.W.E., Spiers C.J., de Bresser J.H.P., Walker R.J., Bowen L. Fault rocks from the SAFOD core samples: implications for weakening at shallow depths along the San Andreas Fault, California // J. Structural Geology. 2011. V. 33. № 3. P. 132–144. https://doi.org/10.1016/j.jsg.2010.11.010

  91. Ida Y. Cohesive force across the tip of a longitudinal shear crack and Griffith’s specific surface energy // J.Geophysical Research. 1972. V. 77. P. 3796–3805. https://doi.org/10.1029/JB077I020P03796

  92. Ide S., Beroza G.C., Shelly D.R., Uchide T. A scaling law for slow earthquakes // Nature. 2007. V. 447. P. 76–79. https://doi.org/10.1038/nature05780

  93. Ikari M.J., Kameda J., Saffer D.M., Kopf A.J. Strength characteristics of Japan Trench borehole samples in the high-slip region of the 2011 Tohoku-Oki earthquake // Earth and Planetary Sciences Letters. 2015. V. 412. P. 35–41. https://doi.org/10.1016/j.epsl.2014.12.014

  94. Ikari M.J., Marone C., Saffer D.M. On the relation between fault strength and frictional stability // Geology. 2010. V. 39. № 1. P. 83–86. https://doi.org/10.1130/G31416.1

  95. Ikari M.J., Marone C., Saffer D.M., Kopf A.J. Slip weakening as a mechanism for slow earthquakes // Nature Geoscience. 2013. V. 6. P. 468–472. https://doi.org/10.1038/NGEO18198

  96. Ikari M.J., Saffer D.M. Comparison of frictional strength and velocity dependence between fault zones in the Nankai accretionary complex // Geochemistry, Geophysics, Geosystems. 2011. V. 12. № 4. https://doi.org/10.1029/2010gc003442

  97. Ikari M.J., Saffer D.M., Marone C. Frictional and hydrologic properties of clay-rich fault gouge // J. Geophysical Research. 2009. V. 114. № B5. https://doi.org/10.1029 /2008JB006089

  98. Ikari M.J., Saffer D.M., Marone C. Effect of hydration state on the frictional properties of montmorillonite-based fault gouge // J. Geophysical Research Atmospheres. 2007. V. 112. № B6. https://doi.org/10.1029/2006jb004748

  99. Im K., Saffer D., Marone C. Avouac J.P. Slip-rate-dependent friction as a universal mechanism for slow slip events // Nature Geoscience. 2020. V. 13. № 10. P. 705–710. https://doi.org/10.1038/s41561-020-0627-9

  100. Imanishi K., Takeo M., Ellsworth W.L., Ito H., Matsuzawa T., Kuwahara Y., Iio Y., Horiuchi S., Ohmi S. Source parameters and rupture velocities of microearthquakes in western Nagano, Japan, determined using stopping phases // Bulletin of the Seismological Society of America. 2004. V. 94. № 5. P. 1762–1780. https://doi.org/10.1785/012003085

  101. Janku-Capova L., Sutherland R., Townend J., Doan M.L., Massiot C., Coussens J., Celerier B. Fluid flux in fractured rock of the Alpine fault hanging-wall determined from temperature logs in the DFDP-2B borehole, New Zealand // Geochemistry, Geophysics, Geosystems. 2018. V. 19. № 8. P. 2631-2646. https://doi.org/10.1029/2017GC007317

  102. Jefferies S.P., Holdsworth R.E., Wibberley C.A.J., Shimamoto T., Spiers C.J., Niemeijer A.R., Lloyd G.E. The nature and importance of phyllonite development in crustal-scale fault cores: an example from the Median Tectonic Line, Japan // J. Structural Geology. 2006. V. 28. № 2. P. 220–235. https://doi.org/10.1016/j.jsg.2005.10.008

  103. Jeppson T.N., Bradbury K.K., Evans J.P. Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure // J. Geophysical Research: Solid Earth. 2010. V. 115. № B12. https://doi.org/10.1029/2010JB007563

  104. Ji Y., Hofmann H., Duan K., Zang A. Laboratory experiments on fault behavior towards better understanding of injection-induced seismicity in geoenergy systems // Earth-Science Reviews. 2022. V. 226. № 1. https://doi.org/10.1016/j.earscirev.2021.103916

  105. Kaduri M., Gratier J.P., Renard F., Çakir Z., Lasserre C. The implications of fault zone transformation on aseismic creep: example of the North Anatolian Fault, Turkey // J. Geophysical Research: Solid Earth. 2017. V. 122. № 6. https://doi.org/10 .1002 /2016JB013803

  106. Kanamori H., Brodsky E.E. The physics of earthquakes // Reports on Progress in Physics. 2004. V. 67. P. 1429–1496. https://doi.org/10.1088/0034-4885/67/8/R03

  107. Kanamori H., Hauksson E. A slow earthquake in the Santa Maria Basin, California // Bulletin of the Seismological Society of America. 1992. V. 82. № 5. P. 2087-2096. https://doi.org/10.1785/BSSA0820052087

  108. Kameda J., Yamaguchi A., Saito S., Sakuma H., Kawamura K., Kimura G. A new source of water in seismogenic subduction zones // Geophysical Research Letters. 2011. V. 38. № 22. https://doi.org/10.1029/2011gl048883

  109. Kanamori H., Stewart G.S. Seismological aspects of the Guatemala earthquake of February 4, 1976 // J. Geophysical Research: Solid Earth. 1978. V. 83. № B7. P. 3427–3434. https://doi.org/10.1029/JB083iB07p03427

  110. Kang J.Q., Zhu J.B., Zhao J. A review of mechanisms of induced earthquakes: from a view of rock mechanics // Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2019. V. 5. № 2. P. 171–196. https://doi.org/10.1007/s40948-018-00102-z

  111. Kawai K., Sakuma H., Katayama I., Tamura K. Frictional characteristics of single and polycrystalline muscovite and influence of fluid chemistry // J. Geophysical Research: Solid Earth. 2015. V. 120. № 9. P. 6209–6218. https://doi.org/10.1002/2015JB012286

  112. Kilgore B., Blanpied M.L., Dieterich J.H. Velocity dependent friction of granite over a wide range of conditions // Geophysical Research Letters. 1993. V. 20. № 10. P. 903–906. https://doi.org/10.1029/93GL00368

  113. Kimura G., Yamaguchi A., Hojo M., Kitamura Y., Kameda J., Ujiie K., Hamada Y., Hamahashi M., Hina S. Tectonic mélange as fault rock of subduction plate boundary // Tectonophysics. 2012. V. 568–569. P. 25–38. https://doi.org/10.1016 /j.tecto.2011.08.025

  114. Kocharyan G.G., Kishkina S.B. The Physical Mesomechanics of the Earthquake Source // Physical Mesomechanics. 2021. V. 24. P. 343–356. https://doi.org/10.1134/s1029959921040019

  115. Kocharyan G.G., Novikov V.A. Experimental study of different modes of block sliding along interface. Part 1. Laboratory experiments // Physical Mesomechanics. 2016. V. 9. № 2. P. 189–199. https://doi.org/10.1134/S1029959916020120

  116. Kocharyan G.G., Novikov V.A., Ostapchuk A.A., Pavlov D.V. A study of different fault slip modes governed by the gouge material composition in laboratory experiments // Geophysical J. International. 2017. V. 208. № 1. P. 521–528. https://doi.org/10.1093/gji/ggw409

  117. Kuo L.W., Li H., Smith S.A.F, Di Toro G., Suppe J., Song S.R., Nielsen S., Sheu H.S., Si J. Gouge graphitization and dynamic fault weakening during the 2008 Mw = 7.9 Wenchuan earthquake // Geology. 2014. V. 42. № 1. P. 47–50. https://doi.org/10.1130/G34862.1

  118. Kuo L.W., Huang J.R., Fang J.N., Si J., Li H., Song S.R. Carbonaceous Materials in the Fault Zone of the Longmenshan Fault Belt: 1. Signatures within the Deep Wenchuan Earthquake Fault Zone and Their Implications // Minerals. 2018. V. 8. № 9. P. 1–13. https://doi.org/10.3390/min8090385

  119. Kwiatek G., Plenkers K., Dresen G. Source parameters of picoseismicity recorded at Mponeng deep gold mine, South Africa: implications for scaling relations // Bulletin of the Seismological Society of America. 2011. V. 101 № 6. P. 2592–2608. https://doi.org/10.1785/0120110094

  120. Lachenbruch A.H., Sass J.H. The stress heat-flow paradox and thermal results from Cajon Pass. // Geophysical Research Letters. 1988. V. 15. № 9. P. 981–984. https://doi.org/10.1029/gl015i009p00981

  121. Lacroix B., Buatier M., Labaume P., Travè A., Dubois M., Charpentier D., Ventalon S., Convert-Gaubier D. Microtectonic and geochemical characterization of thrusting in a foreland basin: Example of the South-Pyrenean orogenic wedge (Spain) // J. Structural Geology. 2011. V. 33. № 9. P. 1359–1377. https://doi.org/10.1016/j.jsg.2011.06

  122. Lacroix B., Tesei T., Oliot E., Lahfid A., Collettini C. Early weakening processes inside thrust fault // Tectonics. 2015. V. 34. № 7. P. 1396–1411. https://doi.org/10.1002/2014TC003716

  123. Leah H., Fagereng Å., Groome N., Buchs D., Eijsink A., Niemeijer A. Heterogeneous Subgreenschist Deformation in an Exhumed Sediment-Poor Mélange // J. Geophysical Research: Solid Earth. 2022. V. 127. № 8. https://doi.org/10.1029/2022JB024353

  124. Lin A. Thermal pressurization and fluidization of pulverized cataclastic rocks formed in seismogenic fault zones // J. Structural Geology. 2019. V. 125. P. 278–284. https://doi.org/10.1016/j.jsg.2017.12.010

  125. Lin A., Maruyama T., Kobayashi K. Tectonic implications of damage zone-related fault-fracture networks revealed in drill core through the Nojima Fault, Japan // Tectonophysics. 2007. V. 443. № 3–4. P. 161–173. https://doi.org/10.1016/j.tecto.2007.01.011

  126. Lin A., Nishiwaki T. Repeated seismic slipping events recorded in a fault gouge zone:Evidence from the Nojima fault drill holes, SW Japan // Geophysical Research Letters. 2019. V. 46. № 3. P. 1276–1283. https://doi.org/10.1029/2019GL081927

  127. Lockner D.A., Morrow C., Moore D., Hickman S. Low strength of deep San Andreas fault gouge from SAFOD core // Nature. 2011. V. 472. P. 82–85. https://doi.org/10.1038/nature09927

  128. Lockner D.A., Tanaka H., Ito H., Ikeda R., Omura K., Naka H. Geometry of the Nojima Fault at Nojima-Hirabayashi, Japan – I. A simple damage structure inferred from Borehole Core Permeability // Pure and Applied Geophysics. 2009. V. 166. P. 1649–1667. https://doi.org/10.1007/s00024-009-0515-0

  129. Ma K.-F., Brodsky E.E., Mori J., Ji C., Song T.-R.A., Kanamori H. Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (Mw7.6) // Geophys. Res. Lett. 2003. 30(5). 1244. https://doi.org/10.1029/2002GL015380

  130. Manatschal G. Fluid-and reaction-assisted low-angle normal faulting: evidence from rift-related brittle fault rocks in the Alps (Err nappe, eastern Switzerland) // J. Structural Geology. 1999. V. 21. № 7. P. 777–793. https://doi.org/10.1016/S0191-8141(99)00069-3

  131. Marone C., Raleigh C.B., Scholz C.H. Frictional behavior and constitutive modeling of simulated fault gouge // J. Geophysical Research Atmospheres. 1990. V. 95. № B5. P. 7007–7025. https://doi.org/10.1029/JB095iB05p07007

  132. Marti S., Stünitz H., Heilbronner R., Plümper O., Drury M. Experimental investigation of the brittle-viscous transition in mafic rocks – Interplay between fracturing, reaction, and viscous deformation // Journal of Structural Geology. 2017. V. 105. P. 62–79. https://doi.org/10.1016/j.jsg.2017.10.011

  133. McNeil L.C., Shillington D.J., Garter G.D.O. et al. Corinth Active Rift Development // Proceedings of the International Ocean Discovery Program. 2019. V. 381. https://doi.org/10.14379/iodp.proc.381.2019

  134. Meneghini F., Moore J.C. Deformation and hydrofracture in a subduction thrust at seismogenic depths: the Rodeo Cove thrust zone, Marin Headlands, California // Geological Society of America Bulletin. 2008. V. 119. № 1–2. P. 174–183. https://doi.org/10.1130/B25807.1

  135. Moore D.E. Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals // J. Geophysical Research Atmospheres. 2004. V. 109. № B3. https://doi.org/10.1029/2003jb002582

  136. Moore D.E., Lockner D.A. Chemical controls on fault behavior: Weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system // J. Geophysical Research: Solid Earth. 2013. V. 118. № 5. P. 2558–2570. https://doi.org/10.1002/jgrb.50140

  137. Moore D.E., Lockner D.A. Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals // J. Geophysical Research: Solid Earth. 2004. V. 109. № B3. https://doi.org/10.1029/2003JB002582

  138. Moore D.E., Lockner D.A. Frictional strengths of talc-serpentinite and talc-quartz mixtures // J. Geophysical Research: Solid Earth. 2011. V. 116. № B1. https://doi.org/10.1029/2010JB07881

  139. Moore D.E., Lockner D.A. Weakening of Peridotite Sheared at Hydrothermal Conditions // Geochemistry, Geophysics, Geosystems. 2021. V. 22. № 11. https://doi.org/10.1029/2021GC010005

  140. Moore D.E., Lockner D.A., Hickman S. Hydrothermal frictional strengths of rock and mineral samples relevant to the creeping section of the San Andreas Fault // J. Structural Geology. 2016. V. 89. P. 153–167. https://doi.org/10.1016/j.jsg.2016.06.005

  141. Morley C.K., von Hage C., Hansberry R.L., Collins A.S., Kanitpanyacharoen W., King R. Review of major shale-dominated detachment and thrust charac-teristics in the diagenetic zone: Part I, meso-and macro-scopic scale // Earth-Sci. 2017. Rev.173. P. 168–228. https://doi.org/10 .1016/j .earscirev.2017.07.019

  142. Niemeijer A.R., Collettini C. Frictional Properties of a Low-Angle Normal Fault Under In Situ Conditions: Thermally-Activated Velocity Weakening // Pure and Applied Geophysics. 2014. V. 171. № 10. P. 2641–2664. https://doi.org/10.1007/s00024-013-0759-6

  143. Okamoto A.S., Verberne B.A., Niemeijer A.R., Takahashi M., Shimizu I., Ueda T., Spiers C.J. Frictional properties of simulated chlorite gouge at hydrothermal conditions: Implications for subduction megathrusts // J. Geophysical Research: Solid Earth. 2019. V. 124. P. 4545–4565. https://doi.org/10.1029/2018JB017205

  144. Okamoto A., Niemeijer A.R., Takeshita T., Verberne B.A., Spiers C.J. Frictional properties of actinolite-chlorite gouge at hydrothermal conditions // Tectonophysics. 2020. V. 779. https://doi.org/10.1016/j.tecto.2020.228377

  145. Okazaki K, Katayama I, Takahashi M. Effect of pore fluid pressure on the frictional strength of antigorite serpentinite // Tectonophysics. 2013. V. 583. P. 49–53. https://doi.org/10.1016/j.tecto.2012.10.017

  146. Ostapchuk A.A., Morozova K.G., Markov V.K., Pavlov D.V., Popov M. Acoustic emission reveals multiple slip modes on a frictional fault // Frontiers in Earth Science. 2021. V. 9. https://doi.org/10.3389/feart.2021.657487

  147. Ostapchuk A.A., Polyatykin V.V., Popov M.F., Kocharyan G.G. Seismogenic Patches in a Tectonic Fault Interface // Frontiers in Earth Science. 2022. V. 10. https://doi.org/10.3389/feart.2022.904814

  148. Pec M., Stünitz H., Heilbronner R., Drury M. Semi-brittle flow of granitoid fault rocks in experiments // J. Geophysical Research. Solid Earth. 2016. V. 121. № 3. P. 1677–1705. https://doi.org/10.1002/2015JB012513

  149. Peng Z., Gomberg J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena // Nature Geoscience. 2010. V. 3. № 9. P. 599–607. https://doi.org/10.1038/ngeo940

  150. Perrin C., Manighetti I., Ampuero J.P., Cappa F., Gaudemer Y. Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth // J. Geophysical Research: Solid Earth. 2016. V. 121. № 5. P. 3666–3685. https://doi.org/10.1002/2015JB012671

  151. Proctor B., Lockner D.A., Kilgore B.D., Mitchell T.M., Beeler N.M. Direct evidence for fluid pressure, dilatancy, and compaction affecting slip in isolated faults // Geophysical Research Letters. 2020. V. 47. № 16. https://doi.org/10.1029/2019GL086767

  152. Proctor B., Mitchell T.M., Hirth G., Goldsby D., Zorzi F., Di Toro G. Dynamic weakening of serpentinite gouges and bare-surfaces at seismic slip rates // J. Geophysical Research: Solid Earth. 2014. V. 119. № 11. P. 8107–8131. https://doi.org/10.1002/2014JB011057

  153. Rabinowitz H. S., Savage H.M., Skarbek R.M., Ikari M.J., Carpenter B.M., Collettini C. Frictional behavior of input sediments to the Hikurangi trench, New Zealand // Geochemistry, Geophysics, Geosystems. 2018. V. 19. № 9. P. 2973–2990.https://doi.org/10.1029/2018GC007633

  154. Rice J.R. Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault // International Geophysics. 1992. V. 51. P. 475–504. https://doi.org/10.1016/S0074-6142(08)62835-1

  155. Rice J.R., Ruina A.L. Stability of Steady Frictional Slipping // J. Applied Mechanics. 1983. V. 50. № 2. https://doi.org/10.1115/1.3167042

  156. Renard F., Ortoleva P. Water films at grain-grain contacts: Debye-Hueckel, osmotic model of stress, salinity, and mineralogy dependence // Geochimica et Cosmochimica Acta. 1997. V. 61. № 10. P. 1963–1970. https://doi.org/10.1016/S0016-7037(97)00036-7

  157. Rowe C.D., Fagereng Å., Miller J.A., Mapani B. Signature of coseismic decarbonation in dolomitic fault rocks of the Naukluft Thrust, Namibia // Earth and Planetary Science Letters. 2012. V. 333-334. P. 200–210. https://doi.org/10.1016/j.epsl.2012.04.030

  158. Rowe C.D., Moore C.J., Remitti F. The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone // Geology. 2013. V. 41. № 9. P. 991–994. https://doi.org/10.1130/G34556.1

  159. Ruggieri R., Scuderi M.M., Trippetta F., Tinti E., Brignoli M., Mantica S., Petroselli S., Osculati L., Volontè G., Collettini C. The role of shale content and pore-water saturation on frictional properties of simulated carbonate faults // Tectonophysics. 2021. V. 807. https://doi.org/10.1016/j.tecto.2021.228811

  160. Ruina A. Slip instability and state variable friction laws // J. Geophysical Research. 1983. V. 88. № NB12. P. 359–370. https://doi.org/10.1029/JB088iB12p10359

  161. Rutter E.H., Faulkner D.R., Burgess R. Structure and geological history of the Carboneras Fault Zone, SE Spain: part of a stretching transform fault system // J. Structural Geology. 2012. V. 45. P. 68–86. https://doi.org/10.1016/j.jsg.2012.08.009

  162. Sagy A., Brodsky E.E., Axen G.J. Evolution of fault-surface roughness with slip // Geology. 2007. V. 35. № 3. P. 283–286. https://doi.org/10.1130/G23235A.1

  163. Savage H.M., Kirkpatrick J.D., Mori J.J., Brodsky E.E., Ellsworth W.L., Carpenter B.M., Chen X., Cappa F., Kano Y. Scientific Exploration of Induced Seismicity and Stress (SEISMS) // Scientific Drilling. 2017. 23. P. 57–63. https://doi.org/10.5194/sd-23-57-2017

  164. Schleicher A.M., van der Pluijm B., Warr L.N. Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California // Geology. 2010. V. 38. № 7. P. 667–670. https://doi.org/10.1130/G31091.1

  165. Scholz C. H. The mechanics of earthquakes and faulting. Cambridge: Cambridge University Press. 2019. 512 p. https://doi.org/10.1017/9781316681473

  166. Schoenball M., Ellsworth W.L. A systematic assessment of the spatio-temporal evolution of fault activation through induced seismicity in Oklahoma and southern Kansas // J. Geophysical Research: Solid Earth. 2017. V. 122. № 12. https://doi.org/10.1002/2017JB014850

  167. Scuderi M.M., Collettini C. The role of fluid pressure in induced vs. triggered seismicity: Insights from rock deformation experiments on carbonates // Scientific reports. 2016. V. 6. № 1. P. 1–9. https://doi.org/10.1038/srep24852

  168. Segall P., Rubin A.M., Bradley A.M., Rice J.R. Dilatant strengthening as a mechanism for slow slip events // J. Geophysical Research: Solid Earth. 2010. V. 115. № B12. https://doi.org/10. 1029/2010jb007449

  169. Shimamoto T., Logan J.M. Effects of simulated fault gouge on the sliding behavior of Tennessee sandstone: nonclay gouges // J. Geophysical Research. 1981. V. 86. № B4. P. 2902–2914. https://doi.org/10.1029/JB086IB04P02902

  170. Sibson R.H. Fault rocks and fault mechanisms // J. Geological Society. 1977. V. 133. P. 191–213. https://doi.org/10.1144/gsjgs.133.3.0191

  171. Sibson R.H. Implications of fault-valve behaviour for rupture nucleation and recurrence // Tectonophysics. 1992. V. 211. № 1–4. P. 283–293. https://doi.org/10 .1016 /0040-1951(92) 90065-E

  172. Sibson R.H. Thickness of the Seismic Slip Zone // Bulletin of the Seismological Society of America. 2003. V. 93. № 3. P. 1169–1178. https://doi.org/10.1785/0120020061

  173. Smith S.A.F., Bistacchi A., Mitchell T.M., Mittempergher S., di Toro G. The structure of an exhumed intraplate seismogenic fault in crystalline basement // Tectonophysics. 2013. V. 599. P. 29–44. https://doi.org/10.1016/j.tecto.2013.03.031

  174. Smith S.A.F., Tesei T., Scott J.M., Collettini C. Reactivation of normal faults as high-angle reverse faults due to low frictional strength: experimental data from the Moonlight Fault Zone, New Zealand // J. Structural Geology. 2017. V. 105. P. 34–43. https://doi.org/10.1016/j.jsg.2017.10.009

  175. Solum G.S., van der Pluijm B.A. Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behavior // Tectonophysics. 2009. V. 475. № 3–4. P. 554–562. https://doi.org/10.1016/j.tecto.2009.07.006

  176. Summers R., Byerlee J. A note on the effect of fault gouge composition on the stability of frictional sliding // International J. Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1977. V. 14. № 3. P. 155–160. https://doi.org/10.1016/0148-9062(77)90007-9

  177. Sutherland R., Townend J., Toy V.G., Upton P., Coussens J., Allen M. et al. Extreme hydrothermal conditions at an active plate-bounding fault // Nature. 2017. V. 546. № 7656. P. 137–140. https://doi.org/10.1038/nature22355

  178. Tarling M.S., Smith S.A.F., Viti C., Scott J.M. Dynamic earthquake rupture preserved in a creeping serpentinite shear zone // Nature Communications. 2018. V. 9. № 1. https://doi.org/10.1038/s41467-018-05965-0

  179. Tesei T., Collettini C., Barchi M.R., Carpenter B.M., Di Stefano G. Heterogeneous strength and fault zone complexity of carbonate-bearing thrusts with possible implications for seismicity // Earth and Planetary Science Letters. 2014. V. 408. P. 307–318. https://doi.org/10.1016/j.epsl.2014.10.021

  180. Tesei T., Collettini C., Viti C., Barchi M.R. Fault architecture and deformation mechanisms in exhumed analogues of seismogenic carbonate-bearing thrusts // J. Structural Geology. 2013. V. 55. P. 167–181. https://doi.org/10.1016/j.jsg.2013.07.007

  181. Tesei T., Harbord C.W.A., De Paola N., Collettini C., Viti C. Friction of mineralogically controlled serpentinites and implications for fault weakness // J. Geophysical Research: Solid Earth. 2018. V. 123. № 8. https://doi.org/10.1029/2018JB016058

  182. Tesei T., Lacroix B., Collettini C. Fault strength in thin-skinned tectonic wedges across the smectite-illite transition: constraints from friction experiments and critical tapers // Geology. 2015. V. 43. № 10. P. 923–926. https://doi.org/10.1130/G36978.1

  183. Thomas A.M., Beroza G.C., Shelly D.R. Constraints on the source parameters of low-frequency earthquakes on the San Andreas Fault // Geophysical Research Letters. 2016. V. 43. P. 1464–1471. https://doi.org/10.1002/2015GL067173

  184. Townend J., Zoback M.D. How faulting keeps the crust strong // Geology. 2000. V. 28. P. 399–402. https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2

  185. Toy V.G., Boulton C.J., Sutherland R. et al. Fault rock lithologies and architecture of the central Alpine fault, New Zealand, revealed by DFDP-1 drilling // Lithosphere. 2015. V. 7. № 2. P. 155–173. https://doi.org/10.1130/L395.1

  186. Uchida N., Burgmann R. Repeating earthquakes // Annual Review of Earth and Planetary Sciences. 2019. V. 47. № 1. P. 305–332. https://doi.org/10.1146/annurev-earth-053018-060119

  187. Urbancic T.I., Trifu C-I, Young R.P. Stress release estimates, scaling behavior, and source complexities of mircoseismic events. Rockbursts and seismicity in mines. London: CRC Press. 1993. P. 255–260.

  188. Verberne B.A., He C., Spiers C.J. Frictional properties of sedimentary rocks and natural fault gouge from the longmen shan fault zone, Sichuan, China // Bulletin of the Seismological Society of America. 2010. V. 100. № 5B. P. 2767–2790. https://doi.org/10.1785/0120090287

  189. Verberne B.A., Niemeijer A.R., De Bresser J.H.P., Spiers C.J. Mechanical behavior and microstructure of simulated calcite fault gouge sheared at 20–600°C: Implications for natural faults in limestones // J. Geophysical Research. Solid Earth. 2015. V. 120. № 12. P. 8169–8196. https://doi.org/10.1002/ 2015JB012292

  190. Viti C., Collettini C., Tesei T. Pressure solution seams in carbonatic fault rocks: mineralogy, micro/nanostructure and deformation mechanism // Contributions to Mineralogy and Petrology. 2014. V. 167. № 2. https://doi.org/10.1007/s00410-014-0970-1

  191. Viti C., Collettini C., Tesei T., Tarling M., Smith S.A.F. Deformation processes, textural evolution and weakening in retrograde serpentinites // Minerals. 2018. V. 8. № 6. 241. https://doi.org/10.3390/min8060241

  192. Volpe G., Pozzi G., Carminati E., Barchi M.R., Scuderi M.M., Tinti E., Aldega L., Marone C., Collettini C.: Frictional controls on the seismogenic zone: Insights from the Apenninic basement, Central Italy // Earth and Planetary Science Letters. 2022. V. 583. https://doi.org/10.1016/j.epsl.2022.117444

  193. Wallis D., Lloyd G.E., Phillips R.J., Parsons A.J., Walshaw R.D. Low effective fault strength due to frictional-viscous flow in phyllonites, Karakoram Fault Zone, NW India // J. Structural Geology. 2015. V. 77. P. 45–61. https://doi.org/10.1016/j.jsg.2015.05.010

  194. Walsh F.R., Zoback M.D. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to north-central Oklahoma, USA // Geology. 2016. V. 44. № 12. P. 991–994. https://doi.org/10.1130/G38275.1

  195. Walter J.I., Svetlizky I., Fineberg J., Brodsky E.E., Tulaczyk S., Barcheck C.G., Carter S.P. Rupture speed dependence on initial stress profiles: Insights from glacier and laboratory stick-slip // Earth and Planetary Science Letters. 2015. V. 411. № B9. P. 112–120. https://doi.org/10.1016/j.epsl.2014.11.025

  196. Warr L.N., Wojatschke J., Carpenter B.M., Marone C., Schleicher A.N., van der Pluijm B.A. A “slice-and-view” (FIB-SEM) study of clay gouge from the SAFOD creeping section of the San Andreas Fault at ~2.7 km depth // J. Structural Geology. 2014. V. 69. P. 234–244. https://doi.org/10.1016/j.jsg.2014.10.006

  197. Wibberley C.A.J. Initiation of basement thrust detachments by fault-zone re-action weakening // Geological Society London Special Publications. 2005. V. 245. № 1. P. 347–372. https://doi.org/10.1144/GSL.SP.2005.245.01.17

  198. Wibberley C.A.J., Shimamoto T. Internal structure and permeability of major-slip fault zones: the Median Tectonic Line in Mie Prefecture, Southwest Japan // J. Structural Geology. 2003. V. 25. № 1. P. 59–78. https://doi.org/10.1016/S0191-8141(02)00014-7

  199. Wibberley C.A.J., Yielding G., Di Toro G. Recent advances in the under-standing of fault zone internal structure; a review // Geological Society of London Special Publications. 2008. V. 299. P. 5–33. https://doi.org/10.1144/SP299.2

  200. Woodcock N., Mort K. Classification of fault breccias and related fault rocks // Geological Magazine. 2008. V. 145. № 3. P. 435–440. https://doi.org/10.1017/S0016756808004883

  201. Xing T., Zhu W., French M., Belzer B. Stabilizing effect of high pore fluid pressure on slip behaviors of gouge- bearing faults // J. Geophysical Research: Solid Earth. 2019. V. 124. № 14. P. 9526–9545. https://doi.org/10.1029/2019JB018002

  202. Xu Z., Li H. The Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project // Earthquake and Disaster Risk: Decade Retrospective of the Wenchuan Earthquake. Singapore: Springer. 2019. P 69-105. https://doi.org/10.1007/978-981-13-8015-0_3

  203. Yamanaka Y., Kikuchi M. Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data // J. Geophysical Research: Solid Earth. 2004. V. 109. № B7. https://doi.org/10.1029/2003JB002683

  204. Yu H., Harrington R.M., Kao H. et al. Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip // Nature Communications. 2021. V. 12. № 6862. https://doi.org/10.1038/s41467-021-26961-x

  205. Zoback M.D. Reservoir Geomechanics. Cambridge: Cambridge University Press. 2010. 449 p.

  206. Zoback M., Hickman S., Ellsworth W. Scientific drilling into the San Andreas fault zone // Eos. Transactions American Geophysical Union. 2010. V. 91. № 22. P. 197–204. https://doi.org/10.2204/iodp.sd.11.02.2011

  207. Zoback M.D., Zoback M.L. State of stress in the Earth’s lithosphere // International handbook of earthquake and engineering seismology, Part A. Amsterdam: Academic Press. 2002. P. 559–568.

Дополнительные материалы отсутствуют.