Известия РАН. Серия биологическая, 2023, № 8-suppl, стр. 16-24

От пространственного распределения к экологической нише: вопросы моделирования в рамках корреляционного подхода

Р. Х. Пшегусов *

Институт экологии горных территорий им. А.К. Темботова РАН
360051 Нальчик, ул. И. Арманд, 37а, Россия

* E-mail: p_rustem@inbox.ru

Поступила в редакцию 25.09.2023
После доработки 29.09.2023
Принята к публикации 02.10.2023

Аннотация

Одной из важнейших задач в современной теории экологии является формализация экологической ниши. Развитие методов пространственного анализа и доступность глобальных баз данных по биоразнообразию и параметрам окружающей среды предоставляют беспрецедентную возможность для комплексного учета компонентов экологической ниши в рамках корреляционного подхода к моделированию. В работе представлены способы формализации биотических, пространственных (доступность среды) и антропогенных ограничений распространения биологических объектов (компонентов экологической ниши) при построении SDM (Species distribution modeling) и ENM (Ecological niche modeling) моделей.

Ключевые слова: корреляционный подход, моделирование, экологическая ниша, BAM-диаграмма, SDM, ENM

Список литературы

  1. Лисовский А.А., Дудов С.В., Оболенская Е.В. Преимущества и ограничения использования методов экологического моделирования ареалов. 1. Общие подходы // Журн. общ. биол. 2020. Т. 81(2). С. 123–134. https://doi.org/10.31857/S0044459620020049

  2. Лисовский А.А., Дудов С.В. Преимущества и ограничения методов экологического моделирования ареалов. 2. MaxEnt // Журн. общ. биол. 2020. Т. 81. С. 135–146. https://doi.org/10.31857/S0044459620020049

  3. Окунев И.Ю. Основы пространственного анализа. М.: Аспект Пресс, 2020. 255 с.

  4. Пузаченко Ю.Г. Математические методы в экологических и географических исследованиях. М.: ACADEMIA, 2004. 416 с.

  5. Пшегусов Р.Х., Чадаева В.А. Комплексный подход учета экологических факторов в моделях современного распределения и климатогенной динамики Ambrosia artemisiifolia L. на Кавказе // РЖБИ. 2023. № 3. С. 149–167. https://doi.org/10.35885/1996-1499-16-3-149-167

  6. Хлебосолов Е.И. Теория экологической ниши: история и современное состояние // Русский орнитологический журн. 2002. Вып. 203. С. 1019–1037.

  7. Шитиков В.К., Зинченко Т.Д., Головатюк Л.В. Модели совместного распределения видов на примере донных сообществ малых рек Волжского бассейна // Журн. общ. биол. 2021. Т. 82. № 2. С. 143–154. https://doi.org/10.31857/S0044459621020068

  8. Ahmadi M., Farhadinia M.S., Cushman S.A., Hemami M.-R., Nezami Balouchi B., Jowkar H., Macdonald D.W. Species and space: a combined gap analysis to guide management planning of conservation areas // Landsc Ecol. 2020. V. 35. P. 1505–1517. https://doi.org/10.1007/s10980-020-01033-5

  9. Ashrafzadeh M.R., Naghipour A.A., Haidarian M., Khorozyan I. Modeling the response of an endangered flagship predator to climate change in Iran // Mammal Res. 2018. V. 64. P. 39–51. https://doi.org/10.1007/s13364-018-0384-y

  10. Banerjee A.K., Mukherjee A., Guo W., Ng W.L., Huang Y. Combining ecological niche modeling with genetic lineage information to predict potential distribution of Mikania micrantha Kunth in South and Southeast Asia under predicted climate change // GECCO. 2019. V. 20. e00800. https://doi.org/10.1016/j.gecco.2019.e00800

  11. Barve N., Barve V., Jiménez-Valverde A., Lira-Noriega A., Maher S.P., Peterson A.T., Soberón J., Villalobos F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling // Ecol. Modell. 2011. V. 222. P. 1810–1819.

  12. Battini N., Farías N., Giachetti C., Schwindt E., Bortolus A. Staying ahead of invaders: using species distribution modeling to predict alien species’ potential niche shifts // Mar. Ecol. Prog. Ser. 2019. V. 612. P. 127–140. https://doi.org/10.3354/meps12878

  13. Bowen A.K.M., Stevens M.H.H. Temperature, topography, soil characteristics, and NDVI drive habitat preferences of a shade-tolerant invasive grass // Ecol. Evol. 2020. V. 10. P. 10785–10797. https://doi.org/10.1002/ece3.6735

  14. Carvalho M.C., Gomide L.R., dos Santos R.M., Scolforo J.R.S., de Carvalho, L.M.T., de Mello J.M. Modeling ecological niche of tree species in Brazilian tropical area // CERNE. 2017. V. 23. P. 229–240. https://doi.org/10.1590/01047760201723022308

  15. Duarte A., Whitlock S.L., Peterson J.T. Species Distribution Modeling // Encyclopedia of biodiversity (second edition) / Ed. Levin S.; Oxford: Academic Press, 2013. P. 189–198.

  16. Ebeling S.K., Welk E., Auge H., Bruelheide H. Predicting the spread of an invasive plant: combining experiments and ecological niche model // Ecography. 2008. V. 31. P. 709–719. https://doi.org/10.1111/j.1600-0587.2008.05470.x

  17. Ebrahimi A., Farashi A., Rashki A. Habitat suitability of Persian leopard (Panthera pardus saxicolor) in Iran in future // Environ. Earth Sci. 2017. V. 76(20). P. 697–707. https://doi.org/10.1007/s12665-017-7040-8

  18. Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohman L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.McC.M., Townsend Peterson A., Phillips S.J. Novel methods improve prediction of species’ distributions from occurrence data // Ecography. 2006. V. 29, Iss. 2. P. 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

  19. Elith J., Franklin J. Species distribution modeling // Encyclopedia of Biodiversity (Second Edition) / Eds Levin S.; Oxford: Academic Press, 2013. P. 692–705.

  20. Elith J., Leathwick J.R. Species distribution models: Ecological explanation and prediction across space and time // Annu Rev Ecol Evol Syst. 2009. V. 40(1). P. 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

  21. Erfanian B., Mirkarimi S.H., Mahini A.S., Rezaei H.R. A presence-only habitat suitability model for Persian leopard Panthera pardus saxicolor in Golestan National Park, Iran // Wildlife Biol. 2013. V. 19. P. 170–178. https://doi.org/10.2981/12-045

  22. Farhadinia M.S., McClintock B.T., Johnson P.J., Behnoud P., Hobeali K., Moghadas P., Hunter L.T.B., Macdonald D.W. A paradox of local abundance amidst regional rarity: the value of montane refugia for Persian leopard conservation // Sci Rep. 2019. V. 9. 14622. https://doi.org/10.1038/s41598-019-50605-2

  23. Flores-Tolentino M., Ortiz E., Villaseñor J.L. Ecological niche models as a tool for estimating the distribution of plant communities // Rev. Mex. Biodivers. 2019. V. 90. e902829. https://doi.org/10.22201/ib.20078706e.2019.90.2829

  24. Franklin J. Mapping Species distributions: spatial inference and prediction (ecology, biodiversity and conservation). New York: Cambridge University Press, 2010. 338 p. https://doi.org/10.1017/S0030605310001201

  25. Ghoddousi A., Bleyhl B., Ashayeri D., Moghadas P., Sepahvand P., Shokri Sh., Khaleghi Hamidi A., Soofi M., Kuemmerle T. Integrating remote sensing and interview data for the identification of a leopard corridor in the Alborz Mountains, Iran // Conservation Asia. Bishkek, 2018. P. 65.

  26. Glover-Kapfer P.A. Training manual for habitat suitability and connectivity modeling using tigers (Panthera tigris) in Bhutan as example. Technical Report / Bhutan: WWF, 2015. 144 p.

  27. Grinnell J. An account of the mammals and birds of the Lower Colorado Valley with especial reference to the distributional problems presented / Univ. Colorado Publication in Zoology. 1914. № 12. P. 51–294.

  28. Grinnell J. The niche relationships of the California thrasher // The Auk. 1917. V. 34. P. 427–433.

  29. Guisan A., Petitpierre B., Broennimann O., Daehler C., Kueffer C. Unifying niche shift studies: insights from biological invasions // TREE. 2014. V. 29(5). P. 260–269. https://doi.org/10.1016/j.tree.2014.02.009

  30. Guisan A., Thuiller W., Zimmermann N. Habitat suitability and distribution models: with applications in R. Cambridge: University Printing House, 2017. 462 p. https://doi.org/10.1017/9781139028271

  31. Guisan A., Zimmermann N.E. Predictive habitat distribution models in ecology // Ecol Modell. 2000. V. 135. P. 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

  32. Hutchinson G.E. Concluding Remarks // Cold Spring Harbor Symposia on Quantitative Biology. 1957. V. 22. P. 415–427.

  33. Jafari A.A., Zamani-Ahmadmahmoodi R., Mirzaei R. Persian leopard and wild sheep distribution modeling using the Maxent model in the Tang-e-Sayad protected area, Iran // Mammalia. 2018. V. 83. P. 84–96. https://doi.org/10.1515/mammalia-2016-0155

  34. Jiménez-Valverde A., Peterson A.T., Soberón J., Overton J.M., Aragón P., Lobo J.M. Use of niche models in invasive species risk assessments // Biol. Invasions. 2011. V. 13. P. 2785–2797.

  35. Kaboodvandpour S., Almasieh K., Zamani N. Habitat suitability and connectivity implications for the conservation of the Persian leopard along the Iran–Iraq border // Ecol. Evol. 2021. V. 11(19). 13464–13474. https://doi.org/10.1002/ece3.8069

  36. Keane R.M., Crawley M.J. Exotic plant invasions and the enemy release hypothesis // TREE. 2002. V. 17(4). P. 164–170.

  37. Khosravi R., Hemami M.R., Cushman S.A. Multispecies assessment of core areas and connectivity of desert carnivores in central Iran // Divers. Distrib. 2018. V. 24(2). P. 193–207. https://doi.org/10.1111/ddi.12672

  38. Khosravi R., Hemami M.R., Malakoutikhah S., Ashrafzadeh M.R., Cushman S.A. Cushman Prey availability modulates predicted range contraction of two large felids in response to changing climate // Biol. Conserv. 2021. V. 255. 109018. https://doi.org/10.1016/j.biocon.2021.109018

  39. Levins R. Evolution in changing environments. Monographs in population biology. New Jersey: Princeton University Press, 1968. 120 p.

  40. Li L., Huiyu L., Lin Z., Jia J., Liu X. Identifying priority areas for monitoring the invasion of Solidago canadensis based on Maxent and Zonation // AES. 2017. V. 37(9). P. 3124–3132.

  41. MacArthur R. Geographical ecology: Patterns in the distribution of species. Princeton: Princeton University Press, 1972. 269 p.

  42. MacArthur R., Levins R. The limiting similarity, convergence, and divergence of coexisting species // Am. Nat. 1967. V. 101. P. 377–385.

  43. McCoy J., Johnston K., Kopp S., Borup B., Willison J., Payne B. Using ArcGIS spatial analyst. Redlands: ESRI Press, 2001. 232 p.

  44. Miller J. Species distribution modeling // Geogr. Comp. 2010. V. 4(6). P. 490–509.

  45. Moradi S., Ahmadi A., Toranjzar H., Shams-Esfandabad B. Modeling the habitat suitability of Persian leopard (Panthera pardus saxicolor) in the conservation areas of Kohgiluyeh and Boyer-Ahmad Province, Iran // ECOPERSIA. 2022. V. 10. P. 109–119.

  46. Myers C.E., Stigall A.L., Lieberman B.S. PaleoENM: Applying ecological niche modeling to the fossil record // Paleobiology. 2015. V. 41(2). P. 226–244. https://doi.org/10.1017/pab.2014.19

  47. Pearson R.G., Raxworthy C.J., Nakamura M., Peterson A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar // J. Biogeogr. 2007. V. 34 P. 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

  48. Pearson R.G., Dawson T.P. Predicting theimpacts of climate change on the distribution of species: are bioclimate envelope models useful? // Glob. Ecol. Biogeogr. 2003. V. 12 P. 361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

  49. Peterson A.T. Uses and requirements of ecological niche models and related distributional models // Biodivers. Inform. 2006. V. 3. P. 59–72. https://doi.org/10.17161/bi.v3i0.29

  50. Peterson A.T., Soberón J., Pearson R.G., Anderson R., Martínez-Meyer E., Nakamura M., Araújo M. Ecological niches and geographic distributions. 2011. Princeton: Princeton University Press, 314 p. https://doi.org/10.1644/1545-1542-94.1.241

  51. Peterson A., Anamza T. Ecological niches and present and historical geographic distributions of species: A 15-year review of frameworks, results, pitfalls, and promises // Folia Zool. 2015. V. 64(3) P. 207–217. https://doi.org/10.25225/fozo.v64.i3.a3.2015

  52. Peterson A., Soberón J. Species distribution modeling and ecological niche modeling: getting the concepts right // Natureza e Conservação. 2012. V. 10(2) P. 1–6. https://doi.org/10.4322/natcon.2012.019

  53. Poursalem S., Amininasab S.M., Zamani N., Almasieh K., Mardani M. Modeling the distribution and habitat suitability of Persian leopard Panthera pardus saxicolor in Southwestern Iran // Biol. Bull. Russ. Acad. Sci. 2021. V. 48. P. 319–330. https://doi.org/10.1134/S1062359021030122

  54. Pshegusov R.H., Tembotova F.A., Chadaeva V.A., Sablirova Y.M., Mollaeva M.Z., Akhomgotov A.Z. Ecological niche modeling of the main forest-forming species in the Caucasus // For. Ecosyst. 2022. Iss. 9. 100019. https://doi.org/10.21203/rs.3.rs-796514/v1

  55. Pshegusov R.H., Chadaeva V.A. Modelling the nesting-habitat of threatened vulture species in the Caucasus: an ecosystem approach to formalising environmental factors in species distribution models // Avian Res. 2023. V. 14. 100131. https://doi.org/10.1016/j.avrs.2023.100131

  56. Schoener T.W. Anolis lizards of Bimini: resource partitioning in a complex fauna // Ecology. 1968. V. 49. P. 704–726.

  57. Schoener T.W. The ecological niche // Ecological concepts: The contribution of ecology to an understanding of the natural world, symposium British ecological society. Cambridge: Blackwell Scientific Publication, 1989. P. 79–113.

  58. Shabani F., Ahmadi M., Kumar L., Solhjouy F.S., Tehrany M., Shabani F., Kalantar B., Esmaeili A. Invasive weed species’ threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate // Ecol. Indic. 2020. V. 116. 106436. https://doi.org/10.1016/j.ecolind.2020.106436

  59. Sillero N., Arenas-Castro S., Enriquez-Urzelai U., Vale C.G., Sousa-Guedes D., Martínez-Freiría F., Real R., Barbosa A.M. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling // Ecol. Modell. 2021. V. 456. 109671. https://doi.org/10.1016/j.ecolmodel.2021.109671

  60. Simões M.V.P., Peterson A.T. Importance of biotic predictors in estimation of potential invasive areas: the example of the tortoise beetle Eurypedus nigrosignatus // Hispaniola. PeerJ. 2018. V. 6 e6052.

  61. Soberón J., Peterson A.T. Interpretation of models of fundamental ecological niches and species’ distributional areas // Biodivers. Inform. 2005. V. 2. P. 1–10. https://doi.org/10.17161/bi.v2i0.4

  62. Soberón J., Osorio-Olvera L. A dynamic theory of the area of distribution // J. Biogeogr. 2023. V. 50. P. 1037–1048.

  63. Thakuri S.S., Shrestha P., Deuba M., Shah P., Bhandari O.P., Shrestha S. Potential habitat modeling of water hyacinth in lakes of Nepal using maxent algorithm // ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019. V. IV-5/W2. P. 103–110. https://doi.org/10.5194/isprs-annals-IV-5-W2-103-2019

  64. Wisz M.S., Pottier J., Kissling W.D., Pellissier L., Lenoir J., Damgaard C.F., Dormann C.F., Forchhammer M.C., Grytnes J.-A., Guisan A., Heikkinen R.K., Høye T.T., Kühn I., Luoto M., Maiorano L., Nilsson M.-C., Normand S., Öckinger E., Schmidt N.M., Termansen M. The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling // Biol. Rev. 2013. V. 88. P. 15–30. https://doi.org/10.1111/j.1469-185X.2012.00235.x

  65. Yan H., Feng L., Zhao Y., Feng L., Wu D., Zhu Ch. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on ArcGIS and MaxEnt // GECCO. 2019. V. 21. e00856. https://doi.org/10.1016/j.gecco.2019.e00856

  66. Zurell D., Engler J. Ecological niche modelling // Effects of climate change on birds. Oxford: Oxford University Press, 2019. P. 60–73.

Дополнительные материалы отсутствуют.