Агрохимия, 2023, № 5, стр. 83-93

Роль бактерий рода Pseudomonas и их метаболитов в биоконтроле фитопатогенных микроорганизмов

Т. М. Сидорова 1*, В. В. Аллахвердян 1, А. М. Асатурова 1

1 Федеральный научный центр биологической защиты растений
350039 Краснодар, а/я 39, Россия

* E-mail: 0166505@mail.ru

Поступила в редакцию 25.11.2022
После доработки 27.12.2022
Принята к публикации 16.02.2023

Аннотация

Обобщены и проанализированы современные знания о перспективности применения бактерий рода Pseudomonas в качестве продуцентов эффективных микробиологических препаратов для биоконтроля фитопатогенных организмов. Ризосферные псевдомонады являются потенциальными объектами агробиотехнологии в связи с наличием у них необходимых для биоконтроля и фитостимуляции физиолого-биохимических особенностей. К этим особенностям относятся толерантность к активным формам кислорода, хемотаксис в отношении корневых экссудатов, биосинтез сидерофоров и антибиотических метаболитов различной природы. Представители рода Pseudomonas известны своим большим метаболическим разнообразием, что позволяет им колонизировать широкий спектр экологических ниш, включая ризосферу. Виды Pseudomonas, изолированные из ризосферы, обладают более широкой катаболической активностью, чем изолированные из основной массы почвы, особенно в отношении определенных сахаров, полиолов и аминокислот, которые можно найти в корневых экссудатах. Широкое метаболическое разнообразие позволяет бактериям получить повсеместное распространение, образуя защитные биопленки и колонизируя различные экологические ниши. При этом улучшаются водоудерживающая способность, плодородие и пористость почвы, а также условия минерального питания растений за счет повышения доступности N, P, K и Fe. В работе подробно описаны основные биологически активные метаболиты, продуцируемые псевдомонадами и их роль в подавлении фитопатогенов и фитостимуляции. В исследованиях использована материально-техническая база УНУ “Технологическая линия для получения микробиологических средств защиты растений нового поколения” (https://ckp-rf.ru/catalog/usu/671367/).

Ключевые слова: экологическая ниша, ризосфера, ризобактерии, бактерии рода Pseudomonas, биологически активные соединения, биоконтроль.

Список литературы

  1. Hu J., Wei Z., Weidmer S., Friman V.-P., Xu Y.-C., Shen Q.-R., Jousset A. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning // Soil Biol. Biochem. 2017. V.113. P. 122–129. https://doi.org/10.1016/j.soilbio.2017.05.029

  2. Bevivino A. Field microbial application to foster food quality and safety // SIMBA Project. 2020. Available online. http://simbaproject.eu/field-microbial-application-to-foster-food-quality-and-safety/ (accessed on 5 June 2020)

  3. Awolope O.K., O’Driscoll N.H., Di Salvo A., Lamb A.J. De novo genome assemly and analysis unveil biosynthetic and metabolic potentials of Pseudomonas fragi A13BB // BMC Genomic Data. 2021. V. 22. P.15 https://doi.org/10.1186/s12863-021-00969-0

  4. Luzmaria R. Morales-CedenoMa, del CarmenOrozco-MosquedaPedro D., Loeza-LaraFannie I., Parra-CotaSergio de los Santos-Villalobos, GustavoSantoyoSharma. Plant growth-promoting agents of pre- and post-harvest diseases:fundamentals, methods of application and future perspectives // Microbiol. Res. 2021. V. 242. https://doi.org/10.1016/j.micres.2020.126612

  5. Gouda S., Kerry R.G., Das G., Paramithiotis S., Shin H.-S., Patra J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture // Microbiol. Res. 2018. V. 206. P. 131–140. https://doi.org/10.1016/j/micres.2017.08.016

  6. Анохина Т.О., Сиунова Т.В., Сизова О.И., Захарченко Н.С., Кочетков В.В. Ризосферные бактерии рода Pseudomonas в современных агробиотехнологиях // Агрохимия. 2018. V. 10. P. 54–66. https://doi.org/10.1134/S0002188118100034

  7. Mikiciński A., Sobiczewski P., Puławska J., Malusa E. Antagonistic potential of Pseudomonas graminis 49M against Erwinia amylovora, the causal agent of fire blight // Arch. Microbiol. 2016. V. 198. № 6. P. 531–539.

  8. Nandi M., Selin C., Brawerman G., Fernando W.G.D., de Kievit T.R. The global regulator ANR in essential for Pseudomonas chlororaphis strain PA23 biocontrol // Microbiology. 2016. V. 162. P. 12. https://doi.org/10.1099/mic.0.000391

  9. Polonio A., Vida C., de Vicente A., Cazorla F.M. Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot // Microbiol. 2017. V. 20. P. 95–104. https://doi.org/10.2436/20.1501.01.289

  10. Arrebola E., Tienda S., Vida C., de Vicente A., Cazorla F.M. Fitness features involved in the biocontrol interaction of Pseudomonas chlororaphis with host plants: the case study of PcPCL1606 // Front. Microbiol. 2019. V. 10. P. 719. https://doi.org/10.3389/fmicb.2019.00719

  11. Jaaffar A.K.M., Parejko J.A., Timothy C., Paulitz T.C., WelleD.M., Thomashow L.S. Sensitivity of Rhizoctonia isolates to phenazine-1-carboxylic acid and biological control by phenazine-producing Pseudomonas spp. // Phytopathology. 2017. V. 107. P. 692–703. https://doi.org/10.1094/PHYTO-07-16-0257-R

  12. Li J., Hu M., Xue Y., Chen X., Lu G., Zhang L., Zhou J. Screening, identification and efficacy evalution of antagonistic bacteria for biocontrol of soft rot disease caused by Dickeya zeae // Microorganisms. 2020. V. 8. № 5. P. 697. https://doi.org/10.3390/microorganisms8050697

  13. Okrent R.A., Trippe K.M., Maselko M., Maning V. Functional analysis of a biosynthetic cluster essential for production of 4-formylaminooxyvinylglycine, a germination-arrest factor from Pseudomonas fluorescens WH6 // Microbiology. 2017. V. 163. P. 207–217. https://doi.org/10.1099/mic.0.000418

  14. Duke K.A., Becker M.G., Girard I.J., Millar J.L., Fernando W.D., Belmonte M.F., de Kievit T.R. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks // BMC Genomics. 2017. V. 18. № 1. P. 467.https://doi.org/10.1186/s12864-017-3848-6

  15. Garrido-Sanz D., Arrebola E., Martínez-Granero F., García-Méndez S., Muriel C., Blanco-Romero E. Classification of isolates from the Pseudomonas fluorescens complex into phylogenomic groups based in group-specific markers // Front. Microbiol. 2017. V. 8. P. 413. https://doi.org/10.3389/fmicb.2017.00413

  16. Nelkner J., Tejerizo G.T., Hassa J., Lin T.W., Witte J., Verwaaijen B., Winkler A., Bunk B., Spröer C., Overmann J., Grosch R., Pühler A. and Schlüter A. Genetic potential of the biocontrol agent Pseudomonas brassicacearum (formerly P. trivialis) 3Re 2-7 unraveled by genome sequencing and mining, comparative genomics and transcriptomics // Genes. 2019. V. 10. P. 601. https://doi.org/10.3390/genes10080601

  17. Dong C.J., Wang L.L., Li Q., Shang Q.M. Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants // PLoS ONE. 2019. V. 14. e0223847. https://doi.org/10.1371/journal.pone.0223847

  18. Zboralski A., Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. // Computat. Structur. Biotechnol. J. 2020. V. 18. P. 3539–3554. https://doi.org/10.1016/j.csbj.2020.11.025

  19. Сиунова Т.В., Анохина Т.О., Сизова О.И., Соколов О.И., Кочетков В.В., Боронин А.М., Patil S.G., Chaudhari A.B. Штаммы PGPR Pseudomonas, перспективные для создания биопрепаратов для защиты и стимуляции роста растений // Биотехнология. 2017. V. 33. № 2. P. 56–67. https://doi.org/10.1016/0234-2758-2017-33-2-56-67

  20. Vives-Peris V., de Ollas C., Gómez-Cadenas A., Pérez-Clemente R.M. Root exudates: from plant to rhizosphere and beyond // Plant Cell Rep. 2020. V. 39 (1). P. 3–17. https://doi.org/10.1007/s00299-019-02447-5

  21. Valente J., Gerin F., le Gouis J., Moënne-Loccoz Y., Prigent-Combaret C. Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria // Plant Cell Environ. 2020. V. 43. P. 246–260. https://doi.org/10.1111/pce.13652

  22. Rieusset L., Rey M., Gerin F., Wisniewski-Dyé F., Prigent-Combaret C., Comte G. A Cross-metabolomic approach  shows that wheat interferes with fluorescent Pseudomonas physiology through Its root metabolites // Metabolites. 2021. V. 11. № 2. P. 84. https://doi.org/10.3390/metabo11020084

  23. Santoyo G., Moreno-Hagelsieb G., Orozco-Mosquede M. del C., Glick B.R. Plant growth – promoting bacterial endophytes // Microbiol. Res. 2016. V. 183. P. 92–99. https://doi.org/10.1016/j.micres.2015.11.008

  24. Andreote F.D., Pereira E., Silva M.C. Microbial communities associated with plants: learning from nature to apply it in agriculture // Curr. Opin. Microbiol. 2017. V. 37. P. 29–34. https://doi.org/10.1016/j.mib.2017.03.011

  25. Costa O., Raaijmakers J.M., Kuramae E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation // Front. Microbiol. 2018. V. 9. P. 1636. https://doi.org/10.3389/fmicb.2018.01636

  26. Saha I., Datta S., Biswas D. Exploring the role of bacterial extracellular polymeric substances for sustainable development in agriculture // Curr. Microbiol. 2020. V. 77. № 11. P. 3224–3239. https://doi.org/10.1007/s00284-020-02169-y

  27. Backer R., Rokem J.S., Ilangumaran G. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture // Front Plant Sci. 2018. V. 9. P. 1473. https://doi.org/10.3389/fpls.2018.01473

  28. Сидоров А.В., Зайцева Ю.В., Марков О.А. Влияние культуральной жидкости ассоциативных бактерий рода Pseudomonas на прорастание, морфогенез и рост Dactylorhiza incarnata (L.) Soó (Orchidaceae) в культуре in vitro // Вестн. ТомскГУ. Биология. 2020. Т. 51. С. 6–24. https://doi.org/10.17223/19988591/51/1

  29. Singh U.B., Singh S., Malviya D., Karthikeyan N., Imran M., Chaurasia R., Alam M., Singh P., Sarma B.K., Rai J.P., Damodaran T., Tripathi J.K., Kumas S., Sharma A.K. Integration of anti-penetrant tricyclazole, signaling molecule salicylic acid and root associated Pseudomonas fluorescens enhances suppression of Bipolaris sorokiniana in bread wheat (Triticum aestivum L.) // J. Plant Pathol. 2019. V. 101. P. 943–954. https://doi.org/10.1007/s42161-019-00296-5

  30. Ma Z., Hua G.K.H., Ongena M., Höfte M. Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in systemic resistance on rice and bean // Environ. Microbiol. 2016. V. 8. № 5. P. 896–904. https://doi.org/10.1111/1758-2229.12454

  31. Асатурова А.М., Жевнова Н.А., Цыгичко А.А., Аллахвердян В.В., Хомяк А.И., Бондарчук Е.Ю., Саенко К.Ю., Астахов М.М., Гырнец Е .А., Штерншис М.В. Использование лабораторных образцов биопрепаратов и их смесей с органоминеральными удобрениями для роста и развития растений озимой пшеницы и подсолнечника // Аграрн. наука Евро-Северо-Востока. 2019. Т. 20. № 6. Р. 602–612. https://doi.org/10.30766/2072-9081.2019.20.6.602-612

  32. Rieusset L., Rey M., Muller D., Vacheron J., Gerin F., Dubost A., Comte G., Prigent-Combaret C. Secondary metabolites from plant-associated Pseudomonas are overproduced in biofilm // Microb. Biotechnol. 2020. V. 13. № 5. P. 1562–1580. https://doi.org/10.1111/1751-7915.13598

  33. Pandin C., Le Coq D., Canette A., Aymerich S., Briandet R. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? // Microbiol. Biotechnol. 2017. V. 10. № 4. P. 719–734. https://doi.org/10.1111/1751-7915.12693

  34. Zhai Y., Shao Z., Cai M., Zheng L., Li G., Huang D., Cheng W., Thomashow L.S., Weller D.M., Yu Z., Zhang J. Multiple modes of nematode control by volatiles of Pseudamonas putida 1A00316 from antarctic soil against Meloidogyne incognita // Front Microbiol. 2018. V. 9. P. 253. https://doi.org/10.3389/fmicb.2018.00253

  35. Rosas S.B. Pseudomonas chlororaphis subsp. aurantiaca SR1: isolated from rhizosphere and its return as inoculant. A review // Inter. Biol. Rev. 2017. V. 1. № 3. P. 1–19.

  36. Yu K., Pieterse C.M.J., Bakker P.A.H.M., Berendsen R.L. Benefical microbes going underground of root immunity // Plant Cell Eenviron. 2019. V. 42. № 10. P. 2860–2870. https://doi.org/10.1111/pce.13632

  37. Petrova O., Sauer K. Escaping the biofilm in more than one way: desorbtion, detachment or dispersion // Curr. Opin. Microbiol. 2016. V. 30. P. 67–78. https://doi.org/10.1016/j.mib.2016.01.004

  38. Heredia-Ponce Z., Gutiérrez-Barranquero J.A., Purtschert-Montenegro G., Eberl L., de Vicente A., Cazorla F.M. Role of extracellular matrix components in the formation of biofilms and their contribution to the biocontrol activity of Pseudomonas chlororaphis PCL 1606 // Environ. Microbiol. 2021. V. 23. № 4. P. 2086–2101. https://doi.org/10.1111/1462-2920.15355

  39. Biessy A., Filion M. Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics // Environ. Microbiol. 2018. V. 20. P. 3905–3917. https://doi.org/10.1111/1462-2920.14395

  40. Chosh P.K., Maiti T.K. Structure of extracellular polysaccharides (EPS) produced by rhizobia and their functions in legume-bacteria symbiosis: review // Achiv. Life Sci. 2016. V. 10. № 2. P. 136–143. https://doi.org/10.1016/j.als.2016.11.003

  41. Bharmad K., Rajkumar S. Rewiring the functional complexity between Crc, Hfg and SRNS to regulate carbon catabolite repression in Pseudomonas // Word J. Microbiol. Biotechnol. 2019. V. 35. № 9. P. 140. https://doi.org/10.1007/s11274-019-2717-7

  42. Liu Y., Gokhale C.S., Rainey P.B., Zhang X.-X. Unravelling the complexity and redundancy of carbon catabolic repression in Pseudomonas fluorescens SBW25 // Mol. Microbial. 2017. V. 105. № 4. P. 589–605. https://doi.org/10.1111/mmi.13720

  43. Verma A., Kumar S., Hemansi, Kumar G., Saini J.K., Agrawal R., Satlewal A., Ansari M.W. Chapter 17 – Rhizosphere metabolite proofing: an opportunity to understand plant – microbe interactions for crop improvement // Crop improvement through microbial biotechnology. New and future developments in microbial biotechnology and bioengineering. 2018. P. 343–361. https://doi.org/10.1016/B978-0-444-63987-5.00017-7

  44. Domröse A., Weihmann R., Thies S., Jaeger K.-L., Drepper T., Loeschcke A. Rapidgeneration of recombinant Pseudomonas putida secondary metabolite producers using Ytrex // Synthetic System. Biotechnol. 2017. V. 2. № 4. P. 310–319. https://doi.org/10.1016/j.synbio.2017.11.001

  45. Yu J.M., Wang D., Pierson L.S., Pierson E.A. Disruption of MiaA provides insights into the regulation of phenazine biosynthesis under suboptimal growth conditions in Pseudomonas chlororaphis 30-84 // Microbiology. 2017. V. 163. P. 94–108. https://doi.org/10.1099/mic.0.000409

  46. Guttenberger N., Blankenfeld W., Breinbauer R. Recent developments in the isolation, biologicak function, biosynthesis, and synthesis of phenazine natural products // Bioorgan. Medic. Chem. 2017. V. 25. № 22. P. 6149–6166. https://doi.org/10.1016/j.bmc.2017.01.002

  47. Zhou L., Jiang H.-X., Sun S., Yang D.-D., Jin K.-M., Zhang W., He Y.-W. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenarine-1-carboxylic acid and phenazine-1-carboximide // Word J. Microbiol. Biotechnol. 2016. V. 32. P. 50. https://doi.org/10.1007/s11274-015-1987-y

  48. Jaaffar A.K., Parejko J.A., Paulitz T.C., Weller D.M., Thomashow L.S. Sensitivity of Rhizoctonia isolates to phenazine-1-carboxylic acid and biological control by phenazine-producing Pseudomonas sp. // Phytopathology. 2017. V. 107. P. 692–703. https://doi.org/10.1094/PHYO-07-16-0257-R

  49. Morrison C.K., Arseneault T., Novinscak A., Fillon M. Phenazine-1-carboxylitic acid production by Pseudomonas fluorescens LBUM636 alters Phytophthora infestans growth and late blight development // Phytopathology. 2017. V. 107. № 3. P. 273–279. https://doi.org/10.1094/PHYTO-06-16-0247-R

  50. Guo H., Roman D., Beemelmanns C. Tropolone natural products // Nat. Prod Rep. 2019. V. 36. № 8. P. 1137–1155. https://doi.org/. // PloS ONE. 2016. V. 11. № 1. e0148003.https://doi.org/10.1371/journal.pone.014800310.1371/journal.pone.0148003https://doi.org/10.1039/C8NP00078F

  51. Wang D., Yu J.M., Dorosky R.J., Pierson L.S., Pierson E.A. The phenazine 2-hydroxy-phenazine-1-carboxylic acid promotes extracellular DNA release and has broad transcriptomic consequences in Pseudomonas chlororaphis 30-84 // PloS ONE. 2016. V. 11. № 1. e0148003. https://doi.org/10.1371/journal.pone.0148003

  52. Mahmoudi T.R. Bacterially mediated water stress tolerance in wheat conferred by phenazine-producing rhizobacteria // Master’s thesis. 2017. https://oaktrust.library.tamu.edu/handle/1969.1/173201

  53. Geudens N., Martins J.C. Cyclic lipodepsipeptides from Pseudomonas spp. – biological swiss-army knives // Front Microbiol. 2018. V. 9. P. 1867. https://doi.org/10.3389/fmicb.2018.01867

  54. Götze S., Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from Pseudomonads // Nat. Prod. Rep. 2020. V. 37. № 1. P. 29–54. https://doi.org/10.1039/C9NP00022D

  55. Blin K., Shaw S., Steinke K., Villebro R., Ziemert N., Lee S.Y., Medema M.H., Weber T. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline // Nucleic Acids Res. 2019. V. 47. W. 81–W. https://doi.org/10.1093/nar/gkz310

  56. Pupin M., Flissi A., Jacques P., Leclère V. Bioinformatics tools for the discovery of new lipopeptides with biocontrol applications // Eur. J. Plant Pathol. 2018. P. 152. № 4. P. 993–1001. https://doi.org/10.1007/s10658-018-1544-2

  57. Flury P., Vesga P., Péchy-Tarr M., Aellen N., Dennert F., Hofer N., Kupferschmied K.P., Kupferschmied P., Metla Z., Siegfried S., de Weert S., Bloemberg G., Höfte M., Keel C.J., Maurhofer M. Antimicrobial and insecticidal cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, and PCL1391 contribute to insect killing // Front. microbial. 2017. V. 8. P. 100. https://doi.org/10.3389/fmicb.2017.00100

  58. de Oliveira Schmidt V.K., de Souza Carvalho J., de Oli-veira D., de Andrade C.J. Biosurfactant inducers for enhanced production of surfactin and rhamnolipids: an overview // World J. Microbiol. Biotechnol. 2021. V. 37. P. 21. https://doi.org/10.1007/s11274-020-02970-8

  59. Bruce J.B., West S. A., Griffin A.S. Bacteriocins and the assembly of natural Pseudomonas fluorescens populations // J. Evolut. Biol. 2017. V. 30. № 2. P. 352–360. https://doi.org/10.1111/jeb.13010

  60. Jiang Z., Chen M., Yu X., Xie Z. 7-Hydroxytropolone produced and utilized as an iron-scavenger by Pseudomonas donghuensis // Biometals. 2016. V. 29. № 5. P. 817–826. https://doi.org/10.1007/s10534-016-9954-0

  61. Huang R., Feng Z., Chi X., Sun X., Lu Y., Zhang B., Lu R., Luo W., Wang Y., Miao J., Ge Y. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum // Microbiol. Res. 2018. V. 215. P. 55–64. https://doi.org/10.1016/j.micres.2018.06.008

  62. Verma B., Kumar P., Karthik L., Dhanasekaran D., Babalola O.O., Banakar S.P. Gas-chromatography – mass spectrometry analysis and antibacterial activity of bluish-green pigment from Pseudomonas sp. JJTBVK(KF836502) // Brazil. Arch. Biol. Technol. 2015. V. 58 (4). P. 628–635. https://doi.org/10/1590/S1516-8913201500108

  63. Deveau A., Gross H., Palin B., Mehnaz S., Schnepf M., Leblond P., Dorrestein P.C., Aigle B. Role of secondary metabolites in the interaction between Pseudomonas fluorescens fnd soil microorganisms under iron limited conditions // FEMS Microbiol. Ecol. Adv. Acces. 2016. V. 92. № 8. P. 107. https://doi.org/10.1093/femsec/fim107

  64. Sharma D., Gupta M., Gupta S., Jaglans S., Mallick S.A. Characterization of secondary metabolites produced during interaction of Pseudomonas fluorescens with Fusarium oxysporum // Ind. J. Agricult. Sci. 2019. V. 89. № 6. P. 998–1004.

  65. Aziz M., Nadipalli R.K., Xie X., Sun Y., Surowiec K., Zhang J.-L., Paré P.W. Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling // Front. Plant. Sci. 2016. V. 7. P. 458. https://doi.org/10.3389/fpls.2016.00458

  66. Zhai Y., Shao Z., Cai M., Zheng L., Li G., Huang D., Cheng W., Thomashow L.S., Weller D.M., Yu Z., Zhang J. Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from antarctic soil against Meloidogyne incognita // Front. Microbiol. 2018. V. 9. P. 253. https://doi.org/10.3389/fmicb.2018.00253

  67. Flury P., Vesga P., Pechy-Tarr M., Aellen N., Dennert F., Hofer N., Kupferschmied K.P., Kupferschmied P., Metla Z., Ma Z., Siegfried S., de Weert S., Bloemberg G., Höfte M., Keel C.J., Maurhofer M. Antimicrobial and insecticidal: Cyclic lipopeptides and hydrogencyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing // Front. Microbiol. 2017. V. 8. P. 100. https://doi.org/10.3389/fmicb.2017.001001

  68. Kang B.R., Anderson A.J., Kim Y.C. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla // Plant Pathol. J. 2018. V. 34. P. 35–43. https://doi.org/PPJ.OA.06.2017.0115

  69. Kang B.R., Anderson A.J., Kim Y.C. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 is a key aphicidal metabolite // Can. J. Microbiol. 2019. V. 65. P. 185–190. https://doi.org/10.1139/cjm-2018-0372

  70. Nam H.S., Anderson A.J., Kim Y.C. Biocontrol efficacy of formulated Pseudomonas chlororaphis O6 against plant diseases and root-knot nematodes // Plant Pathol. J. 2018. V. 34. P. 241–249. https://doi.org/10.5423/PPJ.NT.12.2017.0264

  71. Hernández-Calderón E., Aviles-Garcia M.E., Castulo-Rubio D.Y., Macías-Rodríguez L., Ramírez V.M., Santoyo G., López-Bucio J., Valencia-Cantero E. Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor // Plant Mol. Biol. 2018. V. 96. № 3. P. 291–304. https://doi.org/10.1007/s11103-017-0694-5

  72. Santoyo G., Urtis-Flores C.A., Loeza-Lara P.D., Orozco-Mosqueda M.de C., Glick B.K. Rhizosphere colonization determinants by plant growth-promoting rhizobacteriam (PGPR) // Biology. 2021. V. 10. P. 475. https://doi.org/10.3390/biology10060475

  73. Hheng X., Cordovez V., Etalo D.W., van der Voort M., Raaijmakers J.M. Role of the GacS sensor kinase in the regulation of volatile production by plant growth-promoting Pseudomonas fluorescens SBW25 // Front. Plant. Sci. 2016. V. 7. P. 1706. https://doi.org/10.3389/fpls.2016.01706

  74. Saha M., Sarkar S., Sarkar B., Sharma B.K., Bhattacharjee S., Tribedi P. Microbial siderophores and their potential applications: a review // Environ. Sci. Pollut. Res. 2016. V. 23. P. 3984–3999. https://doi.org/10.1007/s11356-015-4294-0

  75. Jadhav H.P., Shaikh S.S., Sayyed R.Z. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview // Rhizotrophs: plant growth promotion to bioremediation. Microorganisms for sustainability. 2017. V. 2. P. 183–203. https://doi.org/10.1007/978-981-10-4862-3_9

  76. Коршунова Т.Ю., Бакаева М.Д., Кузина Е.В., Рафикова Г.Ф., Четвериков С.П., Четверикова Д.В., Логинов О.Н. Роль бактерий рода Pseudomonas в устойчивом развитии агроэкосистем и защите окружающей среды (обзор) // Прикл. биохим. и микробиол. 2021. Т. 57 (3). С. 211–227. https://doi.org/10.318571/S0555109221030089

Дополнительные материалы отсутствуют.