Журнал аналитической химии, 2023, T. 78, № 5, стр. 405-419

Химическое окисление и характеризация углеродных нанотрубок различного типа с целью повышения эффективности концентрирования РЗЭ для их последующего определения в геологических образцах

В. Е. Огнев a, А. О. Хлуднева a, Е. А. Захарченко a, А. В. Жилкина a, Д. Н. Догадкин a, В. И. Казин a, Д. А. Тюрин a, И. Н. Громяк a, В. П. Колотов a*

a Институт геохимии и аналитической химии им. В. И. Вернадского Российской академии наук
119991 Москва, ул. Косыгина, 19, Россия

* E-mail: kolotov@geokhi.ru

Поступила в редакцию 09.11.2022
После доработки 01.12.2022
Принята к публикации 07.12.2022

Аннотация

Исследованы различные способы окисления углеродных нанотрубок (УНТ) разного типа в средах азотной кислоты и смеси азотной и серной кислот при различных температуре и длительности воздействия. Найдены условия окисления, обеспечивающие высокую сорбционную активность сорбентов по отношению к РЗЭ. Окисленные УНТ охарактеризованы методами кислотно-основного титрования, сканирующей электронной микроскопии, определен электрокинетический (ζ) потенциал суспензий нанотрубок в зависимости от pH. Методами МС/АЭС-ИСП определен элементный состав УНТ. Определена сорбционная способность окисленных УНТ по отношению к широкому кругу элементов. Установлена их уникальная селективность по отношению к РЗЭ. Доказана возможность использования окисленных УНТ для эффективного сорбционного концентрирования РЗЭ с целью определения их ультранизких концентраций в горных породах.

Ключевые слова: углеродные нанотрубки, Таунит, химическое окисление, характеризация, сорбционное концентрирование, РЗЭ.

Список литературы

  1. Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications / Eds. Bergmann C.P., Machado F.M. New York: Springer International Publishing, 2015. P. 1. https://doi.org/10.1007/978-3-319-18875-1

  2. Socas-Rodriguez B., Herrera-Herrera A. V., Asensio-Ramos M., Hernandez-Borges J. Recent applications of carbon nanotube sorbents in analytical chemistry // J.Chromatogr. A. 2014. V. 1357. P. 110. https://doi.org/10.1016/j.chroma.2014.05.035

  3. Ren X., Chen C., Nagatsu M., Wang X. Carbon nanotubes as adsorbents in environmental pollution manтыagement: A review // Chem. Eng. J. 2011. V. 170. № 2–3. P. 395. https://doi.org/10.1016/j.cej.2010.08.045

  4. Liang X., Liu S., Wang S., Guo Y., Jiang S. Carbon-based sorbents: Carbon nanotubes // J. Chromatogr. A. 2014. V. 1357. P. 53. https://doi.org/10.1016/j.chroma.2014.04.039

  5. Gupta V.K., Saleh T.A. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene – An overview // Environ. Sci. Pollut. Res. 2013. V. 20. № 5. P. 2828. https://doi.org/10.1007/s11356-013-1524-1

  6. Kumar R., Khan M.A., Haq N. Application of carbon nanotubes in heavy metals remediation // Crit. Rev. Environ. Sci. Technol. 2014. V. 44. № 9. P. 1000. https://doi.org/10.1080/10643389.2012.741314

  7. Kumar V., Katyal D., Nayak S.S. Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects // Environ. Sci. Pollut. Res. 2020. V. 27. № 33. P. 41199.

  8. Suri A., Coleman K.S. The superiority of air oxidation over liquid-phase oxidative treatment in the purification of carbon nanotubes // Carbon. 2011. V. 49. № 9. P. 3031. https://doi.org/10.1016/j.carbon.2011.03.023

  9. Hou P.X., Liu C., Cheng H.M. Purification of carbon nanotubes // Carbon. 2008. V. 46. № 15. P. 2003. https://doi.org/10.1016/j.carbon.2008.09.009

  10. Cardoso C.E., Almeida J.C., Lopes C.B., Trindade T., Vale C., Pereira E. Recovery of rare earth elements by carbon-based nanomaterials – A review // Nanomaterials. 2019. V. 9. № 6. P. 814. https://doi.org/10.3390/nano9060814

  11. Alguacil F.J., García–Díaz I., Escudero Baquero E., Rodríguez Largo O., López F.A. Oxidized and non-oxidized multiwalled carbon nanotubes as materials for adsorption of lanthanum(III) aqueous solutions // Metals. 2020. V. 10. № 6. P. 765. https://doi.org/10.3390/met10060765

  12. Boehm H.P. Some aspects of the surface chemistry of carbon blacks and other carbons // Carbon. 1994. V. 32. № 5. P. 759. https://doi.org/10.1016/0008-6223(94)90031-0

  13. Grujicic M., Cao G., Rao A.M., Tritt T.M., Nayak S. UV-light enhanced oxidation of carbon nanotubes // Appl. Surface Sci. 2003. V. 214. № 1–4. P. 289. https://doi.org/10.1016/S0169-4332(03)00361-1

  14. Li C., Wang D., Liang T., Wang X., Wu J., Hu X., Liang J. Oxidation of multiwalled carbon nanotubes by air: Benefits for electric double layer capacitors // Powder technology. 2004. V. 142. № 2–3. P. 175. https://doi.org/10.1016/j.powtec.2004.04.037

  15. Nagasawa S., Yudasaka M., Hirahara K., Ichihashi T., Iijima S. Effect of oxidation on single-wall carbon nanotubes // Chem. Phys. Lett. 2000. V. 328. № 4–6. P. 374. https://doi.org/10.1016/S0009-2614(00)00960-X

  16. Li M., Boggs M., Beebe T.P., Huang C.P. Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound // Carbon. 2008. V. 46. № 3. P. 466. https://doi.org/10.1016/j.carbon.2007.12.012

  17. Wepasnick K.A., Smith B.A., Schrote K.E., Wilson H.K., Diegelmann S.R., Fairbrother D.H. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments // Carbon. 2011. V. 49. № 1. P. 24. https://doi.org/10.1016/j.carbon.2010.08.034

  18. Xia W., Wang Y., Bergsträßer R., Kundu S., Muhler M. Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption // Appl. Surface Sci. 2007. V. 254. № 1. P. 247. https://doi.org/10.1016/j.apsusc.2007.07.120

  19. Figueiredo J.L., Pereira M.F.R., Freitas M.M.A., Orfao J.J.M. Modification of the surface chemistry of activated carbons // Carbon. 1999. V. 37. № 9. P. 1379. https://doi.org/10.1016/S0008-6223(98)00333-9

  20. Goyanes S., Rubiolo G.R., Salazar A., Jimeno A., Corcuera M.A., Mondragon I. Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy // Diamond and Related Materials. 2007. V. 16. № 2. P. 412. https://doi.org/10.1016/j.diamond.2006.08.021

  21. Lee G.W., Kim J., Yoon J., Bae J.S., Shin B.C., Kim I.S., Ree M. Structural characterization of carboxylated multi-walled carbon nanotubes // Thin Solid Films. 2008. V. 516. № 17. P. 5781. https://doi.org/10.1016/j.tsf.2007.10.071

  22. Pistone A., Ferlazzo A., Lanza M., Milone C., Iannazzo D., Piperno A., Piperopoulos E., Galvagno S. Morphological modification of MWCNT functionalized with HNO3/H2SO4 mixtures // J. Nanosci. Nanotechnol. 2012. V. 12. № 6. P. 5054. https://doi.org/10.1166/jnn.2012.4928

  23. Saleh T.A. The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4 // Appl. Surf. Sci. 2011. V. 257. № 17. P. 7746. https://doi.org/10.1016/j.apsusc.2011.04.020

  24. Chiang Y.C., Lin W.H., Chang Y.C. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation // Appl. Surf. Sci. 2011. V. 257. № 6. P. 2401. https://doi.org/10.1016/j.apsusc.2010.09.110

  25. Rosca I. D., Watari F., Uo M., Akasaka T. Oxidation of multiwalled carbon nanotubes by nitric acid //Carbon. 2005. V. 43. № 15. P. 3124. https://doi.org/10.1016/j.carbon.2005.06.019

  26. Liang P., Liu Y., Guo L. Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes // Spectrochim. Acta B: Atom. Spectrosc. 2005. V. 60. № 1. P. 125. https://doi.org/10.1016/j.sab.2004.11.010

  27. Tasis D., Tagmatarchis N., Bianco A., Prato M. Chemistry of carbon nanotubes // Chem. Rev. 2006. V. 106. № 3. P. 1105. https://doi.org/10.1021/cr050569o

  28. Smith B., Wepasnick K., Schrote K.E., Cho H-H., Ball W.P., Fairbrother D.H. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: A structure – property relationship // Langmuir. 2009. V. 25. № 17. P. 9767. https://doi.org/10.1021/la901128k

  29. Tasis D., Tagmatarchis N., Vasilios V., Prato M. Soluble carbon nanotubes // Chem. Eur. J. 2003. V. 9. № 17. P. 4000. https://doi.org/10.1002/chem.200304800

  30. Li M., Huang C.P. Stability of oxidized single-walled carbon nanotubes in the presence of simple electrolytes and humic acid //Carbon. 2010. V. 48. № 15. P. 4527. https://doi.org/10.1016/j.carbon.2010.08.032

  31. Lee J., Kim M., Hong Ch.K., Shim S. Eu. Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents // Meas. Sci. Technol. 2007. V. 18. № 12. P. 3707. https://doi.org/10.1088/0957-0233/18/12/005

  32. Kim Y.S., Park C.R. Titration method for the identification of surface functional groups. Ch. 13 / Materials Science and Engineering of Carbon / Ed. Michio Inagaki. Butterworth-Heinemann, 2016. P. 273. https://doi.org/10.1016/B978-0-12-805256-3.00013-1

  33. Schönherr J., Buchheim J.R, Scholz P., Adelhelm Ph. Boehm titration revisited (part I): Practical aspects for achieving a high precision in quantifying oxygen-containing surface groups on carbon materials // C. Special Issue Functional Nanoporous Carbon-Based Materials. 2018. V. 4. № 2. P. 21. https://doi.org/10.3390/c4020021

  34. Гражулене С.С., Телегин Г.Ф., Золотарева Н.И., Редькин А.Н., Мильникова З.К. Концентрирование токсичных элементов на углеродных нанотрубках для атомно-спектрального анализа экологических объектов // Заводск. лаборатория. Диагностика материалов. 2016. Т. 82. № 11. С. 21.

  35. Гражулене С.С., Телегин Г.Ф., Золотарева Н.И., Редькин А.Н. Определение серебра и палладия методами атомной спектрометрии после сорбционного концентрирования на углеродных нанотрубках // Заводск. лаборатория. Диагностика материалов. 2015. Т. 81. № 8. С. 5. https://doi.org/10.1007/s11356-020-10348-4

  36. Liang P., Liu Ya., Li Guo L., Jing Zeng J., Lu H. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry // J. Anal. Atom. Spectrom. 2004. V. 19. № 11. P. 1489. https://doi.org/10.1039/B409619C

  37. Гражулене С.С., Золотарёва Н.И., Телегин Г.Ф., Редькин А.Н. Атомно-спектроскопические методы анализа природных объектов с использованием углеродных нанотрубок для сорбционного концентрирования микропримесей // Заводск. лаборатория. Диагностика материалов. 2012. Т. 78. № 8. С. 16.

  38. Sengupta A., Gupta N. K. MWCNTs based sorbents for nuclear waste management: A review // J. Environ. Chem. Eng. 2017. V. 5. № 5. P. 5099. https://doi.org/10.1016/j.jece.2017.09.054

  39. Wang X., Chen Ch., Hu W., Ding A., Di Xu D., Xiang Zhou Xi. Sorption of 243Am (III) to multiwall carbon nanotubes // Environ. Sci. Technol. 2005. V. 39. № 8. P. 2856. https://doi.org/10.1021/es048287d

  40. Tan X.L., Xu D., Chen C.L., Wang X.K., Hu W.P. Adsorption and kinetic desorption study of 152 + 154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods // Radiochim. Acta. 2008. V. 96. № 1. P. 23. https://doi.org/10.1524/ract.2008.1457

  41. Sundararajan M., Ghosh S. K. Designing novel materials through functionalization of carbon nanotubes for application in nuclear waste management: Speciation of uranyl // J. Phys. Chem A. 2011. V. 115. № 24. P. 6732. https://doi.org/10.1021/jp203723t

  42. ООО “НаноТехЦентр”: [Электронный ресурс]. URL: http://www.nanotc.ru/ (дата обращения: 21.12.2021).

  43. Ткачев А.Г., Мележик А.В., Дьячкова Т.П., Блохин А.Н., Буракова Е.А., Пасько Т.В. Углеродные наноматериалы серии “Таунит”: производство и применение // Изв. высш. учеб. завед. Химия и хим. технология. 2013. Т. 56. № 4. С. 55.

  44. Моходоева О.Б., Маликов Д.А., Молочникова Н.П., Захарченко Е.А., Перевалов С.А., Мясоедова Г.В., Мищенко С.В., Куляко Ю.М., Мясоедов Б.Ф. Углеродные нанотрубки: возможности использования для концентрирования радионуклидов // Рос. хим. журн. 2010. Т. 54. № 3. С. 61. (Mokhodoeva O. B., Malikov D. A., Molochnikova N. P., Zakharchenko E. A., Perevalov S. A., Myasoedova G. V., Myasoedov B. F. Carbon nanotubes: Potential uses in radionuclide concentration // Russ. J. Gen. Chem. 2011. V. 81. № 9. P. 1972.)https://doi.org/10.1134/S107036321109043X

  45. Мясоедова Г.В., Молочникова Н.П., Ткачев А.Г., Туголуков Е.Н., Мищенко С.В., Мясоедов Б.Ф. Сорбционное концентрирование радионуклидов углеродным наноструктурным материалом “Таунит” // Радиохимия. 2009. Т. 51. № 2. С. 138. (Myasoedova G.V., Molochnikova N.P., Tkachev A.G., Tugolukov E.N., Mishchenko S.V., Myasoedov B.F. Sorption preconcentration of radionuclides on Taunit carbon nanostructural material // Radiochemistry. 2009. V. 51. № 2. P. 156.)https://doi.org/10.1134/S1066362209020106

  46. Захарченко Е.А., Маликов Д.А., Мясоедова Г.В., Моходоева О.Б., Молочникова Н.П., Куляко Ю.М. Твердофазные экстрагенты на основе углеродных нанотрубок “Таунит” для концентрирования актинидов и РЗЭ из азотнокислых растворов // Радиохимия. 2012. Т. 54. № 2. С. 148. (Zakharchenko E.A., Malikov D.A., Myasoedova G.V., Mokhodoeva O.B., Molochnikova N.P., Kulyako Y.M. Solid-phase extractants based on taunit carbon nanotubes for actinide and REE preconcentration from nitric acid solutions // Radiochemistry. 2012. V. 54. № 2. P. 159.)https://doi.org/10.1134/S1066362212020117

  47. Turanov A.N., Karandashev V.K., Evseeva N.K., Kolesnikov N.N., Borisenko D.N. The sorption properties of carbon nanotubes modified with tetraphenylmethylenediphosphine dioxide in nitric acid media // Russ. J. Phys. Chem A: Focus on Chemistry. 2008. V. 82. № 13. P. 2223. https://doi.org/10.1134/S0036024408130116

  48. Колотов В.П., Жилкина А.В., Широкова В.И., Догадкин Н.Н., Громяк И.Н., Догадкин Д.Н., Зыбинский А.М., Тюрин Д.А. Новый подход к минерализации образцов в открытой системе для анализа геологических образцов методом масс-спектрометрии с индуктивно связанной плазмой с улучшенными метрологическими характеристиками // Журн. аналит. химии. 2020. Т. 75. № 5. С. 394. (Kolotov V.P., Zhilkina A.V., Shirokova V.I., Dogadkin N.N., Gromyak I.N., Dogadkin D.N., Zybinsky A.M., Tyurin D.A. A new approach to sample mineralization in an open system for the analysis of geological samples by inductively coupled plasma mass spectrometry with improved performance characteristics // J. Anal. Chem. 2020. V. 75. № 5. P. 569.)https://doi.org/10.1134/S1061934820050081

  49. Kolotov V.P., Zhilkina A.V., Khludneva A.O. iPlasmaProQuad: A computer system based on a relational DBMS for processing and monitoring the results of routine analysis by the ICP-MS method / Advances in Geochemistry, Analytical Chemistry, and Planetary Sciences: Special Publication commemorating the 75th Anniversary of the Vernadsky Institute of Geochemistry and Analytical Chemistry of the RAS / Eds. Kolotov V.P., Bezaeva N.S. Springer, 2023, P. 555-562. https://doi.org/10.1007/978-3-031-09883-3_1

  50. Дьячкова Т.П., Мищенко С.В., Ткачев А.Г., Горский С.Ю., Мележик А.В., Аносова И.В. Исследование закономерностей процессов функционализации и модифицирования углеродных нанотрубок // Изв. высш. учебных заведений. Химия и хим. технология. 2013. Т. 56. № 5. С. 82.

  51. Hai C., Fuji, M., Watanabe H., Wang F., Shirai T., Takahashi M. Evaluation of surfactant-free stabilized vapor grown carbon fibers with ζ-potential and Raman spectroscopy // Colloids Surf. A: Physicochem. Eng. Asp. 2011. V. 381. № 1–3. P. 70. https://doi.org/10.1016/j.colsurfa.2011.03.026

  52. Барань Ш., Картель Н., Месарош Р. Электрокинетический потенциал многослойных углеродных нанотрубок в водных растворах электролитов и ПАВ // Коллоидный журн. 2014. Т. 76. № 5. С. 555. (Barany S., Kartel N., Meszaros R. Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants // Colloid J. 2014. V. 76. № 5. P. 509.)https://doi.org/10.1134/S1061933X14050020

  53. Patole S.P., Simões F., Yapici T.F., Warsama B.H., Anjum D.H., Costa P.M. An evaluation of microwave-assisted fusion and microwave-assisted acid digestion methods for determining elemental impurities in carbon nanostructures using inductively coupled plasma optical emission spectrometry // Talanta. 2016. V. 148. P. 94. https://doi.org/10.1016/j.talanta.2015.10.053

  54. Ge C., Lao F., Li W., Li Y., Chen C., Qiu Y., Mao X., Li B., Chai Z., Zhao Y. Quantitative analysis of metal impurities in carbon nanotubes: Efficacy of different pretreatment protocols for ICPMS spectroscopy // Anal. Chem. 2008. V. 80. № 24. P. 9426. https://doi.org/10.1021/ac801469b

  55. Ge C., Li W., Li Y., Li B., Du J., Qiu Y., Liu Y., Gao Y., Chai Z., Chen C. Significance and systematic analysis of metallic impurities of carbon nanotubes produced by different manufacturers // J. Nanosci. Nanotechnol. 2011. V. 11. № 3. P. 2389. https://doi.org/10.1166/jnn.2011.3520

  56. Yang K.X., Kitto M.E., Orsini J.P., Swami K., Beach S.E. Evaluation of sample pretreatment methods for multiwalled and single-walled carbon nanotubes for the determination of metal impurities by ICPMS, ICPOES, and instrument neutron activation analysis // J. Anal. Atom. Spectrom. 2010. V. 25. № 8. P. 1290. https://doi.org/10.1039/C0JA00012D

  57. Нгуен Ч.Х., Нгуен М.Т., Раков Э.Г. Исследование кислотной функциализации углеродных нановолокон // Неорганические материалы. 2010. Т. 46. №. 10. С. 1195. (Hung N.T., Tuong N.M., Rakov E.G. Acid functionalization of carbon nanofibers // Inorg. Mater. 2010. V. 46. № 10. P. 1077. https://doi.org/S0020168510100092)

  58. GeoReM – Database [Электронный ресурс]. URL: http://georem.mpch-mainz.gwdg.de/ (дата обращения: 14.06.2022).

Дополнительные материалы отсутствуют.