Биология моря, 2022, T. 48, № 3, стр. 147-159

Грибы в глубоководных экосистемах Мирового океана

Л. В. Зверева 1*, О. Г. Борзых 1

1 Национальный научный центр морской биологии им. А.В. Жирмунского ДВО РАН
690041 Владивосток, Россия

* E-mail: zvereva_lv@mail.ru

Поступила в редакцию 29.04.2021
После доработки 27.07.2021
Принята к публикации 17.09.2021

Аннотация

Приведен анализ литературных данных по таксономическому разнообразию, встречаемости, численности и распространению микроскопических грибов в глубоководных пелагических и донных местообитаниях Мирового океана. Отмечена гомология глубоководных видов и видов, описанных в наземной среде. Обсуждаются адаптации, позволяющие грибам существовать в экстремальных условиях донных осадков Мирового океана.

Ключевые слова: глубоководные грибы, глубинная биосфера, экстремальные местообитания, Мировой океан

Список литературы

  1. Борзых О.Г., Зверева Л.В. Первые сведения о глубоководных грибах подводного вулкана Пийпа (Массив Вулканологов, Берингово море) // Комплексные исследования Мирового океана. Сб. материалов IV Всерос. конф. молодых ученых. Севастополь, 22–26 апреля 2019 г. Севастополь: ФГБУН МГИ. С. 209–210.

  2. Кафанов А.И., Кудряшов В.А. Морская биогеография. М.: Наука. 2000.

  3. Abe F. Piezophysiology of yeast: occurrence and significance // Cell. Mol. Biol. 2004. V. 50. P. 437–445.

  4. Arifeen M.Z.U., Xue Y.-R., Liu C.-H. Deep-sea fungi: diversity, enzymes, and bioactive metabolites // Fungi in extreme environments: ecological role and biotechnolo-gical significance. Cham, Switzerland: Springer. 2019. Ch. 17. P. 331–347.

  5. Barone G., Rastelli E., Corinaldesi C. et al. Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea // Prog. Oceanogr. 2018. V. 168. P. 57–64. https://doi.org/10.1016/j.pocean.2018.09.011

  6. Bass D., Howe A., Brown N. et al. Yeast forms dominate fungal diversity in the deep oceans // Proc. R. Soc. B. 2007. № 274. P. 3069–3077.

  7. Bruun A.F. The abyssal fauna: its ecology, distribution and origin // Nature. 1956. V. 177. № 2. P. 1105–1108.

  8. Daletos G., Ebrahim W., Ancheeva E. et al. Natural products from deep-sea-derived fungi − A new source of novel bioactive compounds? // Curr. Med. Chem. 2018. V. 25. № 2. P. 186–207. https://doi.org/10.2174/0929867324666170314150121

  9. Damare S., Raghukumar C. Fungi and macroaggregation in deep-sea sediments // Microb. Ecol. 2008. V. 56. P. 168–177.

  10. Damare S., Raghukumar C., Raghukumar S. Fungi in deep-sea sediments of the Central Indian Basin // Deep Sea Res. Part I. 2006. V. 53. P. 14–27.

  11. Daniel I., Oger P., Winter R. Origins of life and biochemistry under high-pressure conditions // Chem. Soc. Rev. 2006. V. 35. № 10. P. 858–875.

  12. DeLong E.F., Pace N.R. Environmental diversity of bacteria and archaea // Syst. Biol. 2001. V. 50. P. 470–478.

  13. DeLong E.F., Yayanos A.A. Adaptation of the membrane li-pids of a deep-sea bacterium to changes in hydrostatic pressure // Science. 1985. № 228. P. 1101–1103.

  14. Dupont J., Magnin S., Rousseau F. et al. Molecular and ultrastructural characterization of two ascomycetes found on sunken wood off Vanuatu Islands in the deep Pacific Ocean // Mycol. Res. 2009. V. 113. P. 1351–1364.

  15. Edgcomb V.P., Beaudoin D., Gast R. et al. Marine subsurface eukaryotes: the fungal majority // Environ. Microbiol. 2011. V. 13. P. 172–183.

  16. Edgcomb V.P., Kysela D.T., Teske A. et al. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment // Proc. Natl. Acad. Sci. U.S.A. 2002. V. 99. P. 7658–7662.

  17. Fell J.W. Yeasts in marine environments // Marine fungi and fungal-like organisms. Gareth Jones E.B. and Pang k.-L., Eds. Berlin: De Gruyter. 2012. Ch. 6. P. 91–102.

  18. Feng L., Song Q., Jiang Q., Li Z. The horizontal and vertical distribution of deep-sea sediments fungal community in the South China Sea // Front. Mar. Sci. 2021. № 8. Art. ID 592784. https://doi.org/10.3389/fmars.2021.592784

  19. Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Cham, Switzerland: Springer. 2019. 626 p.

  20. Hӧhnk W. Über den pilzlichen Befall kalkiger Hartteile von Meerestieren // Ber. Dtsch. Wiss. Komm. Meeresforsch. 1969. V. 20. P. 129–140.

  21. Hyde K.D., Jones E.B.G., Moss S.T. Mycelial adhesion to surfaces // The Biology of Marine Fungi. Moss S.T. Ed. Cambridge: Cambridge Univ. Press. 1986. Ch. 28. P. 331–340.

  22. Jannasch H.W., Wirsen C.O., Winget C.L. A bacteriological pressure-retaining deep-sea sampler and culture vessel // Deep-Sea Res. Oceanogr. Abstr. 1973. V. 20. P. 661–664.

  23. Jørgensen B.B., Boetius A. Feast and famine – microbial life in the deep-sea bed // Nat. Rev. Microbiol. 2007. № 5. P. 770–781.

  24. Kohlmeyer J. Eine neuer Ascomycet auf Hydrozoen im Südatlantik // Ber. Dtsch. Bot. Ges. 1971. V. 83. P. 505–509.

  25. Kohlmeyer J. New genera and species of higher fungi from the deep sea (1615–5315 m) // Rev. Mycol. 1977. V. 41. P. 189–206.

  26. Kohlmeyer J., Kohlmeyer E. Marine mycology: The higher fungi. New York: Academic. 1979. 690 p.

  27. Kohlmeyer J., Volkmann-Kohlemyer B. Halographis (Opegraphales), a new endolithic lichenoid from corals and snails // Can. J. Bot. 1988. V. 66. P. 1138–1141.

  28. Kutty S.N., Philip R. Marine yeasts − a review // Yeast. 2008. V. 25. P. 465–483.

  29. Li L., Kato C., Horikoshi K. Bacterial diversity in deep-sea sediments from different depths // Biodiversity Conserv. 1999. V. 8. P. 659–677.

  30. Lara E., Moreira D., López-García P. The environmental clade LKM11 and Rozella form the deepest branching clade of Fungi // Protist. 2010. V. 161. P. 116–121.

  31. López-García P., Rodríguez-Valera F., Pedrós-Alió C., Moreira D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton // Nature. 2001. № 409. P. 603–660.

  32. Lorenz R., Molitoris H.P. Cultivation of fungi under simula-ted deep-sea conditions // Mycol. Res. 1997. V. 110. P. 1355–1365.

  33. Manohar C.S., Raghukumar C. Fungal diversity from various marine habitats deduced through culture-independent studies // FEMS Microbiol. Lett. 2013. V. 341. P. 69–78.

  34. Marchese P., Garzoli L., Young R. et al. Fungi populate deep-sea coral gardens as well as marine sediments in the Irish Atlantic Ocean // Environ. Microbiol. 2021. V. 23. № 8. P. 4168–4184. https://doi.org/10.1111/1462-2920.15560

  35. Munn C.B. Marine microbiology: ecology and applications, 2nd ed. New York: Garland Science. 2011. 392 p.

  36. Nagahama T., Nagano Y. Cultured and uncultured fungal diversity in deep-sea environments // Biology of marine fungi. Raghukumar C. (ed.) / Progress in Molecular and Subcellular Biology. V. 53. Berlin: Springer. 2012. P. 173–187.

  37. Nagahama T., Hamamoto M., Nakase T. et al. Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean // Antonie van Leeuwenhoek. 2001a. V. 80. P. 101–110.

  38. Nagahama T., Hamamoto M., Nakase T., Horikoshi K. Rhodotorula lamellibrachii sp. nov., a new yeast species from a tubeworm collected at the deep-sea floor in Sa-gami bay and its phylogenetic analysis // Antonie van Leeuwenhoek. 2001b. V. 80. P. 317–323.

  39. Nagahama T., Hamamoto M., Nakase T., Horikoshi K. Rhodotorula benthica sp. nov. and Rhodotorula calyptogenae sp. nov., novel yeast species from animals collec-ted from the deep-sea floor, and Rhodotorula lysiniphila sp. nov., which is related phylogenetically // Int. J. Syst. Evol. Microbiol. 2003. V. 53. P. 897–903.

  40. Nagano Y., Nagahama T., Hatada Y. et al. Fungal diversity in deep-sea sediments – the presence of novel fungal groups // Fungal Ecol. 2010. V. 3. P. 316–325.

  41. Nagano Y., Fujiwara Y., Nishimoto A. et al. Deep-sea ende-mic fungi? The discovery of Alisea longicolla from artificially immersed wood in deep sea off the Nansei Islands, Japan // Mycoscience. 2019. V. 60. № 4. P. 228–231.

  42. Ogaki M.B., Coelho L.C., Vieira R. et al. Cultivable fungi present in deep-sea sediments of Antarctica: Taxonomy, diversity, and bioprospecting of bioactive compounds // Extremophiles. 2020. V. 24. № 2. P. 227–238. https://doi.org/10.1007/s00792-019-01148-x

  43. Ogaki M.B., Pinto O.H.B., Vieira R. et al. Fungi present in Antarctic deep-sea sediments assessed using DNA metabarcoding // Microbial Ecology. 2021. V. 82. № 1. P. 157–164. https://doi.org/10.1007/s00248-020-01658-8

  44. Poulicek M., Machiroux R., Toussaint C. Chitin diagenesis in deep-water sediments // Chitin in nature and techno-logy. New York: Plenum. 1986. P. 523–530.

  45. Raghukumar S. Fungi in Coastal and Oceanic Marine Ecosystems: Marine Fungi. Cham, Switzerland: Springer. 2017. 378 p.

  46. Raghukumar C., Raghukumar S. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean // Aquat. Microb. Ecol. 1998. V. 15. P. 153–163.

  47. Raghukumar C., Raghukumar S., Sharma S., Chandramohan D. Endolithic fungi from deep sea calcareous substrata: isolation and laboratory studies // Oceanography of the Indian Ocean. B.N. Desai (ed.). New Delhi: Oxford and IBH.1992. P. 3–9.

  48. Raghukumar C., Damare S.R., Singh P. A review on deep-sea fungi: occurrence, diversity and adaptations // Bot. Mar. 2010. V. 53. P. 479–492.

  49. Raghukumar C., Raghukumar S., Sheelu G. et al. Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean// Deep Sea Res., Part I. 2004. V. 51. P. 1759–1768.

  50. Rédou V., Navarri M., Meslet-Cladière L. et al. Species richness and adaptation of marine fungi from deep-subseafloor sediments // Appl. Environ. Microbiol. 2015. V. 81. P. 3571–3583.

  51. Richards T.A., Jones M.D.M., Leonard G., Bass D. Marine fungi: their ecology and molecular diversity // Annu. Rev. Mar. Sci. 2012. V. 4. P. 495–522.

  52. Roth F.J. Jr., Orpurt P.A., Ahearn D.G. Occurrence and distribution of fungi in a subtropical marine environment // Can. J. Bot. 1964. V. 42. P. 375–383.

  53. Siebenaller J.F., Somero G.N. Biochemical adaptation to the deep sea // Rev. Aquat. Sci. 1989. № 1. P. 1–25.

  54. Simonato F., Campanaro S., Lauro F.M. et al. Piezophilic adaptation: a genomic point of view // J. Biotechnol. 2006. V. 126. P. 11–25.

  55. Singh P., Raghukumar C. Diversity and physiology of deep-sea yeasts: A review // Kavaka. 2014. V. 43. P. 50–63.

  56. Singh P., Raghukumar C., Verma P., Shouche Y. Phylogene-tic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth cha-racteristics // Fungal Diversity. 2010. V. 40. P. 89–102.

  57. Singh P., Raghukumar C., Verma P., Shouche Y. Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach // Microb. Ecol. 2011. V. 61. P. 507–517.

  58. Singh P., Raghukumar C., Meena R.M. et al. Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches // Fungal Ecol. 2012a. V. 5. P. 543–553.

  59. Singh P., Raghukumar C., Verma A.K., Meena R.M. Diffe-rentially expressed genes under simulated deep-sea conditions in the psychrotolerant yeast Cryptococcus sp. NIOCC#PY13 // Extremophiles. 2012b. V. 16. P. 777–785.

  60. Singh P., Raghukumar C., Verma P., Shouche Y. Assessment of fungal diversity in deep-sea sediments by multiple primer approach // World J. Microbiol. Biotechnol. 2012c. V. 28. P. 659–667.

  61. Sogin M.L., Morrison H.G., Huber J.A. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere” // Proc. Natl. Acad. Sci. U.S.A. 2006. V. 103. P. 12115–12120.

  62. Somero G.N. Adaptations to high hydrostatic pressure // Annu. Rev. Physiol. 1992. V. 54. P. 557–577.

  63. Sverdrup H.U., Johnson M.W., Fleming R.H. The oceans, their physics, chemistry, and general biology. New York: Prentice-Hall. 1942. 1087 p.

  64. Takai K., Horikoshi K. Genetic diversity of Archaea in deep-sea hydrothermal vent environments // Genetics. 1999. V. 152. P. 1285–1297.

  65. Takami H. Isolation and characterization of microorga-nisms from deep-sea mud // Extremophiles in deep-sea environments. Horikoshi K., Tsujii K. (eds.). Tokyo: Springer. 1999. P. 3–26.

  66. Takishita K., Tsuchiya M., Reimer J.D., Maruyama T. Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll metha-ne seep // Extremophiles. 2006. V. 10. P. 165–169.

  67. Wang F.P., Lu S.L., Orcutt B.N. et al. Discovering the roles of subsurface microorganisms: Progress and future of deep biosphere investigation // Chin. Sci. Bull. 2013. V. 58. P. 456–467.

  68. Wang Z.-P., Liu Z.-Zh., Wang Y.-L. et al. Fungal community analysis in seawater of the Mariana Trench as estimated by Illumina HiSeq // RSC Adv. 2019. V. 9. P. 6956–6964.

  69. West A.J., Lin C.-W., Lin T.-C. et al. Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm // Limnol. Oceanogr. 2011. V. 56. P. 77–85.

  70. Xu W., Pang K.-L., Luo Z.-H. High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean // Microb. Ecol. 2014. V. 68. P. 688–698.

  71. Yamasato K., Goto S., Ohwada K. et al. Yeasts from the Pacific Ocean // J. Gen. Appl. Microbiol. 1974. V. 20. P. 289–307.

  72. Yanagibayashi M., Nogi Y., Li L., Kato C. Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression // FEMS Microbiol. Lett. 1999. V. 170. P. 271–279.

  73. Zhang X.-Y., Tang G.-L., Xu X.-Y. et al. Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation // PLoS One. 2014. V. 9. № 10. Art. ID e109118. https://doi.org/10.1371/journal.pone.0109118

  74. Zhang X., Li Y., Yu Z. et al. Phylogenetic diversity and bioactivity of culturable deep-sea-derived fungi from Okinawa Trough // J. Oceanol. Limnol. 2021. V. 39. P. 892–902.

  75. ZoBell C.E., Johnson F.H. The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria // J. Bacteriol. 1949. V. 57. P. 179–189.

  76. ZoBell C.E., Morita R.Y. Barophilic bacteria in some deep-sea sediments // J. Bacteriol. 1957. V. 73. P. 563–568.

Дополнительные материалы отсутствуют.