Биология моря, 2023, T. 49, № 4, стр. 219-229

Морские лабиринтуломицеты

Д. Д. Перебоев 1, Е. Н. Бубнова 2*

1 Институт проблем экологии и эволюции им. А.Н. Северцова РАН
119071 Москва, Россия

2 Московский государственный университет им. М.В. Ломоносова
119234 Москва, Россия

* E-mail: katya.bubnova@wsbs-msu.ru

Поступила в редакцию 09.12.2022
После доработки 30.03.2023
Принята к публикации 30.03.2023

Аннотация

Лабиринтуломицеты – небольшая, но очень важная группа морских грибоподобных организмов. Они распространены повсеместно, могут быть ассоциированы с живыми растениями, водорослями и животными, а также разлагать разнообразные органические остатки. Эти организмы способны к синтезу и обильному накоплению липидов, в частности, полиненасыщенных жирных кислот, отдельные из которых представляют большой интерес для биотехнологии. Сведения о лабиринтуломицетах в настоящее время накапливаются очень быстро. Наша работа посвящена обзору современных данных о строении, биологии и таксономии этих организмов. Затрагиваются проблемы методических подходов к их изучению, а также вопросы разнообразия, распространения и значения в морских экосистемах.

Ключевые слова: Labyrinthulomycetes, морские экосистемы, грибоподобные организмы, сапротрофы, паразиты

Список литературы

  1. Артемчук Н.Я. Микофлора морей СССР. 1981. М.: Наука. 192 с.

  2. Кузнецов Е.А. Морские низшие грибы пролива Великая Салма Белого моря // Биол. моря. 1979. Т. 1. С. 3–9.

  3. Abdel-Wahab M.A., El-Samawaty A.-R.M.A., Elgorban A.M., Bahkali A.H. Fatty acid production of thraustochytrids from Saudi Arabian mangroves // Saudi J. Biol. Sci. 2021a. V. 28. № 1. P. 855–864.

  4. Abdel-Wahab M.A., El-Samawaty A.-R.M.A., Elgorban A.M., Bahkali A.H. Thraustochytrids from the Red Sea mangroves in Saudi Arabia and their abilities to produce docosahexaenoic acid // Bot. Mar. 2021b. V. 64. № 6. P. 489–501.

  5. Adl S.M., Bass D., Lane C.E. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes // J. Eukaryot. Microbiol. 2018. V. 66. P. 4–119.

  6. Anderson O.R., Cavalier-Smith T. Ultrastructure of Diplophrys parva, a new small freshwater species, and a revised analysis of Labyrinthulea (Heterokonta) // Acta Protozool. 2012. V. 51. P. 291–304.

  7. Anderson R.S., Kraus B.S., McGladdery S.E. et al. A thraustochytrid protist isolated from Mercenaria mercenaria: molecular characterization and host defense responses // Fish Shellfish Immunol. 2003. V. 15. P. 183–194.

  8. Bennett R.M., Honda D., Beakesand G.W., Thines M. Labyrinthulomycota // Handbook of the Protists / Archibald J.M., Simpson A.G.B., Slamovits C.H. Eds. Springer International Publishing. 2017. P. 507–542.

  9. Bochdansky A.B., Melissa A., Clouse M.A., Herndl G.J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow // ISME J. 2016. V. 11. № 2. P. 1–12.

  10. Bockelmann A.-C., Tams V., Ploog J. et al. Quantitative PCR reveals strong spatial and temporal variation of the wasting disease pathogen, Labyrinthula zosterae in Northern European eelgrass (Zostera marina) beds // PLoS One. 2013. V. 8. № 5. e62169.

  11. Bongiorni L., Jain R., Raghukumar S., Aggarwal R.K. Thraustochytrium gaertnerium sp. nov.: a new thraustochytrid stramenopilan protist from mangroves of Goa, India // Protist. 2005. V. 156. № 3. P. 303–315.

  12. Boro M.C., Harakava R., Pires-Zottarelli C.L.A. Labyrinthulomycota from brasilian mangrove swamps // Bot. Mar. 2018. V. 61. № 1. P. 65–74.

  13. Bower S.M. Labyrinthuloides haliotidis n.sp. (Protozoa: Labyrinthomorpha), a pathogenic parasite of small juvenile abalone in a British Columbia mariculture facility // Can. J. Zool. 1986. V. 65. P. 1996–2007.

  14. Brakel J., Jakobsson-Thor S., Bockelmann A.-C., Reusch T.B.H. Modulation of the eelgrass – Labyrinthula zosterae interaction under predicted ocean warming, salinity change and light limitation // Front. Mar. Sci. 2014. V. 6. P. 268.

  15. Brakel J., Werner F.J., Tams V. et al. Current european Labyrinthula zosterae are not virulent and modulate seagrass (Zostera marina) defense gene expression // PLoS One. 2019. V. 9. № 4. e92448.

  16. Burge C.A., Douglas N., Conti-Jepre I. et al. Friend or foe: the association of Labyrinthulomycetes with the Caribbean sea fan Gorgonia ventalina // Dis. Aquat. Organ. 2012. V. 101. P. 1–12.

  17. Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasing periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences // Protoplasma. 2018. V. 255. P. 297–357.

  18. Collado-Mercado E., Radway J.A.C., Collier J.L. Novel uncultivated labyrinthulomycetes revealed by 18S rDNA sequences from seawater and sediment samples // Aquat. Microb. Ecol. 2010. V. 58. P. 215–228.

  19. Damare V.S. Diversity of thraustochytrid protists isolated from brown alga, Sargassum cinereum using 18S rDNA sequencing and their morphological response to heavy metal // J. Mar. Biol. Assoc. 2015. V. 95. № 2. P. 265–276.

  20. Damare V., Raghukumar S. Morphology and physiology of the marine straminipilan fungi, the aplanochytrids isolated from the equatorial Indian Ocean // Indian J. Mar. Sci. 2006. V. 35. № 4. P. 326–340.

  21. Damare V., Raghukumar S. Association of the stramenopilan protists, the aplanochytrids, with zooplankton of the equatorial Indian Ocean // Mar. Ecol. Prog. Ser. 2010. V. 399. P. 53–68.

  22. Darley W.M., Porter D., Fuller M.S. Cell wall composition and synthesis via Golgi-directed scale formation in the marine eucaryote, Schizochytrium aggregatum with a note on Thraustochytrium sp. // Arch. Mikrobiol. 1973. V. 90. № 2. P. 89–106.

  23. Dellero Y., Cagnac O., Rose S. et al. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium // Algal Res. 2018. V. 35. P. 125–141.

  24. Dick M.W. Straminipilous fungi: systematics of the peronosporomycetes, including accounts of the marine straminipilous protists, the plasmodiophorids, and similar organisms. Dordrecht: Kluwer Academic Publishers. 2001.

  25. Doi K., Honda D. Proposal of Monorhizochytrium globosum gen. nov., comb. nov. for former Thraustochytrium globosum based on morphological features and phylogenetic relationships // Phycol. Res. 2017. V. 65. P. 188–201.

  26. Duffin P., Martin D.L., Furman B.T., Ross C. Spatial patterns of Thalassia testudinum immune status and Labyrinthula spp. load implicate environmental quality and history as modulators of defense strategies and wasting disease in Florida Bay, United States // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.612947

  27. Dyková I., Fiala I., Dvořáková H., Pechková H. Living together: the marine amoeba Thecamoeba hilla Schaeffer, 1926 and its endosymbiont Labyrinthula sp. // Eur. J. Protist. 2008. V. 44. № 4. P. 308–316.

  28. Fan K.W., Vrijmoed L.L.P., Jones E.B.G. Zoospore chemotaxis of mangrove thraustochytrids from Hong Kong // Mycologia. 2002. V. 94. № 4. P. 569–578.

  29. FioRito R., Leander C., Leander B. Characterization of three novel species of Labyrinthulomycota isolated from ochre sea stars (Pisaster ochraceus) // Mar. Biol. 2016. P. 163–170.

  30. Ganuza E., Yang S., Amezquita M. et al. Genomics, biology and phylogeny Aurantiochytrium acetophilum sp. nov. (Thraustochytriaceae), including first evidence of se-xual reproduction // Protist. 2019. V. 170. P. 209–232.

  31. Geraci-Yee S., Brianik C.J., Rubin E. et al. Erection of a new genus and species for the sathogen of hard clams ‘Quahog Parasite Unknown’ (QPX): Mucochytrium quahogii gen. nov., sp. nov. // Protist. 2021. V. 172. https://doi.org/10.1016/j.protis.2021.125793

  32. Gomaa F., Mitchell E.A.D., Lara E. Amphitrmida (Poche, 1913) is a new major, ubiquitous labyrinthulomycete clade // PloS One. 2013. V. 8. № 1. https://doi.org/10.1371/journal.pone.0053046

  33. Graham O.J., Aoki L.R., Stephens T. et al. Effects of seagrass wasting disease on eelgrass growth and belowground sugar in natural meadows // Front. Mar. Sci. 2021. V. 8. https://doi.org/10.3389/fmars.2021.768668

  34. Groner M.L., Burge C.A., Courtney S.C. et al. Host demography influences the prevalence and severity of eelgrass wasting disease // Dis. Aquat. Organ. 2014. V. 108. P. 165–175.

  35. Guillou L., Bachar D., Audic S. et al. The protist ribosomal reference database (RP2): a catalog of unicellular eucariote small sub-unit rRNA sequences with curated taxonomy // Nucleic Acids Res. 2013. V. 41. P. D597–D604. https://doi.org/10.1093/nar/gks1160

  36. Gupta A., Wilkens S., Adcock J.L. et al. Pollen baiting faci-litates the isolation of marine thraustochytrids with potential in omega-3 and biodiesel production // J. Ind. Microbiol. Biotechnol. 2013. V. 40. P. 1231–1240.

  37. Hassett B.T. A widely distributed traustochytrid parasite of diatoms isolated from the Arctic represents a gen. and sp. nov. // J. Eucariot. Microbiol. 2020. V. 67. № 4. P. 480–490. https://doi.org/10.1111/jeu.12796

  38. Hassett B.T., Gradinger R. New species of saprobic Labyrinthulea (=Labyrinthulomycota) and the erection of a gen. nov. to resolve molecular polyphyly within the Aplanochytrids // J. Eukaryot. Microbiol. 2017. V. 65. № 4. P. 475–483.

  39. Hamamoto Y., Honda D. Nutritional intake of Aplanochytrium (Labyrinthulea, Stramenopiles) from living diatoms revealed by culture experiments suggesting the new prey-predator interactions in the grazing food web of the marine ecosystem // PLoS One. 2019. V. 14. № 1. e0208941.

  40. Honda D., Yocochi T., Nakahara T. et al. Molecular phylo-geny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene // J. Eukariot. Microbiol. 1999. V. 46. P. 637–647.

  41. Iwata I., Honda D. Nutritional intake by ectoplasmic nets of Schizochytrium aggregatum (Labyrinthulomycetes) // Protist. 2018. V. 169. № 5. P. 727–743.

  42. Iwata I., Kimura K., Tomaru Y. et al. Bothrosome formation in Schizochytrium aggregatum (Labyrinthulomycetes, Stramenopiles) during zoospore settlement // Protist. 2017. V. 168. № 2. P. 206–219.

  43. Jain R., Raghukumar S., Tharanathan R., Bhosle N.B. Extracellular polysaccharide production by thraustochytrid protists // Mar. Biotechnol. 2005. V. 7. P. 184–192.

  44. Jaseera K.V., Kaladharan P. An overview of systematics, morphology, biodiversity and potential utilisation of Thraustochytrids // J. Mar. Biol. Assoc. India. 2020. V. 62. № 2. P. 13–21.

  45. Jennings D.H. Some aspects of the physiology and biochemistry of marine fungi // Biol. Rev. 1983. V. 58. P. 423–459.

  46. Leander C.A., Porter D., Leander B.S. Comparative morphology and molecular phylogeny of aplanochytrids (Labyrinthulomycota) // Eur. J. Protistol. 2004. V. 40. P. 317–328.

  47. Leano E.M., Damare V. Labyrinthulomycota (Chapter 12) // Marine fungi and fungal-like organisms / Garetn Jones E.B., Pang K.L. Eds. 2012. De Gruyter. P. 215–244.

  48. Lee S.J., Shim J.B., Lee S.-R. First report of Labyrinthula zosterae (Labyrinthulomycetes) as the causal pathogen of wasting disease in the seagrass Zostera marina in Korea // Plant Dis. 2021. https://doi.org/10.1094/PDIS-12-20-2751-PDN

  49. Lewis T., Nichols P., McMeeki T. The biotechnological potential of Thraustochytrids // Mar. Biotechnol. 1999. V. 1. P. 580–587.

  50. Li Q., Wang X., Liu X. et al. Abundance and novel lineages of Thraustochytrids in Hawaiian waters // Microb. Ecol. 2013. V. 66. P. 823–830.

  51. Marchan L.F., Chang K.J.L., Nichols P.D. et al. Screening of new British thraustochytrids isolates for docosahexaenoic acid (DHA) production // J. Appl. Phycol. 2017. V. 29. P. 1–13.

  52. Martin D.L., Chiari Y., Boone E. et al. Functional, phylogenetic and host-geographic signatures of Labyrinthula spp. provide for putative species delimitation and a global-scale view of seagrass wasting disease // Estuaries and Coasts. 2016. V. 39. P. 140–1421.

  53. Menning D.M., Gravley H.A., Cady M.N. et al. Metabarco-ding of environmental samples suggest wide distribution of eelgrass (Zostera marina) pathogens in the north Pacific // Metabarcoding and Metagenomics. 2021. V. 5. P. 35–42.

  54. Moens P.B., Perkins F.O. Chromosome number of a small protist: accurate determination // Science. 1969. V. 166. № 3910. P. 1289–1291.

  55. Morabito C., Bournaud C., Maës C. et al. The lipid metabolism in thraustochytrids // Progr. Lipid Res. 2019. V. 76. 101007.

  56. Mystikou A., Peters A.F., Asensi A.O. et al. Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community composition in the Adelaide Island / Marguerite Bay region over a 35-year time span // Polar Biol. 2014. V. 37. № 11. P. 1607–1619.

  57. Nakai R., Naganuma T. Diversity and ecology of thrausto-chytrid protists in the marine environment // Marine protists. Diversity and dynamics / Ohtsuka S., Suzaki T., Horiguchi T. , Eds. 2015. Springer IP. P. 331–346.

  58. Olsen Y.S., Potouroglou M., Garcias-Bonet N., Duarte C.M. Warming reduces pathogen pressure on a climate-vulnerable seagrass species // Estuaries and Coasts. 2015. V. 38. P. 659–667.

  59. Pagenkopp Lohan K.M., DiMaria R., Martin D.L. et al. Diversity and microhabitat associations of Labyrinthula spp. in the Indian River Lagoon system // Dis. Aquat. Org. 2020. V. 137. P. 145–157.

  60. Pan J., del Campo J., Keeling P.J. Reference tree and environmental sequence diversity of labyrinthulomycetes // J. Eukaryot. Microbiol. 2017. V. 64. P. 88–96.

  61. Passow U. Transparent exopolymer particles (TEP) in aquatic environments // Progr. Oceanogr. 2002. V. 55. № 3–4. P. 287–333.

  62. Phuphumirat W., Ferguson D.K., Gleason F.H. The colonization of palynomorphs by chytrids and thraustochytrids during pre-depositional taphonomic processes in tro-pical mangrove ecosystems // Fungal Ecol. 2016. V. 23. P. 11–19.

  63. Popova O.V., Belevich T.A., Golyshev S.A. et al. Labyrinthula diatomea sp. nov. – a labyrinthulid associated with marine diatoms // J. Eukariot. Microbiol. 2020. V. 67. № 3. P. 393–402.

  64. Qarri A., Rinkevich Y., Rinkevich B. Employing marine invertebrate cell culture media for isolation and cultivation of thraustochytrids // Bot. Mar. 2021. V. 64. № 6. P. 447–454.

  65. Raghukumar S. Observations of the life cycle and movement of the thraustochytrid Ulkenia amoeboidea from the North Sea // J. Protozool. 1979. V. 26. № 4. P. 564–566.

  66. Raghukumar S. Bacterivory: a novel dual role for thraustochytrids in the sea // Mar. Biol. 1992. V. 113. P. 165–169.

  67. Raghukumar S. Thraustochytrid marine protists: production of PUFAs and other emerging technologies // Mar. Biotechnol. 2008. V. 10. № 6. P. 631–640.

  68. Raghukumar S., Damare V.S. Increasing evidence for the important role of Labyrinthulomycetes in marine ecosystems // Bot. Mar. 2011. V. 54. № 1. P. 3–11.

  69. Raghukumar S., Ramaiah N., Raghukumar C. Dynamics of thraustochytrid protists in the water column of the Arabian Sea // Aquat. Microb. Ecol. 2001. V. 24. P. 175–186.

  70. Rau E.M., Ertesvåg H. Method development progress in genetic engineering of Thraustochytrids // Mar. Drugs. 2021. V. 19. P. 515–533.

  71. Rosa S.M., Galvagno M.A., Vélez C.G. Primeros aislamientos de Thraustochytriales (Labyrinthulomycetes, Heterokonta) de ambientes estuariales y salinos de la Argentina // Darwiniana. 2006. V. 44. № 1. P. 81–88.

  72. Rosa S.M., Galvagno M.A., Vélez C.G. Adjusting culture conditions to isolate thraustochytrids from temperate and cold environments in southern Argentina // Mycoscience. 2011. V. 52. № 4. P. 242–252.

  73. Siegenthaler P.A., Belsky M.M., Goldstein S., Menna M. Phosphate uptake in an obligately marine fungus II. Role of culture conditions, energy sources, and inhibitors // J. Bacteriol. 1967. V. 93. № 4. P. 1281–1288.

  74. Scholz B., Guillou L., Marano A.V. et al. Zoosporic parasites infecting marine diatoms – a black box that needs to be opened // Fungal Ecol. 2016. V. 19. P. 59–76.

  75. Sullivan B.K., Sherman T.D., Damare V.S. et al. Potential roles of Labyrinthula spp. in global seagrass population declines // Fungal Ecol. 2013. V. 6. № 5. P. 328–338.

  76. Takahashi Y., Yoshida M., Inonye I., Watanabe M.M. Fibrophrys columna gen. nov., sp. nov.: a member of the family Amphifilidae // Protistology. 2016. V. 56. P. 41–50.

  77. Xiao R., Yang X., Li M. et al. Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum // Carbohydr. Polym. 2018a. V. 195. № 17. P. 515–524. https://doi.org/10.1016/j.carbpol.2018.04.126

  78. Xiao R., Li X., Zheng Y. Enzyme production by a fungoid protist, Thraustochytrium striatum // Eur. J. Protistol. 2018b. V. 66. P. 136–148.

  79. Xie N., Sen B., Song Z. et al. High phylogenetic diversity and abundance pattern of Labyrinthulomycete protists in the coastal waters of the Bohai Sea // Envir. Microbiol. 2018. V. 20. № 8. P. 3042–3056.

  80. Yokoyama R., Salleh B., Honda D. Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny: emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov. // Mycoscience. 2007. V. 48. P. 329–341.

  81. Yoshioka R.M. Schram J.B., Galloway A.W.E. Eelgrass pathogen Labyrinthula zosterae synthesizes essential fatty acids // Dis. Aquat. Org. 2019. V. 135. P. 89–95.

Дополнительные материалы отсутствуют.