Ботанический журнал, 2020, T. 105, № 12, стр. 1147-1168

ИССЛЕДОВАНИЯ СОВРЕМЕННЫХ ПЫЛЬЦЕВЫХ СПЕКТРОВ: ИНСТРУМЕНТЫ, ПОДХОДЫ, СОВРЕМЕННЫЕ НАПРАВЛЕНИЯ

М. Б. Носова *

Главный ботанический сад им. Н.В. Цицина РАН
127276 Москва, ул. Ботаническая, 4, Россия

* E-mail: mashanosova@mail.ru

Поступила в редакцию 14.05.2020
После доработки 29.07.2020
Принята к публикации 25.08.2020

Аннотация

В статье рассмотрены основные инструменты и подходы к изучению современных (рецентных и субрецентных) палинологических спектров в целях создания базы современных аналогов для интерпретации ископаемых данных, моделирования растительности и климата прошлого. Обсуждаются методики сбора образцов, включая Программу мониторинга пыльцы, сфера применения результатов анализа современного пыльцевого дождя, использование поправочных коэффициентов и значимых уровней пыльцы, математические методы, используемые при работе с современной и ископаемой пыльцой. Описаны подходы к реконструкции растительности и климата прошлого с использованием современных палинологических данных: метод современных аналогов, метод биомизации, реконструкция растительности и ландшафтов с использованием моделей Прентиса–Сугиты (REVEALS и LOVE) и необходимые для этих моделей параметры – оценка пыльцевой продуктивности и площади наилучшего соответствия.

Ключевые слова: палинология, пыльца, рецентный и субрецентный палинологические спектры, ловушка Таубера, метод современных аналогов, метод биомизации, скорость аккумуляции пыльцы, приток пыльцы, оценка пыльцевой продуктивности, площадь наилучшего соответствия

DOI: 10.31857/S0006813620120145

Список литературы

  1. Abraham V., Kozáková R. 2012. Relative pollen productivity estimates in the modern agricultural landscape of Central Bohemia (Czech Republic). – Rev. Palaeobot. Palynol. 179: 1–12.

  2. Åkesson C., Nielsen A.B., Broström A., Persson T., Gaillard M.J., Berglund B.E. 2015. From landscape description to quantification: A new generation of reconstructions provides new perspectives on Holocene regional landscapes of SE Sweden. – The Holocene. 25 (1): 178–193.

  3. Andersen S.T. 1970. The relative pollen productivity and representation of north European trees, and correction factors for tree pollen spectra. – Danmarks Geologiske Undersøgelse Række II 96: 1–99.

  4. Anderson A.J.B. 1971. Ordination methods in ecology. – J . Ecol. 59: 713–726.

  5. Birks H.H., Bjune A.E. 2010. Can we detect a west Norwegian tree line from modern samples of plant remains and pollen? Results from the DOORMAT project. – Veget. Hist. Archaeobot. 19 (4): 325–340.

  6. Birks H.J.B., Gordon A.D. 1985. Numerical methods in Quaternary pollen analysis. Academic Press, New York. 305 pp.

  7. [Blagoveshchenskaya] Благовещенская Н.В. 2006. Динамика лесных экосистем верхнего плато Приволжской возвышенности в голоцене. – Экология. 2: 83–88.

  8. [Blagoveshchenskaya] Благовещенская Н.В. 2016. Особенности интерпретации субфоссильных спорово-пыльцевых спектров Приволжской возвышенности (в целях палеоботанических реконструкций). – Бюлл. МОИП. Сер. Биол. 121 (5): 48–63.

  9. ter Braak C.J. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. – Ecology. 67: 1167–1179.

  10. ter Braak C.J.F., Smilauer P. 2002. CANOCO Reference Manual and Canodraw for Windows User’s Guide. Software for Canonical Community Ordination (version 4.5). Microcomputer Power (Ithaca, NY, USA).

  11. Bradshaw R.H.W. 1981.Quantitative reconstruction of local woodland vegetation using pollen analysis from a small basin in Norfolk, England. – J. Ecol. 69: 941–955.

  12. Broström A., Nielsen A.B., Gaillard M.J., Hjelle K., Mazier F., Binney H., … et Räsänen S. 2008. Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. – Veget. Hist. Archaeobot. 17 (5): 461–478.

  13. Broström A., Sugita S., Gaillard M.J. 2004. Pollen productivity estimates for the reconstruction of past vegetation cover in the cultural landscape of southern Sweden. – The Holocene. 14 (3): 368–381.

  14. Broström A., Sugita S., Gaillard M.J., Pilesjö P. 2005. Estimating the spatial scale of pollen dispersal in the cultural landscape of southern Sweden. – The Holocene. 15 (2): 252–262.

  15. Bunting M.J., Gaillard M.J., Sugita S., Middleton R., Broström A. 2004. Vegetation structure and pollen source area. – The Holocene. 14 (5): 651–660.

  16. Bunting M.J., Armitage R., Binney H.A., Waller M. 2005. Estimates of ‘relative pollen productivity and ‘relevant source area of pollen for major tree taxa in two Norfolk (UK) woodlands. – The Holocene. 15 (3): 459–465.

  17. Bunting M.J., Farrell M., Broström, A., Hjelle, K.L., Mazier, F., Middleton, R., … et Twiddle, C.L. (2013). Palynological perspectives on vegetation survey: a critical step for model-based reconstruction of Quaternary land cover. – Quatern. Sci. Rev. 82: 41–55.

  18. Bunting M.J., Hjelle K.L. 2010. Effect of vegetation data collection strategies on estimates of relevant source area of pollen (RSAP) and relative pollen productivity estimates (relative PPE) for non-arboreal taxa. – Veget. Hist. Archaeobot. 19 (4): 365–374.

  19. Bunting M.J., Middleton D. 2005. Modelling pollen dispersal and deposition using HUMPOL software, including simulating windroses and irregular lakes. – Rev. Palaeobot. Palynol. 134 (3–4): 185–196.

  20. Calcote R. 1995. Pollen source area and pollen productivity: evidence from forest hollows. – J. Ecol. 83 (4): 591–602.

  21. Caseldine C.J. 1981. Surface pollen studies across Bankhead Moss, Fife, Scotland. J.Biogeogr. 8 (1): 7–25.

  22. Connor S.E., Thomas I., Kvavadze E.V., Arabuli G.J., Avakov G.S., Sagona A. 2004. A survey of modern pollen and vegetation along an altitudinal transect in southern Georgia, Caucasus region. – Rev. Palaeobot. Palynol. 129 (4): 229–250.

  23. Crowder A.A., Cuddy D.G. 1973. Pollen in a small river basin: Wilton Creek, Ontario. In: Birks H.J.B., West R.G. (eds.). Quaternary plant ecology. Blackwell, Oxford. P. 61–78.

  24. Davis M.B. 1963. On the theory of pollen analysis. – Am. J. Sci. 261 (10): 897–912.

  25. Djamali M., de Beaulieu J.L., Campagne P., Andrieu-Ponel V., Ponel P., Leroy S.A.G., Akhani H. 2009. Modern pollen rain–vegetation relationships along a forest–steppe transect in the Golestan National Park, NE Iran. – Rev. Palaeobot. Palynol. 153 (3–4): 272–281.

  26. Duffin K.I., Bunting M.J. 2008. Relative pollen productivity and fall speed estimates for southern African savanna taxa. – Veget. Hist. Archaeobot. 17 (5): 507–525.

  27. Eklöf M., Broström A., Gaillard M.J., Pilesjö P. 2004. OPENLAND3: a computer program to estimate plant abundance around pollen sampling sites from vegetation maps: a necessary step for calculation of pollen productivity estimates. – Rev. Palaeobot. Palynol. 132 (1–2): 67–77.

  28. Elenga H., Peyron O., Bonnefille R., Jolly D., Cheddadi R., Guiot J., … et Hamilton A.C. 2000. Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr BP. – J. Biogeogr. 27 (3): 621–634.

  29. Faegri K. 1966. Some problems of representivity in pollen analysis. – Palaeobotanist. 15: 135–140.

  30. Fall P.L. 2012. Modern vegetation, pollen and climate relationships on the Mediterranean island of Cyprus. – Rev. Palaeobot. Palynol. 185: 79–92.

  31. Feurdean A., Tanţău I., Fărcaş S. 2011. Holocene variability in the range distribution and abundance of Pinus, Picea abies, and Quercus in Romania; implications for their current status. – Quatern. Sci. Rev. 30 (21–22): 3060–3075.

  32. [Fedorova] Федорова Р.В. 1952. Количественные закономерности распространения пыльцы древесных пород воздушным путем. – Тр. ИГ АН СССР. 2 (7) 91–103.

  33. [Fedorova, Vronskiy] Федорова Р.В., Вронский В.А. 1980. О закономерностях рассеивания пыльцы и спор в воздухе (для целей палеогеографических реконструкций). – Бюллетень Комиссии по изучению четвертичного периода. 50: 153–165.

  34. [Filimonova] Филимонова Л.В. 2005. Динамика растительности среднетаежной подзоны Карелии в позднеледниковье и голоцене (палеоэкологические аспекты): Дис. … канд. биол. наук. Петрозаводск. 200 с.

  35. Fyfe R.M., Twiddle C., Sugita S., Gaillard M.J., Barratt P., Caseldine C.J., … et Grant M.J. 2013. The Holocene vegetation cover of Britain and Ireland: overcoming problems of scale and discerning patterns of openness. – Quatern. Sci. Rev. 73: 132–148.

  36. Fyfe R.M., Woodbridge J., Roberts N. 2015. From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach. – Global Change Biol. 21 (3): 1197–1212.

  37. Gaillard M.J., Sugita S., Mazier F., Trondman A.K., Brostrom A., Hickler T., … et Lemmen C. 2010. Holocene land-cover reconstructions for studies on land cover-climate feedbacks. – Climate of the Past. 6: 483–499.

  38. Gerasimidis A., Panajiotidis S., Hicks S., Athanasiadis N. 2006. An eight-year record of pollen deposition in the Pieria mountains (N. Greece) and its significance for interpreting fossil pollen assemblages. – Rev. Palaeobot. Palynol. 141 (3-4): 231–243.

  39. Giesecke T., Fontana S.L., van der Knaap W.O., Pardoe H.S., Pidek I.A. 2010. From early pollen trapping experiments to the Pollen Monitoring Programme. – Veget. Hist. Archaeobot. 19 (4) 247–258.

  40. Giesecke T., Bennett K.D. 2004. The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. – J. Biogeogr. 31 (9): 1523–1548.

  41. Githumbi E., Trondman A.K., Fyfe R., Kjellström E., Lindström J., Lu Z., … et Strandberg G. 2018. Quantifying the land-use climate forcing in the past: a modelling approach focusing on Europe and the Holocene (LandClim II). – 2nd Baltic Earth Conference, the Baltic sea region in transition, Jun 2018, Helsingor, Denmark: 179.

  42. Goodall D.W. 1954.Objective methods for the classification of vegetation. III. An essay in the use of factor analysis. – Aust. J. Bot. 2: 304–324.

  43. Gosling W.D., Mayle F.E., Killeen T.J., Siles M., Sanchez L., Boreham S. 2003. A simple and effective methodology for sampling modern pollen rain in tropical environments. – The Holocene. 13: 613–618.

  44. Guo C., Ma Y., Li D., Pei Q. 2020. Modern pollen and its relationship with vegetation and climate in the Mu Us Desert and surrounding area, northern China: Implications of palaeoclimatic and palaeocological reconstruction. – Palaeogeogr. Palaeoclim. Palaeoecol. Online – https://doi.org/10.1016/j.palaeo.2020.109699

  45. Hammer Ø., Harper D.A., Ryan P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. – Palaeontologia electronica. 4 (1): 9.

  46. Hättestrand M. 2013. Eight years of annual pollen monitoring in northern Sweden, from the boreal forest to above the birch forest-line. – Grana. 52 (1): 26–48.

  47. Hättestrand M., Jensen C., Hallsdóttir M., Vorren K.D. 2008. Modern pollen accumulation rates at the north-western fringe of the European boreal forest. – Rev. Palaeobot. Palynol. 151 (3-4): 90–109.

  48. Hellman S., Gaillard M.J., Bunting J.M., Mazier F. 2009. Estimating the relevant source area of pollen in the past cultural landscapes of southern Sweden – a forward modelling approach. – Rev. Palaeobot. Palynol. 153 (3–4): 259–271.

  49. Hicks S. 2001. The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. – Rev. Palaeobot. Palynol. 117 (1–3): 1–29.

  50. Hicks S. 2006. When no pollen does not mean no trees. – Veget. Hist. Archaeobot. 15 (4): 253–261.

  51. Hicks S., Birks H.J.B. 1996. Numerical analysis of modern and fossil pollen spectra as a tool for elucidating the nature of fine-scale human activities in boreal areas. – Veget. Hist. Archaeobot. 5 (4): 257–272.

  52. Hicks S., Hyvärinen H. 1999. Pollen influx values measured in different sedimentary environments and their palaeo-ecological implications. – Grana. 38 (4): 228–242.

  53. Hicks S., Latałowa M., Ammann B., Pardoe H., Tinsley H. (Eds.) 1996. European Pollen Monitoring Programme – Project Description and Guidelines, University of Oulu. 28 p.

  54. Hill M.O., Gauch H.G. 1980. Detrended correspondence analysis: an improved ordination technique. – Vegetatio. 42: 47–58.

  55. Hjelle K.L. 1998. Herb pollen representation in surface moss samples from mown meadows and pastures in western Norway. – Veget. Hist. Archaeobot. 7 (2): 79–96.

  56. Hjelmroos M., Franzén L.G. 1994. Implications of recent long-distance pollen transport events for the interpretation of fossil pollen records in Fennoscandia. – Rev. Palaeobot. Palynol. 82 (1–2): 175–189.

  57. Hultberg T., Gaillard M.J., Grundmann B., Lindbladh M. 2015. Reconstruction of past landscape openness using the Landscape Reconstruction Algorithm (LRA) applied on three local pollen sites in a southern Swedish biodiversity hotspot. – Veget. Hist. Archaeobot. 24 (2): 253–266.

  58. Janssen C.R. A comparison between the recent regional pollen rain and the sub-recent vegetation in four major vegetation types in Minnesota (USA). – Rev. Palaeobot. Palynol. 1967. 2 (1–4): 331–342.

  59. Janssen C.R. 1981. On the reconstruction of past vegetation by pollen analysis. – Proc. Konned. Acad. Wetensch. 84: P. 197–210.

  60. Jensen C., Vorren K.D., Mørkved B. 2007. Annual pollen accumulation rate (PAR) at the boreal and alpine forest-line of north-western Norway, with special emphasis on Pinus sylvestris and Betula pubescens. – Rev. Palaeobot. Palynol. 144 (3–4): 337–361.

  61. [Kabailene] Кабайлене М.В. 1969. Формирование пыльцевых спектров и методы восстановления палеорастительности. Л. 148 с.

  62. Kaplan J.O., Krumhardt K.M., Gaillard M.-J., Sugita S., Trondman A.-K., Fyfe R., Marquer L., Mazier F., Nielsen A.B. 2017. Constraining the deforestation history of Europe: Evaluation of historical land use scenarios with pollen-based land cover reconstructions. – Land. 6: 91.

  63. [Kozharinov] Кожаринов А.В. 1994. Динамика растительного покрова Восточной Европы в позднеледниковье-голоцене: Диc. … д-ра биол. наук. М. 255 с.

  64. van der Knaap W.O., van Leeuwen J.F., Finsinger W., Gobet E., Pini R., Schweizer A., … et Ammann B. 2005. Migration and population expansion of Abies, Fagus, Picea, and Quercus since 15000 years in and across the Alps, based on pollen-percentage threshold values. – Quatern. Sci. Rev. 24 (5–6): 645–680.

  65. van der Knaap W.O., van Leeuwen J.F., Svitavská-Svobodová H., Pidek I.A., Kvavadze E., Chichinadze M., et Pardoe H.S. 2010. Annual pollen traps reveal the complexity of climatic control on pollen productivity in Europe and the Caucasus. – Veget. Hist. Archaeobot. 19 (4): 285–307.

  66. Kuoppamaa M., Goslar T., Hicks S. 2009a. Pollen accumulation rates as a tool for detecting land-use changes in a sparsely settled boreal forest. – Veget. Hist. Archaeobot. 18 (3): 205–217.

  67. Kuoppamaa M., Huusko A., Hicks S. 2009b. Pinus and Betula pollen accumulation rates from the northern boreal forest as a record of interannual variation in July temperature. – J. Quat. Sci. 24 (5): 513–521.

  68. [Lapteva] Лаптева Е.Г. 2013. Субфоссильные спорово-пыльцевые спектры современной растительности южного Урала. – Вестник Башкирского ун-та. 18 (1): 77–81.

  69. Latałowa M., van der Knaap W.O. 2006. Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. – Quatern. Sci. Rev. 25 (21–22): 2780–2805.

  70. Lechterbeck J., Edinborough K., Kerig T., Fyfe R., Roberts N., Shennan S. 2014. Is Neolithic land use correlated with demography? An evaluation of pollen-derived land cover and radiocarbon-inferred demographic change from Central Europe. – The Holocene. 24 (10): 1297–1307.

  71. Levetin E., Rogers C.A., Hall S.A. 2000. Comparison of pollen sampling with a Burkard spore trap and a Tauber trap in a warm temperate climate. – Grana. 39: 294–302.

  72. Li Y., Bunting M.J., Xu Q., Jiang S., Ding W., Hun L. 2011. Pollen–vegetation–climate relationships in some desert and desert-steppe communities in northern China. – The Holocene. 21 (6): 997–1010.

  73. Li F., Gaillard M.J., Sugita S., Mazier F., Xu Q., Zhou Z., et Laffly D. 2017. Relative pollen productivity estimates for major plant taxa of cultural landscapes in central eastern China. – Veget. Hist. Archaeobot. 26 (6): 587–605.

  74. Li Y., Nielsen A.B., Zhao X., Shan L., Wang S., Wu J., Zhou L. 2015. Pollen production estimates (PPEs) and fall speeds for major tree taxa and relevant source areas of pollen (RSAP) in Changbai Mountain, northeastern China. – Rev. Palaeobot. Palynol. 216: 92–100.

  75. Lisitsyna O.V., Giesecke T., Hicks S. 2011. Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. – Rev. Palaeobot. Palynol. 166 (3–4): 311–324.

  76. Lisitsyna O.V., Giesecke T., Hicks S. 2011. Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. – Rev. Palaeobot. Palynol. 166 (3–4): 311–324.

  77. Luo C., Zheng Z., Tarasov P., Nakagawa T., Pan A., Xu Q., et Huang K. 2010. A potential of pollen-based climate reconstruction using a modern pollen–climate dataset from arid northern and western China. – Rev. Palaeobot. Palynol. 160 (3–4): 111–125.

  78. [Mazei et al.] Мазей Н.Г., Кусильман М.В., Новенко Е.Ю. 2018. Встречаемость пыльцы Carpinus, Fagus, Tilia и Quercus в субрецентных спорово-пыльцевых спектрах Восточно-Европейской равнины: к вопросу о возможности дальнего заноса пыльцы. – Экология. 6: 431–439.

  79. Makohonienko M., Tobolski K., Gaillard M.J. 1998. Modern pollen/land-use relationships in North-western Poland. – Paläoklimaforschung. 27: 103–119.

  80. Marquer L., Gaillard M.J., Sugita S., Poska A., Trondman A.K., Mazier F., … et Kaplan J.O. 2017. Quantifying the effects of land use and climate on Holocene vegetation in Europe. – Quatern. Sci. Rev. 171: 20–37.

  81. Mazier F., Broström A., Bragée P., Fredh D., Stenberg L., Thiere G., … et Hammarlund D. 2015. Two hundred years of land-use change in the South Swedish Uplands: comparison of historical map-based estimates with a pollen-based reconstruction using the landscape reconstruction algorithm. – Veget. Hist. Archaeobot. 24 (5): 555–570.

  82. Mazier F., Brostöm A., Gaillard M.J., Sugita S., Vittoz P., Buttler A. 2008. Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland). – Veget. Hist. Archaeobot. 17 (5): 479–495.

  83. Mazier F., Gaillard M.J., Kuneš P., Sugita S., Trondman A.K., Broström A. 2012. Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database. – Rev. Palaeobot. Palynol. 187: 38–49.

  84. McCune B., Grace J.B., Urban D.L. 2002. Analysis of ecological communities. (Vol. 28). Gleneden Beach, OR: MjM software design.

  85. Middleton R., Bunting M.J. 2004. Mosaic v1. 1: landscape scenario creation software for simulation of pollen dispersal and deposition. – Rev. Palaeobot. Palynol. 132 (1–2): 61–66.

  86. Moore P.D., Webb J.A., Collinson M.E. 1991. Pollen analysis. Oxford. 216 p.

  87. Nielsen A.B. 2003. Pollen Based Quantitative Estimation of Land Cover: Relationships Between Pollen Sedimentation in Lakes and Land Cover as Seen on Historical Maps in Denmark AD 1800: PhD. Thesis (Doctoral dissertation, GEUS, Geological Survey of Denmark and Greenland).

  88. Nielsen A.B., Giesecke T., Theuerkauf M., Feeser I., Behre K.E., Beug H.J., … et Jahns S. 2012. Quantitative reconstructions of changes in regional openness in north-central Europe reveal new insights into old questions. – Quatern. Sci. Rev. 47: 131–149.

  89. Nielsen A.B., Møller P.F., Giesecke T., Stavngaard B., Fontana S.L., Bradshaw R.H. 2010. The effect of climate conditions on inter-annual flowering variability monitored by pollen traps below the canopy in Draved Forest, Denmark. – Veget. Hist. Archaeobot. 19 (4): 309–323.

  90. Nielsen A.B., Sugita S. 2005.Estimating relevant source area of pollen for small Danish lakes around AD 1800. – The Holocene. 15 (7): 1006–1020.

  91. Niemeyer B., Klemm J., Pestryakova L.A., Herzschuh U. 2015. Relative pollen productivity estimates for common taxa of the northern Siberian Arctic. – Rev. Palaeobot. Palynol. 221: 71–82.

  92. [Nosova et al.] Носова М.Б., Новенко Е.Ю., Зерницкая В.П., Дюжова К.В. 2015. Палинологическая индикация антропогенных изменений растительности восточно-европейских хвойно-широколиственных лесов в позднем голоцене. – Изв. РАН. Сер. Геогр. 4: 72–84.

  93. Nosova M.B., Lisitsyna O.V., Volkova O.A., Severova E.E. 2020. Variations in pollen deposition of the main taxa forming the land cover along a NW–SE transect in European Russia: results of a ten year Tauber trap monitoring period. – Veget. Hist. Archaeobot. 1–18. https://doi.org/10.1007/s00334-020-00775-1

  94. Nosova M.B., Severova O.V., Volkova O.A., Kosenko Ya.V. 2015. Representation of Picea pollen in modern and surface samples from Central European Russia. – Veget. Hist. Archaeobot. 24 (2): 319–330.

  95. [Nosova et al.] Носова М.Б., Северова Е.Э., Волкова О.А. 2016. Многолетние исследования современных палинологических спектров в средней полосе европейской части России. – Бюлл. МОИП. Сер. Биол. 120 (6): 42–50.

  96. [Nosova et al.] Носова М.Б., Северова Е.Э., Волкова О.А. 2019. Современные спорово-пыльцевые спектры европейской России: 10 лет наблюдений. – Бот. журн. 104 (8): 1228–1248.

  97. [Novenko et al.] Новенко Е.Ю., Мазей Н.Г., Зерницкая В.П. 2017. Рецентные спорово-пыльцевые спектры заповедных территорий европейской части России как ключ к интерпретации результатов палеоэкологических исследований. – Nature Conservation Research. Заповедная наука. 2: 55–65.

  98. [Novenko et al.] Новенко Е.Ю., Носова М.Б., Красноруцкая К.В. 2011. Особенности поверхностных спорово-пыльцевых спектров южной тайги Восточно-Европейской равнины. – Изв. Тульского гос. ун-та. Естественные науки. 2: 345–354.

  99. Oksanen J. 2007. Multivariate Analysis of Ecological Communities in R: Vegan Tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf

  100. Overpeck J.T., Webb T., Prentice I.C. 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. – Quat. Res. 23 (1): 87–108.

  101. Pardoe H.S., Giesecke T., van der Knaap W.O., Svitavská-Svobodová H., Kvavadze E.V., Panajiotidis S., … et Latałowa M. 2010. Comparing pollen spectra from modified Tauber traps and moss samples: examples from a selection of woodlands across Europe. – Veget. Hist. Archaeobot. 19 (4): 271–283.

  102. Parsons R.W., Prentice I.C. 1981. Statistical approaches to R-values and the pollen–vegetation relationship. – Rev. Palaeobot. Palynol. 32 (2–3): 127–152.

  103. Pohl F. 1937. Die Pollenerzeugung der Windbluter. Beihefte zum Botanischen Centralblatt. 56: 365–470.

  104. Poska A., Meltsov V., Sugita S., Vassiljev J. 2011. Relative pollen productivity estimates of major anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia). – Rev. Palaeobot. Palynol. 167 (1–2): 30–39.

  105. Poska A., Pidek I.A. 2010. Pollen dispersal and deposition characteristics of Abies alba, Fagus sylvatica and Pinus sylvestris, Roztocze region (SE Poland). – Veget. Hist. Archaeobot. 19 (2): 91–101.

  106. von Post L. 1918. Skogsträdpollen i sydsvenska torvmosselagerföljder. – Förh. ved. T. 16.

  107. Prentice C. 1988. Records of vegetation in time and space: the principles of pollen analysis. In: Vegetation history (Eds.: B. Huntley, T. Webb, III). Springer, Dordrecht. P. 17–42.

  108. Prentice I.C., Harrison S.P., Jolly D., Guiot J. 1998. The climate and biomes of Europe at 6000 yr BP: comparison of model simulations and pollen-based reconstructions. – Quatern. Sci. Rev. 17 (6–7): 659–668.

  109. [Prokhorova] Прохорова К.В. 1965. Сравнение состава современной растительности с субфоссильными спорово-пыльцевыми спектрами (в условиях северной тайги). – Бот. журн. 50 (5): 626–638.

  110. Ralska-Jasiewiczowa M. (ed.) 2004. Late Glacial and Holocene history of vegetation in Poland based on isopollen maps. Krakow. 444 p.

  111. Rao C.R. 1964. The use and interpretation of principal component analysis in applied research. – Sankhya. Ser. A. 26: 329–358.

  112. Räsänen S., Hicks S., Odgaard B.V. 2004. Pollen deposition in mosses and in a modified ‘Tauber trap’ from Hailuoto, Finland: what exactly do the mosses record? – Rev. Palaeobot. Palynol. 129 (1–2): 103–116.

  113. Räsänen S., Suutari H., Nielsen A.B. 2007. A step further towards quantitative reconstruction of past vegetation in Fennoscandian boreal forests: pollen productivity estimates for six dominant taxa. – Rev. Palaeobot. Palynol. 146 (1–4): 208–220.

  114. [Rudaya] Рудая Н.А. 2010. Палинологический анализ: Учебно-методическое пособие. – Новосиб. гос. ун-т, Ин-т археол. и этногр. СО РАН. Новосибирск. 48 с

  115. Rousseau D.D., Schevin P., Duzer D., Cambon G., Ferrier J., Jolly D., Poulsen U. 2006. New evidence of long distance pollen transport to southern Greenland in late spring. – Rev. Palaeobot. Palynol. 141 (3–4): 277–286.

  116. Saarse L., Veski S. 2001.Spread of broad-leaved trees in Estonia. – Proceed. Est. Acad. Sci., Geology. 50 (1): 51–65.

  117. Sauliene I., Kusiene L., Severova E., Kalnina L. 2014. Comparison of Alnus, Corylus, Betula pollen seasons in Riga, Moscow and Vilnius. – Aerobiologia. 30 (4): 423–433.

  118. Seppä H., Birks H.J.B., Odland A., Poska A., Veski S. 2004. A modern pollen–climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. – J. Biogeogr. 31 (2): 251–267.

  119. Seppä H., Hicks S. 2006. Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. – Quatern. Sci. Rev. 25 (13–14): 1501–1516.

  120. Shen C., Liu K.B., Tang L., Overpeck J.T. 2006. Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. – Rev. Palaeobot. Palynol. 140 (1–2): 61–77.

  121. [Shitikov, Zinchenko] Шитиков В.К., Зинченко Т.Д. 2019. Многомерный статистический анализ экологических сообществ (обзор). – Теоретические проблемы экологии. 1: 5–11.

  122. Soepboer W., Vervoort J.M., Sugita S., Lotter A.F. 2008. Evaluating Swiss pollen productivity estimates using a simulation approach. – Veget. Hist. Archaeobot. 17 (5): 497–506.

  123. Sofiev M., Bergmann K.C. (Eds.). 2013. Allergenic pollen: a review of the production, release, distribution and health impacts. Dordrecht Heidelberg New York London, Springer Science + Business Media. 252 p.

  124. Solovieva N., Tarasov P.E., MacDonald G. 2005. Quantitative reconstruction of Holocene climate from the Chuna Lake pollen record, Kola Peninsula, northwest Russia. – The Holocene. 15 (1): 141–148.

  125. von Stedingk H., Fyfe R.M., Allard A. 2008. Pollen productivity estimates from the forest–tundra ecotone in west-central Sweden: implications for vegetation reconstruction at the limits of the boreal forest. – The Holocene. 18 (2): 323–332.

  126. Stockmarr J. 1971. Tablets with spores used in absolute pollen analysis. – Pollen Spores. 13: 615–621.

  127. Strandberg G., Kjellström E., Poska A., Wagner S., Gaillard M.J., Trondman A.K., … et Fyfe R. 2014. Regional climate model simulations for Europe at 6 k and 0.2 k yr BP: sensitivity to changes in anthropogenic deforestation. – Climate of the Past Discussions. 10: 661–680.

  128. Sugita S. 1993. A model of pollen source area for an entire lake surface. – Quat. Res. 39 (2): 239–244.

  129. Sugita S. 1994. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. – J. Ecol. 82 (4): 881–897.

  130. Sugita S. 1998. Modelling pollen representation of vegetation. – In: Quantification of land surfaces cleared of forests during the Holocene. Gaillard M.J., Berglund B.E., Frenzel B., Huckriede U. (eds) – Palaeoclimate Research. 27: 1–15.

  131. Sugita S. 2007a.Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. – The Holocene. 17 (2): 229–241.

  132. Sugita S. 2007b. Theory of quantitative reconstruction of vegetation II: all you need is LOVE. – The Holocene. 17 (2): 243–257.

  133. Sugita S., Gaillard M.J., Broström A. 1999. Landscape openness and pollen records: a simulation approach. – The Holocene. 9 (4): 409–421.

  134. [Tarasov] Тарасов П.Е. 2000. Реконструкции климата и растительности северной Евразии позднего плейстоцена по палинологическим данным. – Проблемы палеогеографии и стратиграфии плейстоцена. М. С. 70–97.

  135. Tarasov P., Granoszewski W., Bezrukova E., Brewer S., Nita M., Abzaeva A., Oberhänsli H. 2005. Quantitative reconstruction of the last interglacial vegetation and climate based on the pollen record from Lake Baikal, Russia. – Climate Dynamics. 25 (6): 625–637.

  136. Tarasov P.E., Webb III T., Andreev A.A., Afanas’ eva N.B., Berezina N.A., Bezusko L.G., … et Chernova G.M. 1998. Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. – J. Biogeogr. 25 (6): 1029–1053.

  137. Tarasov P., Williams J.W., Andreev A., Nakagawa T., Bezrukova E., Herzschuh U., … et Zheng Z. 2007. Satellite-and pollen-based quantitative woody cover reconstructions for northern Asia: verification and application to late-Quaternary pollen data. – Earth and Planetary Science Letters. 264 (1–2): 284–298.

  138. Tauber H 1974. A static non-overload pollen collector. – New Phytol. 73: 359–369.

  139. Tinsley H. 2001. Modern pollen deposition in traps on a transect across an anthropogenic tree-line on Exmoor, southwest England: a note summarising the first three years of data. – Rev. Palaeobot. Palynol. 117 (1-3): 153–158.

  140. Tonello M.S., Prieto A.R. 2008. Modern vegetation–pollen–climate relationships for the Pampa grasslands of Argentina. – J. Biogeogr. 35 (5): 926–938.

  141. Trondman A.-K., Gaillard M.-J., Mazier F. et al. 2015. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. – Global Change Biol. 21: 676–697.

  142. Volkova O., Severova E., Nosova M. 2017. Six-year observations of airborn and deposited pollen in central European Russia: first results. – Grana. 55 (4): 311–318.

  143. Williams J.W., Summers R.L. Webb T. III. 1998. Applying plant functional types to construct biome maps from eastern North American pollen data: Comparisons with model results. – Quatern. Sci. Rev. 17: 607–627.

  144. Woodbridge J., Fyfe R.M., Roberts N. 2014b. A comparison of remotely sensed and pollen-based approaches to mapping Europe’s land cover. – J. Biogeogr. 41 (11): 2080–2092.

  145. Woodbridge J., Fyfe R.M., Roberts N., Downey S., Edinborough K., Shennan S. 2014a. The impact of the Neolithic agricultural transition in Britain: a comparison of pollen-based land-cover and archaeological 14C date-inferred population change. – J. Archaeol. Sci. 51: 216–224.

  146. Woodbridge J., Roberts N., Fyfe R. 2015. Vegetation and Land-Use Change in Northern Europe During Late Antiquity: A Regional-Scale Pollen-Based Reconstruction. – Late Antique Archaeol. 11 (1): 105–118.

  147. Xu Q.H., Li Y.C., Tian F., Cao X.Y., Yang X.L. 2009. Pollen assemblages of Tauber traps and surface soil samples in steppe areas of China and their relationships with vegetation and climate. – Rev. Palaeobot. Palynol. 153: 86–101.

  148. Yang Z., Xu Q., Meng L., Yang X., Wang K. 2003. Quantitative relationship between pollen in the surface soil and vegetation in the Yanshan area. – Acta Phytoecol. Sinica. 27 (6): 804–809.

  149. [Yazvenko] Язвенко С.Б. 1992. Современная пыльцевая продукция и голоценовая история горных лесов Закавказья: Дис. .… канд. биол. наук. М. 245 с

  150. Yu G., Prentice I.C., Harrison S.P., Sun X. 1998. Pollen-based biome reconstructions for China at 0 and 6000 years. – J. Biogeogr. 25 (6): 1055–1069.

  151. Yuecong L., Qinghai X., Yingkui Z., Xiaolan Y., Jule X., Hui C., Xinmiao L. 2005. Pollen indication to source plants in the eastern desert of China. – Chinese Sci. Bul. 50 (15): 1632–1641.

  152. [Zaklinskaya] Заклинская Е.Д. 1951. Материалы к изучению состава современной растительности и ее спорово-пыльцевых спектров для целей биостратиграфии четвертичных отложений (широколиственный и смешанный лес). – Труды ИГ АН СССР. Сер. Геол. 127 (48). 100 с.

  153. Zheng Z., Huang K., Xu Q., Lu H., Cheddadi R., Luo Y., et Wei J. 2008. Comparison of climatic threshold of geographical distribution between dominant plants and surface pollen in China. – Science in China. Series D: Earth Sciences. 51 (8): 1107–1120.

Дополнительные материалы отсутствуют.