Цитология, 2020, T. 62, № 6, стр. 385-395

Рецептор урокиназы: от регуляции протеолиза до направленного роста аксонов и регенерации нервов. Механизмы взаимодействия с мембранными лигандами и внутриклеточная сигнализация

А. А. Шмакова 1, К. А. Рубина 2, В. А. Ткачук 12, Е. В. Семина 12*

1 Лаборатория молекулярной эндокринологии Национального медицинского исследовательского центра кардиологии Минздрава России
121552 Москва, Россия

2 Факультет фундаментальной медицины, Московского государственного университета им. М.В. Ломоносова
119991 Москва, Россия

* E-mail: e-semina@yandex.ru

Поступила в редакцию 24.02.2020
После доработки 04.03.2020
Принята к публикации 05.03.2020

Аннотация

Активатор плазминогена урокиназного типа был впервые описан в середине XX в. как сериновая протеаза, превращающая плазминоген в активный плазмин, что приводит к деградации фибрина в сосудах и ремоделированию внеклеточного матрикса в ткани. Протеолитический каскад играет важную роль при нормальном и патологическом ремоделировании тканей: заживлении ран, инвазии трофобласта, инволюции молочных желез, воспалении, инвазии и метастазировании опухолей. В свое время урокиназная система обоснованно была названа одной из самых захватывающих и сложных молекулярных систем (Degryse, 2011). В 1985 г. исследования активаторов плазминогена получили новый импульс: на клеточной поверхности был обнаружен рецептор, связывающий урокиназу, дальнейшее изучение которого во многом способствовало нашему пониманию функционирования этой системы. К настоящему времени известны уникальные функции урокиназного рецептора, выходящие за рамки протеолиза, опосредованного связыванием с урокиназой. В обзоре суммируются актуальные данные литературы, а также результаты собственных исследований авторов о роли рецептора урокиназы как белка, способного взаимодействовать с широким спектром мембранных партнеров и влиять на их функцию в процессах, опосредующих направленный рост аксонов и регенерацию нервов.

Ключевые слова: урокиназная система, урокиназный рецептор, регенерация нервов, рост аксонов, интегрины, хемокиновые рецепторы, рецепторы факторов роста

DOI: 10.31857/S0041377120060097

Список литературы

  1. Климович П.С., Семина Е.В. 2020. Механизмы участия рецептора урокиназы в направленном росте аксонов. Молекулярная биология. Т. 54. № 1. С. 103. (Klimovich P.S., Semina E.V. 2020. Mechanisms of Participation of the Urokinase Receptor in Directed Axonal Growth. Molecular Biology. V. 54. P. 89.)

  2. Рубина К.А., Семина Е.А., Балацкая М.Н., Плеханова О.С., Ткачук В.А. 2018. Механизмы регуляции направленного роста нервов и сосудов компонентами фибринолитической системы и GPI-заякоренными навигационными рецепторами. Российский физиологический журнал им. И.М.Сеченова. Т. 104. № 9. С. 1001. (Rubina K.A., Semina E.V., Balatskaya M.N., Plekhanova O.S., Tkachuk V.A. 2018 / Mechanisms of regulation of the targeted grown of nerves and vessels by components of the fibrinolytic system and GPI-anchored navigation receptors. Neurosci. Behavioral Physiol. V. 50. P. 217.)

  3. Рубина К.А., Ткачук В.А. 2015. Навигационные рецепторы в нервной и сердечно-сосудистой системах. Биохимия. Т. 80. № 10. С. 1503. (Rubina K.A., Tkachuk V.A. 2015. Guidance receptors in the nervous and cardiovascular systems. Biochemistry (Moscow). V. 80. P. 1235.)

  4. Рысенкова К.Д., Семина Е.В., Климович П.С., Рубина К.А., Ткачук В.А. 2019. Молекулярные механизмы участия рецептора урокиназы и EGFR в пролиферациии дифференцировке клеток нейробластомы. Acta Naturae, Т. 1. С. 72. (Rysenkova K.D., Semina E.V., Klimovich P.S., Rubina K.A., Tkachuk V.A. 2019. Molecular mechanisms of the participation of urokinase receptor and EGFR in proliferation and differentiation of neuroblastoma cells. Acta Naturae. V. 1. P. 72.)

  5. Семина Е.В., Рубина К.А., Рысенкова К.Д., Климович П.С., Карагяур М.Н., Ткачук В.А. 2019. Молекулярные механизмы участия урокиназной системы в направленном росте аксонов, дифференцировке и выживаемости нейронов и регенерации нервов. Гены и Клетки. Т. 14. С. 209. (Semina E.V., Rubina K.A., Rysenkova K.D., Klimovich P.S., Karagyaur M.N., Tkachuk V.A. 2019. Molecular mechanisms of the participation of the urokinase system in the directed axonal growth, differentiation and survival of neurons, and nerve regeneration. Genes Cells. V. 14. P. 209.)

  6. Шмакова А.А., Рубина К.А., Анохин К.В., Ткачук В.А., Семина Е.В. 2019. Роль системы активаторов плазминогена в патогенезе эпилепсии. Биохимия. Т. 84. № 9. С. 1211. (Shmakova A.A., Rubina K.A., Anokhin K.V., Tkachuk V.A., Semina E.V. 2019 The role of plasminogen activator system in the pathogenesis of epilepsy. Biochemistry (Moscow). V. 84. P. 979.)

  7. Agelaki S., Spiliotaki M., Markomanolaki H., Kallergi G., Mavroudis D., Georgoulias V., Stournaras C. 2009. Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol. Ther. V. 8. P. 1470.

  8. Alexander R.A., Prager G.W., Mihaly-Bison J., Uhrin P., Sunzenauer S., Binder B.R., Schütz G.J., Freissmuth M., Breuss J.M. 2012. VEGF-induced endothelial cell migration requires urokinase receptor (uPAR)-dependent integrin redistribution. Cardiovasc. Res. V. 94. P. 125.

  9. Allodi I., Udina E., Navarro X. 2012. Specificity of peripheral nerve regeneration: Interactions at the axon level. Prog. Neurobiol. V. 98. P. 16.

  10. Baek M.K., Kim M.H., Jang H.J., Park J.S., Chung I.J., Shin B.A., Ahn B.W., Jung Y.D. 2008. EGF stimulates uPAR expression and cell invasiveness through ERK, AP-1, and NF-kappaB signaling in human gastric carcinoma cells. Oncol. Rep. V. 20. P. 1569.

  11. Bakker J., Spits M., Neefjes J., Berlin I. 2017. The EGFR odyssey – from activation to destruction in space and time. J. Cell. Sci. V. 130. P. 4087

  12. Barinka C., Parry G., Callahan J., Shaw D.E., Kuo A., Bdeir K., Cines D.B., Mazar A., Lubkowski J. 2006. Structural basis of interaction between urokinase-type plasminogen activator and its receptor. J. Mol. Biol. V. 363. P. 482.

  13. Behrendt N. 2004. The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180): Membrane proteins engaged in matrix turnover during tissue remodeling. Biol. Chem. V. 385. P. 103.

  14. Bouvard D., Pouwels J., Franceschi N. De, Ivaska J. 2013. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat. Rev. Mol. Cell Biol. V. 14. P. 430.

  15. Cavallo-Medved D., Mai J., Dosescu J., Sameni M., Sloane B.F. 2005. Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J. Cell Sci. V. 118. P. 1493.

  16. Chabot V., Dromard C., Rico A., Langonné A., Gaillard J., Guilloton F., Casteilla L., Sensebé L. 2015. Urokinase-type plasminogen activator receptor interaction with β1 integrin is required for platelet-derived growth factor-AB-induced human mesenchymal stem/stromal cell migration. Stem Cell Res. Ther. V. 6. P. 188.

  17. Chaurasia P., Aguirre-Ghiso J.A., Liang O.D., Gardsvoll H., Ploug M., Ossowski L. 2006. A region in urokinase plasminogen receptor domain III controlling a functional association with α5β1 integrin and tumor growth. J. Biol. Chem. V. 281. P. 14852.

  18. Cheah M., Andrews M. 2018. Integrin activation: Implications for axon regeneration. Cells. V. 7. P. 20.

  19. Cunningham O., Andolfo A., Santovito M.L., Iuzzolino L., Blasi F., Sidenius N. 2003. Dimerization controls the lipid raft partitioning of uPAR/CD87 and regulates its biological functions. EMBO J. V. 22. P. 5994.

  20. Czekay R.-P.P., Aertgeerts K., Curriden S.A., Loskutoff D.J. 2003. Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J. Cell Biol. V. 160. P. 781.

  21. Czekay R.-P., Wilkins-Port C.E., Higgins S.P., Freytag J., Overstreet J.M., Klein R.M., Higgins C.E., Samarakoon R., Higgins P.J. 2011. PAI-1: an integrator of cell signaling and migration. Int. J. Cell Biol. V. 2011. P. 562481.

  22. D’Alessio S., Blasi F. 2009. The urokinase receptor as an entertainer of signal transduction. Front. Biosci. V.14. P. 4575.

  23. Degryse B. 2011. The urokinase receptor system as strategic therapeutic target: Challenges for the 21st century. Curr. Pharm. Des. V. 17. P. 1872.

  24. Degryse B., Resnati M., Czekay R.-P., Loskutoff D.J., Blasi F. 2005. Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity. J. Biol. Chem. V. 280. P. 24792.

  25. Diaz A., Merino P., Manrique L.G., Ospina J.P., Cheng L., Wu F., Jeanneret V., Yepes M. 2017. A cross talk between neuronal urokinase-type plasminogen activator (uPA) and astrocytic uPA receptor (uPAR) promotes astrocytic activation and synaptic recovery in the ischemic brain. J. Neurosci. V. 37. P. 10 310.

  26. Diaz A., Yepes M. 2018. Urokinase-type plasminogen activator promotes synaptic repair in the ischemic brain. Neural Regen. Res. V. 13. P. 232.

  27. Eden G., Archinti M., Arnaudova R., Andreotti G., Motta A., Furlan F., Citro V., Cubellis M.V., Degryse B. 2018. D2A sequence of the urokinase receptor induces cell growth through αvβ3 integrin and EGFR. Cell. Mol. Life Sci. V. 75. P. 1889.

  28. Eden G., Archinti M., Furlan F., Murphy R., Degryse B. 2011. The urokinase receptor interactome. Curr. Pharm. Des. V. 17. P. 1874.

  29. Ehnman M., Li H., Fredriksson L., Pietras K., Eriksson U. 2009. The uPA/uPAR system regulates the bioavailability of PDGF-DD: Implications for tumour growth. Oncogene. V. 28. P. 534.

  30. Ferraris G., Sidenius N. 2013. Urokinase plasminogen activator receptor: A functional integrator of extracellular proteolysis, cell adhesion, and signal transduction. Semin. Thromb. Hemost. V. 39. P. 347.

  31. Gardiner N.J., Moffatt S., Fernyhough P., Humphries M.J., Streuli C.H., Tomlinson D.R. 2007. Preconditioning injury-induced neurite outgrowth of adult rat sensory neurons on fibronectin is mediated by mobilisation of axonal α5 integrin. Mol. Cell. Neurosci. V. 35. P. 249.

  32. Gliemann J., Hermey G., Nykjær A., Petersen C.M., Jacobsen C., Andreasen P.A. 2004. The mosaic receptor sorLA/LR11 binds components of the plasminogen- activating system and platelet-derived growth factor-BB similarly to LRP1 (low-density lipoprotein receptor-related protein), but mediates slow internalization of bound ligand. Biochem. J. V. 381. P. 203.

  33. Gonias S.L., Gaultier A., Jo M. 2011. Regulation of the Urokinase Receptor (uPAR) by LDL Receptor-related Protein-1 (LRP1). Curr. Pharm. Des. V. 17. P. 1962.

  34. Gonzalez-Perez F., Alé A., Santos D., Barwig C., Freier T., Navarro X., Udina E. 2016. Substratum preferences of motor and sensory neurons in postnatal and adult rats. Eur. J. Neurosci. 43(3) : 431–442.

  35. Gorrasi A., Li Santi A., Amodio G., Alfano D., Remondelli P., Montuori N., Ragno P. 2014. The urokinase receptor takes control of cell migration by recruiting integrins and FPR1 on the cell surface. PLoS One. V. 9. P. e86352. https://doi.org/10.1371/journal.pone.0086352

  36. Grove L.M., Southern B.D., Jin T.H., White K.E., Paruchuri S., Harel E., Wei Y., Rahaman S.O., Gladson C.L., Ding Q., Craik C.S., Chapman H.A., Olman M.A. 2014. Urokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts. J. Biol. Chem. V. 289. P. 12791.

  37. Gyetko M.R., Todd R.F., Wilkinson C.C., Sitrin R.G. 1994. The urokinase receptor is required for human monocyte chemotaxis in vitro. J. Clin. Invest. V. 93. P. 1380.

  38. Huang J., Hu J., Bian X., Chen K., Gong W., Dunlop N.M., Howard O.M.Z., Ji M.W. 2007. Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res. V. 67. P. 5906.

  39. Huijbers I.J., Iravani M., Popov S., Robertson D., Al-Sarraj S., Jones C., Isacke C.M. 2010. A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One. V. 5. P. e9808. https://doi.org/10.1371/journal.pone.0009808

  40. Hynes R.O. 2002. Integrins: bidirectional, allosteric signaling machines. Cell. V. 110. P. 673.

  41. Jo M., Thomas K.S., O’Donnell D.M., Gonias S.L. 2003. Epidermal growth factor receptor-dependent and -independent cell-signaling pathways originating from the urokinase receptor. J. Biol. Chem. V. 278. P. 1642.

  42. Jo M., Thomas K.S., Takimoto S., Gaultier A., Hsieh E.H., Lester R.D., Gonias S.L. 2007. Urokinase receptor primes cells to proliferate in response to epidermal growth factor. Oncogene. V. 26. P. 2585.

  43. Johnsen M., Lund L.R., Rømer J., Almholt K., Danø K. 1998. Cancer invasion and tissue remodeling: Common themes in proteolytic matrix degradation. Curr. Opin. Cell Biol. V. 10. P. 667.

  44. Kiyan J., Haller H., Dumler I. 2009. The tyrosine phosphatase SHP-2 controls urokinase-dependent signaling and functions in human vascular smooth muscle cells. Exp. Cell Res. V. 315. P. 1029.

  45. Kiyan J., Kiyan R., Haller H., Dumler I. 2005. Urokinase-induced signaling in human vascular smooth muscle cells is mediated by PDGFR-β. EMBO J. V. 24. P. 1787.

  46. Kyyriäinen J., Ekolle Ndode-Ekane X., Pitkänen A. 2017. Dynamics of PDGFRβ expression in different cell types after brain injury. Glia. V. 65. P. 322.

  47. Lino N., Fiore L., Rapacioli M., Teruel L., Flores V., Scicolone G., Sánchez V. 2014. uPA-uPAR molecular complex is involved in cell signaling during neuronal migration and neuritogenesis. Dev. Dyn. V. 243. P. 676.

  48. Liu K., Fan J., Wu J. 2017. Sushi repeat-containing protein X-linked 2 promotes angiogenesis through the urokinase-type plasminogen activator receptor dependent integrin αvβ3/focal adhesion kinase pathways. Drug Discov. Ther. V. 11. P. 212.

  49. Lupu C., Goodwin C.A., Westmuckett A.D., Emeis J.J., Scully M.F., Kakkar V. V, Lupu F. 1997. Tissue factor pathway inhibitor in endothelial cells colocalizes with glycolipid microdomains/caveolae. Regulatory mechanism(s) of the anticoagulant properties of the endothelium. Arterioscler. Thromb. Vasc. Biol. V. 17. P. 2964.

  50. Ma Z., Thomas K.S., Webb D.J., Moravec R., Salicioni A.M., Mars W.M., Gonias S.L. 2002. Regulation of Rac1 activation by the low density lipoprotein receptor-related protein. J. Cell Biol. V. 159. P. 1061.

  51. Mao H., Xie L., Pi X. 2017. Low-density lipoprotein receptor-related protein-1 signaling in angiogenesis. Front. Cardiovasc. Med. V. 4. P. 34.

  52. Melander M.C., Jürgensen H.J., Madsen D.H., Engelholm L.H., Behrendt N. 2015. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer. Int. J. Oncol. V. 47. P. 1177.

  53. Merino P., Diaz A., Jeanneret V., Wu F., Torre E., Cheng L., Yepes M. 2017. Urokinase-type plasminogen activator (uPA) binding to the uPA receptor (uPAR) promotes axonal regeneration in the central nervous system. J. Biol. Chem. V. 292. P. 2741.

  54. Merino P., Diaz A., Manrique L.G., Cheng L., Yepes M. 2018. Urokinase-type plasminogen activator (uPA) promotes ezrin-mediated reorganization of the synaptic cytoskeleton in the ischemic brain. J. Biol. Chem. V. 293. P. 9234.

  55. Merino P., Diaz A., Yepes M. 2017. Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) promote neurorepair in the ischemic brain. Recept. Clin. Investig. V. 4. P. 24.

  56. Messaritou G., East L., Roghi C., Isacke C.M., Yarwood H. 2009. Membrane type-1 matrix metalloproteinase activity is regulated by the endocytic collagen receptor Endo180. J. Cell Sci. V. 122. P. 4042.

  57. Montuori N., Cosimato V., Rinaldi L., Rea V.E.A., Alfano D., Ragno P. 2013. uPAR regulates pericellular proteolysis through a mechanism involving integrins and fMLF-receptors. Thromb. Haemost. V. 109. P. 309.

  58. Napolitano F., Rossi F.W., Pesapane A., Varricchio S., Ilardi G., Mascolo M., Staibano S., Lavecchia A., Ragno P., Selleri C., Marone G., Matucci-Cerinic M., Paulis A. de, Montuori N. 2018. N-formyl peptide receptors induce radical oxygen production in fibroblasts derived from systemic sclerosis by interacting with a cleaved form of urokinase receptor. Front. Immunol. V. 9. P. 574.

  59. Noh H., Hong S., Huang S. 2013. Role of urokinase receptor in tumor progression and development. Theranostics. V. 3. P. 487.

  60. Nykjar A., Conese M., Christensen E.I., Olson D., Cremona O., Gliemann J., Blasi F. 1997. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J. V. 16. P. 2610.

  61. Parat M.-O., Riggins G.J. 2012. Caveolin-1, caveolae, and glioblastoma. Neuro. Oncol. V. 14. P. 679.

  62. Paulis A. de, Montuori N., Prevete N., Fiorentino I., Rossi F.W., Visconte V., Rossi G., Marone G., Ragno P. 2004. Urokinase induces basophil chemotaxis through a urokinase receptor epitope that is an endogenous ligand for formyl peptide receptor-like 1 and -like 2. J. Immunol. V. 173. P. 5739.

  63. Peng D.H., Liu Y.Y., Chen W., Hu H.N., Luo Y. 2020. Epidermal growth factor alleviates cerebral ischemia-induced brain injury by regulating expression of neutrophil gelatinase-associated lipocalin. Biochem. Biophys. Res. Commun. https://doi.org/10.1016/j.bbrc.2020.02.025

  64. Resnati M., Pallavicini I., Wang J.M., Oppenheim J., Serhan C.N., Romano M., Blasi F. 2002. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc. Natl. Acad. Sci. USA. V. 99. P. 1359.

  65. Rivellini C., Dina G., Porrello E., Cerri F., Scarlato M., Domi T., Ungaro D., Carro U. Del, Bolino A., Quattrini A., Comi G., Previtali S.C. 2012. Urokinase plasminogen receptor and the fibrinolytic complex play a role in nerve repair after nerve crush in mice, and in human neuropathies. PLoS One. V. 7 P. e32059. https://doi.org/10.1371/journal.pone.0032059

  66. Rysenkova K.D., Semina E. V, Karagyaur M.N., Shmakova A.A., Dyikanov D.T., Vasiluev P.A., Rubtsov Y.P., Rubina K.A., Tkachuk V.A. 2018. CRISPR/Cas9 nickase mediated targeting of urokinase receptor gene inhibits neuroblastoma cell proliferation. Oncotarget. V. 9. P. 29414.

  67. Sahores M., Prinetti A., Chiabrando G., Blasi F., Sonnino S. 2008. uPA binding increases UPAR localization to lipid rafts and modifies the receptor microdomain composition. Biochim. Biophys. Acta - Biomembr. V. 1778. P. 250.

  68. Schwab W., Gavlik J.M., Beichler T., Funk R.H., Albrecht S., Magdolen V., Luther T., Kasper M., Shakibaei M. 2001. Expression of the urokinase-type plasminogen activator receptor in human articular chondrocytes: association with caveolin and beta 1-integrin. Histochem. Cell Biol. V. 115. P. 317.

  69. Semina E., Rubina K., Sysoeva V., Rysenkova K., Klimovich P., Plekhanova O., Tkachuk V. 2016. Urokinase and urokinase receptor participate in regulation of neuronal migration, axon growth and branching. Eur. J. Cell Biol. V. 95. P. 295.

  70. Semina E.V., Rubina K.A., Shmakova A.A., Rysenkova K.D., Klimovich P.S., Aleksanrushkina N.A., Sysoeva V.Y., Karagyaur M.N., Tkachuk V.A. 2020. Downregulation of uPAR promotes urokinase translocation into the nucleus and epithelial to mesenchymal transition in neuroblastoma. J. Cell. Physiol. https://doi.org/10.1002/jcp.29555

  71. Siconolfi L.B., Seeds N.W. 2001. Induction of the plasminogen activator system accompanies peripheral nerve regeneration after sciatic nerve crush. J. Neurosci. V. 21. P. 4336.

  72. Smith H.W., Marshall C.J. 2010. Regulation of cell signalling by uPAR. Nat. Rev. Mol. Cell Biol. V. 11. P. 23.

  73. Stahl A., Mueller B.M. 1995. The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae. J. Cell Biol. V. 129. P. 335.

  74. Stoppelli M.P., Corti A., Soffientini A., Cassani G., Blasi F., Assoian R.K. 1985. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc. Natl. Acad. Sci. USA. V. 82. P. 4939.

  75. Sturge J., Wienke D., East L., Jones G.E., Isacke C.M. 2003. GPI-anchored uPAR requires Endo180 for rapid directional sensing during chemotaxis. J. Cell Biol. V. 162. P. 789.

  76. Sun D., Bullock M.R., Altememi N., Zhou Z., Hagood S., Rolfe A., McGinn M.J., Hamm R., Colello R.J. 2010. The effect of epidermal growth factor in the injured brain after trauma in rats. J. Neurotrauma. V. 27. P. 923.

  77. Tarui T., Mazar A.P., Cines D.B., Takada Y. 2001. Urokinase-type plasminogen activator receptor (CD87) is a ligand for integrins and mediates cell-cell interaction. J. Biol. Chem. V. 276. P. 3983.

  78. Vassalli J.D., Baccino D., Belin D. 1985. A cellular binding site for the M(r) 55.000 form of the human plasminogen activator, urokinase. J. Cell Biol. V. 100. P. 86.

  79. Weaver A.M., Hussaini I.M., Mazar A., Henkin J., Gonias S.L. 1997. Embryonic fibroblasts that are genetically deficient in low density lipoprotein receptor-related protein demonstrate increased activity of the urokinase receptor system and accelerated migration on vitronectin. J. Biol. Chem. V. 272. P. 14372.

  80. Wee P., Wang Z. 2017. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. V. 9. P. 52.

  81. Wei Y., Yang X., Liu Q., Wilkins J.A., Chapman H.A. 1999. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J. Cell Biol. V. 144. P. 1285.

  82. Xu L., Qu X., Li H., Li C., Liu J., Zheng H., Liu Y. 2014. Src/caveolin-1-regulated EGFR activation antagonizes TRAIL-induced apoptosis in gastric cancer cells. Oncol. Rep. V. 32. P. 318.

  83. Yang K.H., Fang H., Ye J.S., Gong J.Z., Wang J.T., Xu W.F. 2008. The main functions and structural modifications of tripeptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) as a chemotactic factor. Pharmazie. V. 63. P. 779.

  84. Zhang G., Cai X., López-Guisa J.M., Collins S.J., Eddy A.A. 2004. Mitogenic signaling of urokinase receptor-deficient kidney fibroblasts: Actions of an alternative urokinase receptor and LDL receptor-related protein. J. Am. Soc. Nephrol. V. 15. P. 2090.

  85. Zhou X., Wu Q., Lu Y., Zhang X., Lv S., Shao J., Zhou Y., Chen J., Hou L., Huang C., Zhang X. 2019. Crosstalk between soluble PDGFβBB and PDGFRβ promotes astrocytic activation and synaptic recovery in the hippocampus after subarachnoid hemorrhage. FASEB J. V. 33. P. 9588.

Дополнительные материалы отсутствуют.