Доклады Российской академии наук. Физика, технические науки, 2023, T. 510, № 1, стр. 39-44

ОПРЕДЕЛЕНИЕ ЭЛЕКТРООПТИЧЕСКИХ КОЭФФИЦИЕНТОВ ТИТАНАТА БАРИЯ

В. Б. Широков 12, П. Е. Тимошенко 2, член-корреспондент РАН В. В. Калинчук 1*

1 Южный научный центр Российской академии наук
Ростов-на-Дону, Россия

2 Южный федеральный университет
Ростов-на-Дону, Россия

* E-mail: vkalin415@mail.ru

Поступила в редакцию 05.10.2022
После доработки 13.12.2022
Принята к публикации 15.12.2022

Аннотация

В рамках термодинамической теории предложен метод определения электрооптических коэффициентов. Показано, что для всех сегнетоэлектриков, симметрия которых допускает диагональную восприимчивость, отношение некоторых электрооптических коэффициентов выражается через отношение восприимчивостей. Для титаната бария выявлена и исследована зависимость электрооптических коэффициентов от электрического поля. Показано, что большие значения электрооптических коэффициентов титаната бария связаны с нелинейной зависимостью диэлектрической восприимчивости от величины электрического поля.

Ключевые слова: электрооптический коэффициент, феноменологическая теория, титанат бария, термодинамический потенциал Ландау

Список литературы

  1. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981. 736 с.

  2. Ярив А., Юх П. Оптические волны в кристаллах. М.: Мир, 1987. 616 с.

  3. Салех Б., Тейх М. Оптика и фотоника. Принципы и применения. Т. 2. Долгопрудный: Интеллект, 2012. 784 с.

  4. Alferness R.C. Waveguide Electrooptic Modulators // IEEE Transactions on Microwave Theory and Techniques. 1982. V. 30. P. 1121. https://doi.org/10.1109/TMTT.1982.1131213

  5. Sinatkas G., Christopoulos T., Tsilipakos O., Kriezis E.E. Electro-optic modulation in integrated photonics // J. Appl. Phys. 2021. V. 130. P. 010901. https://doi.org/10.1063/5.0048712

  6. Hisakado Y., Kikuchi H., Nagamura T., Kajiyama T. Large Electrooptic Kerr Effect in Polymer Stabilized Liquid Crystalline Blue Phases // Adv. Mater. 2005. V. 17. P. 96. https://doi.org/10.1063/1.4890031

  7. Shen T.Z., Hong S.H., Song J.K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient // Nat. Mater. 2014. V. 13. P. 394. https://doi.org/10.1038/nmat3888

  8. Karvounis A., Timpu F., Vogler-Neuling V.V., Savo R., Grange R. Barium Titanate Nanostructures and Thin Films for Photonics // Adv. Optical Mater. 2020. V. 8. P. 2001249. https://doi.org/10.1002/adom.202001249

  9. Liu Y., Ren G., Cao T., Mishra R., Ravichandran J. Modeling temperature, frequency, and strain effects on the linear electro-optic coefficients of ferroelectric oxides // J. Applied Physics. 2022. V. 131. P. 163101. https://doi.org/10.1063/5.0090072

  10. Li Y.L., Cross L.E., Chen L.Q. A phenomenological thermodynamic potential for BaTiO3 single crystals // J. Appl. Phys. 2005. V. 98. P. 064101 (1–4). https://doi.org/10.1063/1.2042528

  11. Wang Y.L., Tagantsev A.K., Damjanovic D., Setter N., Yarmarkin V.K., Sokolov A.I., Lukyanchuk I.A. Landau thermodynamic potential for BaTiO3 // J. Appl. Phys. 2007. V. 101. P. 104115 (1–9). https://doi.org/10.1063/1.2733744

  12. Scrymgeour D.A., Gopalan V. Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: lithium niobate and lithium tantalate // Physical Review B. 2005. V. 71. P. 184110. https://doi.org/10.1103/PhysRevB.71.184110

  13. Liang L., Li Y.L., Chen L.Q., Hu S.Y., Lu G.H. A thermodynamic free energy function for potassium niobate // Appl. Phys. Lett. 2009. V. 94. P. 072904. https://doi.org/10.1063/1.3081418

  14. Bell A.J., Cross L.E. A phenomenological Gibbs function for BaTiO3 giving correct e field dependence of all ferroelectric phase changes // Ferroelectrics. 1984. V. 59. P. 197–203. https://doi.org/10.1080/00150198408240090

  15. Ma Z., Xi L., Liu H., Zheng F., Gao H., Chen Z., Chen H. Ferroelectric phase transition of BaTiO3 single crystal based on a tenth order Landau-Devonshire potential // Computational Materials Science. 2017. V. 135. P. 109–118. https://doi.org/10.1016/j.commatsci.2017.04.011

  16. Berlincourt D., Jaffe H. Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate // Phys. Rev. 1958. V. 111. P. 143. https://doi.org/10.1103/PhysRev.111.143

  17. Shirokov V., Kalinchuk V., Shakhovoy R., Yuzyuk Y. Anomalies of piezoelectric coefficients in barium titanate thin films // EPL. 2014. V. 108. P. 47008. https://doi.org/10.1209/0295-5075/108/47008

  18. Zgonik M., Bernasconi P., Duelli M., Schlesser R., Gunter P. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals // Phys. Rev. B. 1994. V. 50. P. 5941. https://doi.org/10.1103/PhysRevB.50.5941

  19. Warner A.W., Onoe M., Coquin G.A. Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m) // The Journal of the Acoustical Society of America. 1967. V. 42. P. 1223. https://doi.org/10.1121/1.1910709

  20. Nikogosyan D.N. Nonlinear Optical Crystals: A Complete Survey. N.Y.: Springer, 2005. 427 p.

  21. Bierlein J.D. Electrooptic and dielectric properties of KTiOPO4 // Appl. Physics Letters. 1986. V. 49. P. 917. https://doi.org/10.1063/1.97483

  22. Wiesendanger E. Dielectric, mechanical and optical properties of orthorhombic KNbO3 // Ferroelectrics. 1974. V. 6. P. 263. https://doi.org/10.1080/00150197408243977

  23. Широков В.Б., Мухортов В.М., Юзюк Ю.И. Релаксация поляризованных состояний в тонких пленках BST. Известия РАН. Серия физическая. 2012. Т. 76. № 7. С. 904–907. https://doi.org/10.3103/S1062873812070325

Дополнительные материалы отсутствуют.