Доклады Российской академии наук. Науки о Земле, 2023, T. 511, № 1, стр. 130-134

Новые данные о закономерностях распределения метана над Арктическим шельфом Евразии

Р. Б. Шакиров 1*, Е. С. Хазанова 1, И. Е. Стёпочкин 1

1 Тихоокеанский океанологический институт имени В.И. Ильичева Дальневосточного отделения Российской академии наук
Владивосток, Россия

* E-mail: ren@poi.dvo.ru

Поступила в редакцию 30.12.2022
После доработки 03.03.2023
Принята к публикации 13.03.2023

Аннотация

Представлены новые результаты анализа распределения метана в тропосфере над Арктическим шельфом Евразии с помощью ИК-зондировщика AIRS. Показаны основные тренды изменчивости содержания метана (повышение), температуры (AIRS, флуктуации без ярко выраженного тренда) и ледовитости (по данным Defense Meteorological Satellite Program (DMSP)) за период 2010–2022 гг. Сделаны заключения о разнице в распределениях атмосферного метана над западной и восточной частями Евразийской Арктики, разделяемых по зоне проницаемости, сформированной сейсмически активным линеаментом вдоль хребта Гаккеля. Показано, что гидрометеорологические параметры, включая температуру и льдообразование, вероятно, не являются главными причинами повышения содержания метана в атмосфере Евразийского арктического шельфа. Распределение метана и повышение его содержания связаны с природными региональными факторами, распространенными на обширных площадях, которыми являются, в первую очередь, геологические структуры: нефтегазоносные бассейны и тектоническая раздробленность литосферы, формирующая зоны ее дегазации разных типов.

Ключевые слова: метан, лед, температура, шельф Арктики, нефтегазоносные бассейны, тектоника, тренды, атмосфера

Список литературы

  1. Богоявленский В.И., Сизов О.С., Богоявленский И.В., Никонов Р.А., Каргина Т.Н. Дегазация Земли в Арктике: генезис природной и антропогенной эмиссии метана // Арктика: экология и экономика. 2020. № 3(39). С. 6–22. https://doi.org/10.25283/2223-4594-2020-3-2-22

  2. Шахова Н.Е. Метан в морях Восточной Арктики. Ин-т океанологии им. П.П. Ширшова РАН. Москва, 2010. 213 с.

  3. Dmitrieva D.M., Romasheva N.V. Sustainable Development of Oil and Gas Potential of The Arctic And Its Shelf Zone: The Role of Innovations Journal of Marine // Science and Engineering. 2020. № 8. P. 1–18. https://doi.org/10.3390/jmse8121003

  4. Romasheva N.V., Dmitrieva D.M. Energy Resources Exploitation in the Russian Arctic: Challenges and Prospects for the Sustainable Development of the Ecosystem // Energies. 2021. № 14(24). P. 1–31. https://doi.org/10.3390/en14248300

  5. Шельфовые осадочные бассейны Российской Арктики: геология, геоэкология, минерально-сырьевой потенциал / под ред. д-ра техн. наук Г.С. Казанина; АО “МАГЭ”. Мурманск; СПб.: “Реноме”, 2020. 544 с.

  6. https://airs.jpl.nasa.gov/

  7. Susskind J., Blaisdell J.M., Iredell L. Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: the atmospheric infrared sounder science team version-6 retrieval algorithm // Journal of Applied Remote Sensing. 2014. T. 8. №. 1. P. 084994–084994.

  8. Найдина О.Д. Природные условия северо-восточного региона моря Лаптевых в раннем послеледниковье // Стратиграфия. Геологическая корреляция. 2013. Т. 21. № 4. С. 124–136.

  9. Овсепян Я.С., Талденкова Е.Е., Баух Х.А., Кандиано Е.С. Реконструкция событий позднего плейстоцена–голоцена на континентальном склоне моря Лаптевых по комплексам бентосных и планктонных фораминифер // Стратиграфия. Геологическая корреляция. 2015. Т. 23. № 6. С. 964–112.

  10. Koulakov I., Schlindwein V., Liu M., Gerya T., Jakov-lev A., Ivanov A. Low-degree mantle melting controls the deep seismicity and explosive volcanism of the Gakkel Ridge. // Nat Commun. 2022. V. 13. № 1. P. 3122. https://doi.org/10.1038/s41467-022-30797-4

  11. Баранов Б.В., Лобковский Л.И., Дозорова К.А., Цуканов Н.В. Система разломов, контролирующих метановые сипы на шельфе моря Лаптевых // ДАН. 2019. Т. 486. № 3. С. 354–358. https://doi.org/10.31857/S0869-56524863354-358

  12. Шакиров Р.Б., Обжиров А.И., Саломатин А.С., Макаров М.М. Новые данные о линеаментном контроле современных очагов метановой дегазации морей Восточной Азии // ДАН. 2017. Т. 477. № 3. С. 327–330.

  13. Шакиров Р.Б., Сорочинская А.В., Обжиров А.И. Газогеохимические аномалии в осадках Восточно-Сибирского моря // Вестник КРАУНЦ. Науки о Земле. 2013. № 1. Вып. 21. С. 231–243.

  14. Shakirov R.B., Mau S., Mishukova G.I., Obzhirov A.I., Shakirova M.V., Mishukova O.V. The features of methane fluxes in the western and eastern Arctic: A review. Part I // Geosystems of Transition Zones. 2020. V. 4. № 1. P. 004–025. https://doi.org/10.30730/2541-8912.2020.4.1.004-025

  15. Пономарева А.Л., Полоник Н.С., Обжиров А.И., Шакиров Р.Б., Григоров Р.А., Шмале О., Мау С. Взаимосвязь распределения метана и психро-, мезо- и термофильных углеводородокисляющих микроорганизмов в донных отложениях в Карском море // Геосистемы переходных зон. 2021. Т. 5. № 4. С. 389–398. https://doi.org/10.30730/gtrz.2021.5.4.389-393.394-398

  16. Obzhirov A.I., Polonik N.S., Ponomareva A.L., Vereshchagina O.V., Telegin Yu.A., Syrbu N.S., Flint M.V. Distribution Patterns of Methane, Hydrogen, and Helium in the Water Column of the Kara Sea // Oceanology. 2021. № 61. P. 881–891. https://doi.org/10.1134/S000143702106028X

  17. Yatsuk A., Gresov A., Snyder GT. Hydrocarbon Gases in Seafloor Sediments of the Edge Shelf Zone of the East Siberian Sea and Adjacent Part of the Arctic Ocean // Frontiers in Earth Science. 2022. № 10. P. 856496. https://doi.org/10.3389/feart.2022.856496

  18. Гресов А.И., Яцук А.В., Аксентов К.И., Саттаровa В.В., Швалов Д.А., Зарубина Н.В. Геохимические исследования плейстоценовых отложений окраинно-шельфовой зоны Восточно-Сибирского моря и Северного Ледовитого океана // Геохимия. 2022. Т. 67. № 10. С. 961–977. https://doi.org/10.31857/S001675252210003X

  19. Шакиров Р.Б., Обжиров А.И., Саломатин А.С., Макаров М.М. Новые данные о линеаментном контроле современных очагов метановой дегазации морей Восточной Азии // ДАН. 2017. Т. 477. № 3. С. 327–330.

  20. Юрганов Л.Н., Лейфер А., Вадаккепулиямбатта С. Признаки ускорения возрастания концентрации метана в атмосфере после 2014 года: спутниковые данные для Арктики // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14. № 5. С. 248–258. https://doi.org/10.21046/2070-7401-2017-14-5-248-258

  21. Fetterer F., Knowles K., Meier W., Savoie M., Windna-gel A.K. 2017, updated daily. Sea Ice Index, Version 3. Monthly Data by Year. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N5K072F8

  22. Sea ice analysis spreadsheets overview nsidc.org/sites/ nsidc.org/files/files/data/noaa/g02135/Sea-Ice-Analysis-Spreadsheets-Overview.pdf

  23. Cavalieri D.J., Parkinson C.L. Arctic sea ice variability and trends, 1979–2010 // The Cryosphere. 2012. V. 6. № 4. P. 881–889.

  24. Parkinson C.L., Comiso, J.C. On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm // Geophys. Res. Lett. 2013. № 40. P. 1356–1361. https://doi.org/10.1002/grl.50349

  25. Earthquake Catalog. https://earthquake.usgs.gov/ earthquakes/search/

  26. Никитин Б.А., Дзюбло А.Д. Перспективы освоения газовых ресурсов шельфа арктических морей России // Вести газовой науки. 2017. № 4 (32). С. 15–24.

  27. Гресов А.И. Метаноресурсная база угольных бассейнов Дальнего Востока и перспективы ее промышленного освоения. Том II. Углеметановые бассейны Республики Саха (Якутия) и Северо-Востока России. Владивосток: Дальнаука, 2012. 468 с.

Дополнительные материалы отсутствуют.