Журнал эволюционной биохимии и физиологии, 2021, T. 57, № 1, стр. 33-43

РОЛЬ МЕЛАТОНИНА В ПРЕНАТАЛЬНОМ ОНТОГЕНЕЗЕ

И. И. Евсюкова *

ФГБНУ НИИ акушерства, гинекологии и репродуктологии им. Д.О. Отта
Санкт-Петербург, Россия

* E-mail: eevs@yandex.ru

Поступила в редакцию 29.09.2020
После доработки 31.10.2020
Принята к публикации 02.11.2020

Аннотация

В обзоре обобщены современные представления о роли мелатонина в антенатальном онтогенезе. Приведены результаты экспериментальных и клинических исследований, раскрывающие механизмы участия мелатонина в процессе формирования и развития единой системы “мать–плацента–плод”. Рассмотрена ключевая роль материнского мелатонина и его циркадного ритма в осуществлении генетической программы морфофункционального развития плода. Обсуждаются механизмы ее защиты от повреждения, вызванного окислительным стрессом и воспалением при осложнениях беременности. Осуществляя контроль метилирования ДНК и модификации гистонов мелатонин предупреждает изменения экспрессии генов, имеющих непосредственное отношение к программированию заболеваний потомства. Представленный материал обосновывает перспективы использования мелатонина в клиническом акушерстве с целью профилактики и лечения перинатальной патологии плода.

Ключевые слова: мелатонин, плацента, плод, циркадная система, мозг, программирование

DOI: 10.31857/S0044452921010022

Список литературы

  1. Анисимов В.Н. Мелатонин (роль в организме, применение в клинике). СПб.: Система; 2007. [Anisimov V.N. Melatonin (rol’v organizme, primenenie v klinike). Saint-Petersburg: Sistema; 2007. (in Russ)].

  2. Kvetnoy I.M., Sandvik A.K., Waldum H.L. The diffuse neuroendocrine system and extrapineal melatonin. J. Mol. Endocrinol. 18 (1): 1–3. 1997. https://doi.org/10.1677/jme.0.0180001

  3. Mazzoccoli G. The timing clock work of life. J. Biol. Regul. Homeost. Agents. 25: 137–143. 2011. PMID: 21382283

  4. Acuna-Castroviejo D., Escames G., Venegas C, Diaz-Casado M.E., Lima-Cabello E., Lopez L.C., Rosales-Corral S., Tan D.X., Reiter R.J. Extrapineal melatonin: sources, regulation, and potential functions. Cell. Mol. Life Sci. 71 (16): 2997–3025. 2014. https://doi.org/10.1007/s00018-014-1579

  5. Pandi-Perumal S.R., Srinivasan V., Maestroni G.J.M., Cardinali D.P., Poeggedoler B., Hardeland R. Melatonin. Nature’s most versatile biological signal? FEBS J. 273 (13): 2813–2838. 2006. https://doi.org/10.1111/j.1742-4658.2006.05322.x

  6. Kvetnoy I.M. Extrapineal melatonin: location and role within diffuse neuroendocrine system. Histochem. J. 31 (1): 1–12. 1999. https://doi.org/ 10.1023/a:1003431122334

  7. Arutjunyan A.V., Evsyukova I.I., Polyakova V.O. The role of Melatonin in Morphofunctional Development of the Brain in Early Ontogeny. Neurochemical J. 13 (3): 240–248. 2019. https://doi.org/10.1134/S1819712419030036

  8. Kennaway D.J. Melatonin and development physiology and pharmacology. Sem. Perinatol. 24 (4): 258–266. 2000. https://doi.org/10.1053/sper.2000.8594

  9. Cipolla-Neto J., Amaral F.G. Melatonin as a hormone: new physiological and clinical insights. Endocr. Rev. 39 (6): 990–1028. 2018. https://doi.org/10.1210/er.2018-00084

  10. Sagrillo-Fagundes L., Assuncao Salustiano E.M., Yen P.W., Soliman A., Vaillancourt C. Melatonin in Pregnancy: Effects on Brain Development and CNS Programming Disorders. Curr. Pharm. Des. 22 (8): 978–986. 2016. https://doi.org/10.2174/1381612822666151214104624

  11. Reiter R.J., Rosales-Corral S., Tan D.X., Jou M.J., Galano A., Hu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell. Mol. Life Sci. 74 (21): 3863–3881. 2017. https://doi.org/10.1007/s00018-017-2609-7

  12. Claustrat B., Brun J., Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 9 (1): 11–24. 2005. https://doi.org/10.1016/j.smrv.2004.08.001

  13. Schlabritz-Loutsevitch N., Hellner N., Middendorf R., Müller D., Olcese J. The human myometrium as a target for melatonin. J. Clin. Endocrinol. Metab. 88 (2): 908–913. 2003. https://doi.org/10.1210/jc.2002-020449

  14. Venegas C., García J.A., Escames G., Ortiz F., López A., Doerrier C., García-Corzo L., López L.C., Reiter R.J., Acuña-Castroviejo D. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 52 (2): 217–227. 2012. https://doi.org/10.1111/j.1600-079X.2011.00931.x

  15. Ma X., Idle J.R., Krausz K.W., Gonzalez F.J. Metabolism of melatonin by human cytochromes p450. Drag Metab. Dispos. 33 (4): 489–94. 2005. https://doi.org/10.1124/dmd.104.002410

  16. Reppert S.M., Godson C., Mahle C.D., Weaver D.R., Slaugenhaupt S., Gusella J.F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc. Natl. Acad. Sci. USA 92 (19): 8734–8738. 1995. https://doi.org/10.1073/pnas.92.19.8734

  17. Jockers R., Delagrange P., Dubocovich M.L., Markus R.P., Renault N., Tosini G., Cecon E., Zlotos D. Update on melatonin receptors. IUPHAR Review 20. Br. J. Pharmacol. 173 (18): 2702–2725. 2016. https://doi.org/10.1111/bph.13536

  18. Slominski R.M., Reiter R.J., Schlabritz-Loutsevitch N., Ostrom R.S., Slominski A.T. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell Endocrinol. 351 (2): 152–166. 2012. https://doi.org/10.1016/j.mce.2012.01.004

  19. Dubocovich M.L. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep. Med. 8 (3): 34–42. 2007. https://doi.org/10.1016/j.sleep.2007.10.007

  20. Ogasawara T., Adachi N., Nishijima M. Melatonin levels in maternal plasma before and during delivery, and in fetal and neonatal plasma. Nihon. Sanka Fujinka Gakkai Zasshi. 43 (3): 335–341. 1991.

  21. Ivanov D.O., Evsyukova I.I., Mazzoccoli G., Anderson G., Polyakova V.O., Kvetnoy I.M., Carbone A., Nasyrov R.A. The Role of Prenatal Melatonin in the Regulation of Childhood Obesity. Biology. 9 (4): 72. 2020. https://doi.org/10.3390/biology9040072

  22. Kivela A. Serum melatonin during human pregnancy. Acta Endocrinol (Copengagen). 1991; 124 (3): 233–237.

  23. Nakamura Y., Tamura H., Kashida S., Nakayama H., Yamagata Y., Karube A., Sugino N., Kato H. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J. Pineal Res. 30 (1): 29–33. 2001. https://doi.org/10.1034/j.1600-079x.2001.300104.x

  24. Reiter R.J., Tan D.X., Korkmaz A., Rosales-Corral S.A. Melatonin and stabile circadian rhythms optimize maternal, placental and fetal physiology. Hum. Reprod. Update. 20 (2): 293–307. 2014. https://doi.org/10.1016/j.fertnstert.2014.06.014

  25. Soliman A., Lacasse A.A., Lanoix D., Sagrillo-Fagundes L., Boulard V., Vaillancourt C. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J. Pineal Res. 59 (10): 38–45. 2015. https://doi.org/10.1111/jpi.12236

  26. Richter H.J., Hansell J.A., Raut S., Glussani D.A. Melatonin improves placental efficiency and birth weight increases the placental expression of antioxidant enzymes in undernourished pregnancy. J. Pineal Res. 46 (4): 357–364. 2009. https://doi.org/10.1111/j,1600-079X.2009.00671x

  27. Okatani Y., Wakatsuki A., Shinohara K., Taniguchi K., Fukaya T. Melatonin protects against oxidative mitochondrial damage induced in rat placenta by ischemia and reperfusion. J Pineal Res. 31 (2): 173–178. 2001. https://doi.org/10.1034/j.1600-079x.2001.310212.x

  28. Reiter R.J., Tan D.X., Rosales-Corral S., Galano A., Zhou M.J., Hu B. As a Mitochondria Central Organelles for Melatonin’s Antioxidant and Anti-Aging Actions. Molecule. 23 (2): 509. 2018. https://doi.org/10.3390/molecules23020509

  29. Boden M.J., Varcoe T.J., Kennaway D.J. Circadian regulation of reproduction: From gamete to offspring. Prog. Biophys. Mol. Biol. 113 (3): 387–397. 2013. https://doi.org/10.1016/j.pbiomolbio.2013.01.003

  30. Lanoix D., Guerin P., Vaillancourt C. Placental melatonin production and melatonin receptor expression are alteed in preeclampsia: new insights into the role of this hormone in pregnancy. J. Pineal Res. 53 (4): 417–425. 2012. https://doi.org/10.1111/j.1600-079X.2012.01012x

  31. Iwasaki S., Nakazawa K., Sacai J., Kometani K., Iwashita M., Yoshimura Y., Maruyama I. Melatonin as local regulator of human placental function. J. Pineal Res. 39 (3): 261–265. 2005. .https://doi.org/10.1111/j.1600-079X.2005.00244.x

  32. Sagrillo-Fagundes L., Salustiano E.M.A., Ruano R., Markus R.P., Vaillancourt C. Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J Pieal Res. 65 (4): e12520. 2018. https://doi.org/10.1111/jpi.12520

  33. Valenzuela F.J., Vera J., Venegas C., Pino F., Lagunas C. Circadian System and Melatonin Hormone: Risk Factors for Complications during Pregnancy. Obstet. Gynecol. Int. 2015: 825802. 2015. https://doi.org/10.1155/2015/825802

  34. León J., Acuña-Castroviejo D., Escames G., Tan D-X., Reiter R.J. Melatonin Mitigates Mitochondrial Malfunction. J. Pineal Res. 38 (1): 1–9. 2005. https://doi.org/10.1111/j.1600-079X.2004.00181.x

  35. Tamura H., Nakamura Y., Terron M.P., Flores L.J., Manchester L.S., Tan D-X., Sugino N., Reiter R.J. Melatonin and pregnancy in the human. Reprod. Toxicol. 25 (3): 291–303. 2008. https://doi.org/10.1016/j.reprotox.2008.03.005

  36. Mark P.J., Crew R.C, Wharfe M.D, Waddell B.J. Rhythmic Three-Part Harmony: The Complex Interaction of Maternal, Placental and Fetal Circadian Systems. J. Biol. Rhythms. 32 (6): 534–549. 2017. https://doi.org/10.1177/0748730417728671

  37. Edwards S.M., Solveig A., Dunlop A.L., Corwin E.J. The Maternal Gut Microbiome during Pregnancy. MCN Am. J. Matern.Child Nurs. 42 (6): 310–317. 2017. https://doi.org/10.1097/NMC.0000000000000372

  38. Fox C., Eichelberger K. Maternal microbiome and pregnancy outcomes. Fertil. Steril. 104 (6): 138–63. 2015. https://doi.org/10.1016/j.fertnstert.2915.09.037

  39. Okatani Y., Okamoto K., Hayashi K., Wakatsuki A., Tamura S., Sagara Y. Materna-fetal transfer of melatonin in pregnant women near term. J. Pineal Res. 125 (3): 129–134. 1998. https://doi.org/10.1111/j.1600-079x.1998.tb00550.x

  40. Thomas J.E., Purvis C.C., Drew J.E., Abramovich D.R., Williams L.M. Melatonin receptors in human fetal brain: 2-[(125)]iodomelatonin binding and MT1 gene expression. J. Pineal Res. 33 (4): 218–224. 2002. https://doi.org/10.1034/j.1600-079x.2002.02921.x

  41. Williams L.M., Hannah L.T., Adam C.L., Bourke D.A. Melatonin receptors in red deer fetuses (Cervus elaphus). J. Reprod Fertil. 110 (1): 145–151. 1997. https://doi.org/10.1530/jrf.0.1100145

  42. Peschke E., Bahr I., Muhlbauer E. Melatonin and Pancreatic Islets: Interrelationships between Melatonin? Insulin and Glucagon. Int. J. Mol. Sci. 14 (4): 6981–7015. 2013. https://doi.org/10.3390/ijms.14046981

  43. Weaver D.R., Rivkees S.A., Reppert S.M. Localization and characterization of melatonin receptors in rodent brain. J. Neurosci. 9 (7): 2581–2590. 1989. https://doi.org/10.1523/JNEUROSCI.09-07-02581.1989

  44. Torres-Farfan C., Richter H.G., Rojas-Garci’a P., Vergara M., Forcelledo M.L., Valladares L.E., Torrealba F., Valen-zuela G.J., Serón-Ferré M. mt1 Melatonin Receptor in the Primate Adrenal Gland: Inhibit ion of Adrenocorticotropin-Stimulated Cortisol Production by Melatonin. J. Clin. Endocrinol. Metab. 88 (1): 450–458. 2003.https://doi.org/10.1210/jc.2002-021048

  45. Yuan H., Lu Y., Pang S.F. Binding characteristics and regional distribution of [125I]iodomelatonin binding sites in the brain of the human fetus. Neurosci. Lett. 130 (2): 229–232. 1991. https://doi.org/10.1016/0304-3940(91)90403-g

  46. Williams L.M., Martinoli M.G., Titchener L.T., Pelletier G. The ontogeny of central melatonin binding sites in the rat. Endocrinology. 128 (4): 2083–2090. 1991. https://doi.org/10.1210/endo-128-4-2083

  47. Liu Y.J., Zhuang J., Zhu H.Y., Shen Y.X., Tan Z.L., Zhou J.N. Cultured rat cortical astrocytes synthesize melatonin: absence of a diurnal rhythm. J. Pineal Res. 43 (3): 232–238. 2007. https://doi.org/10.1111/j.1600-079X.2007.00466.x

  48. Wakatsuki F., OkataniY., Shinohara K., Ikenjue N., Kaneda C., Fukaya T. Melatonin protects fetal rat brain against oxidative mitochondrial damage. J. Pineal Res. 30 (1): 22–28. 2001. https://doi.org/10.1034/j.1600-079x.2001.300103.x

  49. Yu X., Li Z., Zheng H., Ho J., Chan M.T.V., Wu W.K.K. Protective roles of melatonin in central nervous system diseases by regulation of neural stem cells. Cell Prolif. 50 (2): e12323. 2017. https://doi.org/10.1111/cpr.12323

  50. Kong X., Li X., Cai Z., Yang N., Liu Y., Shu J., Pan L., Zuo P. Melatonin regulates the viability and differentiation of rat midbrain neural stem cells. Cell. Mol. Neurobiol. 2008. 28 (4): 569–579. 2008. https://doi.org/10.1007/s10571-007-9212-7

  51. Bavithra S., Sugantha Priya E., Selvakumar K., Krichnamoorthly G., Arunakaran J. Effect of Melatonin on Glucamate: BDNF Signaling in the Cerebral Cortex of Polychlorinated Biphenyls (PCBs) - Exposed Adult Male Rats. Neurochem. Res. 40 (9): 1858–1869. 2015. https://doi.org/10.1007/s11064-015-1677-z

  52. Niles L.P., Armstrong K.J., Castro L.M.R., Dao C.V., Sharma R., McMillan C.R., Doering L.C., Kirkham D.L. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers. BMC Neurosci. 5: 41. 2004. https://doi.org/10.1186/1471-2202-5-41

  53. Sandyk R. Melatonin and maturation of REM sleep. Int. J. Neurosci.63 (1-2): 105–114. 1992. https://doi.org/10.3109/00207459208986660

  54. Jan J.E., Reiter R.J., Wasdell M.B., Bax M. The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders. J. Pineal Res. 46 (1): 1–7. 2009. https://doi.org/10.1111/j.1600-079X.2008.00628.x

  55. Torres-Farfan C., Valenzuela F.J., Mondaca M., Valen-zuela G.J., Krause B., Herrera E.A., Riquelme R., Llanos A.J., Seron-Ferre M. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. J. Physiol. 586 (16): 4017–4027. 2008. https://doi.org/10.1113/jphysiol.2008.154351

  56. Jimenez-Jorge S., Guerrero J.M., Jimenez-Caliani A.J., Naranjo M.C., Lardone P.G., Carrillko-Vico A., Osuna C., Molinero P. Evidence for melatonin synthesis in the rat brain during development. J Pineal Res. 42 (3): 240–246. 2007. https://doi.org/10.1111/j.1600-079X.2006.00411.x

  57. Sagrillo-Fagundes L., Assuncao Salustiano E.M., Yen P.W., Soliman A., Vaillancourt C. Melatonin in Pregnancy: Effects on Brain Development and CNS Programming Disorders. Curr. Pharm. Des. 22 (8): 978–986. 2016. https://doi.org/10.2174/1381612822666151214104624

  58. Хелимский А.М. Эпифиз (шишковидная железа). М.: Медицина. 1969. [Khelimskii A.M. Epiphysis (pineal gland). M. Medicine. 1969. (in Russ)].

  59. Kovacikova Z., Sladek M., Bendova Z., Illnerova H., Simova A. Expression of clock and clock-driven genes in the rat suprachiasmatic nucleus during late fetal and early postnatal development. Biol. Rhythms. 21 (2): 140–148. 2006. https://doi.org/10.1177/0748730405285876

  60. Seron-Ferre M., Mendez M., Abarzua-Catalan L., Vilches N., Valenzuela F.J., Reynolds H.E., Llanos A.J., Rojas A., Valenzuela G.J., Torres-Farfan C. Circadian rhythms in the fetus. Mol. Cell. Endocrinol. 349 (1): 68–75. 2012. https://doi.org/10.1016/j.mce.2011.07.039

  61. Weinert D. Ontogenetic development of the mammalian circadian system. Chronobiol. Int. 22 (2): 179–205. 2005. https://doi.org/10.1081/cbi-200053473

  62. Colella M., Biran V., Baud O. Melatonin and the newborn brain. Early Hum. Dev. 102: 1–3. 2016. https://doi.org/10.1016/j.earlhudev.2016.09.001

  63. Commentz J.C., Henke A., Dammann O., Hellwege H.H., Willig R.P. Decreasing melatonin and 6-hydroxymelatonin sulfate excretion with advancing gestational age in preterm and term newborn male infants. Eur. J. Endocrinol. 135 (2): 184–187. 1996. https://doi.org/10.1530/eje.0.1350184

  64. Thomas J.E., Drew D.R., Abramovich D.R., Williams L.M. The role of melatonin in the human fetus (review). Int. J. Mol. Med. 1 (3): 539–543. 1998. https://doi.org/10.3892/ijmm.1.3.539

  65. Torres-Farfan C., Seron-Ferre M., Dinet V., Korf H.W. Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: differences between melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice. J. Pineal Res. 40 (1): 64–70. 2006. https://doi.org/10.1111/j.1600-079X.2005.00279.x

  66. Arsianoglu S., Bertino E., Nicocia M., Moro G.E. WARM Working Group on Nutrition: potential chronobiotic role of human milk in sleep regulation. J. Perinat. Med. 49 (1): 1–8. 2012. https://doi.org/10.1515/jpm.2011.134

  67. Rath M.F., Rohde K., Fahrenkrug J., Moller M. Circadian clock components in the rat neocortex: daily dynamics, localization and regulation. Brain Struct . Funct . 218 (2): 551–562. 2013. https://doi.org/10.1007/s00429-012-0415-4

  68. McGraw K., Hoffmann R., Harker C., Herman J.H. The development of circadian rhythms in human infant. Sleep. 22 (3): 303–10. 1999. https://doi.org/10.1093/sleep/22.3.303

  69. Bubenik G.A. Review: Gastrointestinal Melatonin: Localization, Function and Clinical Relevance. Dig. Dis. Sci. 47 (10): 2336–2348. 2002. https://doi.org/10.1023/A:1020107915919

  70. Tan D.X., Manchester L.C., Qin L., Reiter R.J. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int. J. Mol. Sci. 17 (12): 2124. 2016. https://doi.org/10.3390/ijms17122124

  71. Raikhlin N.T., Kvetnoy I.M. Melatonin and enterochromaffine cells. Acta Histochem. 55 (1): 19–24. 1976. https://doi.org/10.1016/S0065-1281(76)80092-X

  72. Messner M., Huether G., Lorf T., Ramadori G., Schwörer H. Presence of melatonin in the human hepatobiliary-gastrointestinal tract. Life Sci. 69 (5): 543–551. 2001. https://doi.org/10.1016/S0024-3205(01)01143-2

  73. Shimozuma M., Tokuyama R., Tatehara S., Umeki H., Ide S., Mishima K., Saito I., Satomura K. Expression and cellular localizaion of melatonin-synthesizing enzymes in rat and human salivary glands. Histochem. Cell Biol. 135 (4): 389–396. 2011. https://doi.org/10.1007/s00418-011-0800-8

  74. Konturek S.J., Konturek P.C., Brzozowski T., Bubenik G.A. Role of melatonin in upper gastrointestinal tract. J. Physiol. Pharmacol. 58 (6): 23–52. 2007.

  75. Bubenic J.A. Thirty four years since the discovery of gastrointestinal melatonin. J. Pysiol. Pharmacol. 59. (2): 33–51. 2008.

  76. Костюкевич С.Б. Гистотопография и плотность расположения эндокринных клеток эпителия слизистой оболочки толстой кишки плода человека. Морфология. 26 (5): 52–55. 2004. [Kostyukevich S.B. Histotopography and density of the location of endocrine cells of the epithelium of the colon mucosa of the human fetus. Morphology. 26 (5): 52–55. 2004. (in Russ.)].

  77. Lolova I.S., Davidoff M.S., Itzev D.E. Histological and immunocytochemical data on the differentiation of intestinal endocrine cells in human fetus. Acta Physiol. Pharmacol. Bulg. 23 (3-4): 61–71. 1998.

  78. Voiculescu S.E., Zygouropoulos N., Zahiu C.D., Zagrean A.M. Role of melatonin in embryo fetal development. J. Med. Life. 7 (4): 488–492. 2014.

  79. Pevet P., Challet E. Melatonin: both master clock output and internal time-giver in the circadian clock network. J. Physiol. Paris. 105 (4-6): 170–182. 2011. https://doi.org/10.1016/j.jphysparis.2011.07.001

  80. Ramracheva R.D., Muller D.S., Squires P.E., Brereton H., Sugden D., Huang G.C., Amiel S.A., Jones P.M., PersaudS.J. Function and expression of melatonin receptors on human pancreatic islets. J. Pineal Res. 44 (3): 273–279. 2008. https://doi.org/10.1111/j.1600-079X.2007.00523.x

  81. Arendt J. Melatonin and human rhythms. Chronobiol. Int. 23 (1-2): 21–37. 2006. https://doi.org/10.1080/07420520500464361

  82. Mazzoccoli G., Pazienza V., Vinciguerra M. Clock genes and Clock-Controlled Genes in the Regulation of Metabolic Rhythms. Chronobiol. International. 29 (3): 227–251. 2012. https://doi.org/10.3109/07429528.2012.658127

  83. Polidarova L., Olejnikova L., Pauslyova L., Sladek M., Sotak M., Pacha J., Sumova A. Development and entrainment of the colonic circadian clock during ontogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 306 (4): G346–356. 2014. https://doi.org/10.1152/ajpgi.00340.2013

  84. Nogueira R.C., Sampaio L.F.S. Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos. J. Exp. Biol. 220 (Pt 20): 3826–3835. 2017. https://doi.org/10.1242/jeb.159848

  85. León J., Acuña-Castroviejo D., Escames G., Tan D-X., Reiter R.J. Melatonin Mitigates Mitochondrial Malfunction. J. Pineal Res. 38 (1): 1–9. 2005. https://doi.org/10.1111/j.1600-079X.2004.00181.x

  86. Zeman M., Herichova I. Melatonin and clock genes expression in the cardiovascular system. Front. Biosci. (Schol Ed). 5: 743–53. 2013. https://doi.org/10.2741/s404

  87. Ekmekciogly C., Thalhammer T., Humpeler S., Mehrabi M.R., Glogar H.D., Hölzenbein T., Markovic O., Leibetseder V.J., Strauss-Blasche G., Marktl W. The melatonin receptor subtype MT2 is present in the human cardiovascular system. J. Pineal Res. 35 (1): 40–44. 2003.https://doi.org/10.1034/j.1600-079X.2003.00051.x

  88. Carlomagno G., Minini M., Tilotta M., Unfer V. From Implantation to Birth: Insight into Molecular Melatonin Functions. Int. J. Mol. Sci. 19 (9): 2802. 2018. https://doi.org/10.3390/ijms19092802

  89. Cutz E. Hyperplasia of pulmonary neuroendocrine cells in infancy and childhood. Semin. Diagn. Pathol. 32 (6): 420-37. 2015. https://doi.org/10.1053/j.semdp.2015.08.001

  90. Sunday M.E. Pulmonary Neuroendocrine Cells and Lung Development. Endocr. Pathol. 7 (3): 173–201. 1996. https://doi.org/10.1007/BF02739921

  91. Mendez N., Abarzua-Catalan L., Vilches N., Galdames H.A., Spichiger C., Richter H.G., Valenzuela G.J., Seron-Ferre M., Torres-Farfan C. Timed Maternal Melatonin Treatment Reverses Circadian Disruption of the Fetal Adrenal Clock Imposed by Exposure to Constant 2015. Light. PLoS ONE. 7 (8): e42713. 2012. https://doi.org/1.1371/journal.pone.0042713

  92. Drew J.E., Williams L.M., Hannah L.T., Barrett P., Abramovich D.R., Morgan P.J. Melatonin receptors in the human fetal kidney: 2-[125I]iodomelatonin binding sites correlated with expression of Mel1a and Mel1b receptor genes. J Endocrinology. 1998. 156: 261–267.

  93. Seron-Ferre M., Reynolds H., Mendez N.A., Mondaca M., Valenzuela F., Ebensperger R., Valenzuela G., Herrera E.A., Llanos A.J., Torres-Farfan C. Impact of maternal melatonin suppression on amount and functionality of brown adipose tissue (BAT) n the newborn sheep. Front. Endocrinol (Lausanne) 5: 232. 2015. https://doi.org/10.3389/fendo.2014.00232

  94. Ren W., Liu G., Chen S., Yin J., Wang J., Tan B., Wu G., Bazer F.W., Peng Y., Li T., Reiter R.J., Yin Y. Melatonin signaling in T cells: Functions and applications. J. Pineal Res. 62 (3): e12394. 2017. https://doi.org/10.1111/jpi.12394

  95. Calvo J.R., Gonzalez-Yanes C., Maldonado M.D. The role of melatonin in the cells of the innate immunity: a review. J. Pineal Res. 55 (2): 103–20. 2013. https://doi.org/10.1111/jpi.12075

  96. Szczepanik M. Melatonin and its influence on immune system. J. Physiol. Pharmacol. 58 (Suppl 6): 115–124. 2007.

  97. Di Bella L., Gualano L. Key aspects of melatonin physiology: thirty years of research. Neuro Endocrinol. Lett. 27 (4): 425–432. 2006.

  98. Roth J.A., Kim B.G., Lin W.L., Cho M.I. Melatonin promotes osteoblast differentiation and bone formation. J. Biol. Chem. 274 (31): 22041–22047. 1999. https://doi.org/10.1074/jbc.274.31.22041

  99. Gunduz B., Stetson M.H. Maternal transfer of photoperiodic information in Siberian hamsters.vi. effects of time-dependent 1-hr melatonin infusions in the mother on photoperiod-induced testicular development of her offspring. J. Pineal Res 34 (3): 217–225. 2003. https://doi.org/10.1034/j.1600-079x.2003.00035.x

  100. Nagai R., Watanabe K., Wakatsuki A., Hamada F., Shinohara K., Hayashi Y., Imamura R., Fukaya T. Melatonin preserves fetal growth in rats by protecting against ischemia-reperfusion-induced oxidative-nitrosative mitochondrial damage in placenta. J. Pineal Res. 45 (3): 271–276. 2008. https://doi.org/10.1111/j.1600-079X.2008.00586x

  101. Berbets A., Koval H., Barbe A., Albota O., Yuzko O. Melatonin decreases and cytokines increase in women with placental insufficiency. J. Matern. Fetal Neonatal. Med. 1–6. 2019. https://doi.org/10.1080/1476058.2019.1608432

  102. Feng P., Hu Y., Vurbic D. Guo Y. Maternal Stress Induces Adult Reduced REM sleep and Melatonin Level. Dev. Neurobiol. 72 (5): 677–687. 2012. https://doi.org/10.1002/dneu.20961

  103. Ferreira D.S., Amaral F.G., Mesquita C.C., Barbosa A.P.L., Lellis-Santos C., Turati A.O., Santos L.R., Sollon C.S., Gomes P.R., Faria J.A., Cipolla-Neto J., Bordin S., Anhê G.F. Maternal Melatonin Programs the Daily Pattern of Energy Metabolism in Adult Offspring. PLoS One. 7 (6): e38795. 2012. https://doi.org/10.1371/journal.pone.0038795

  104. Korkmaz A., Reiter R.J. Epigenetic Regulation: A New Research Area for Melatonin. J. Pineal Res. 44 (1): 41–44. 2008. https://doi.org/10.1111/j.1600-079X.2007.00509.x

  105. Korkmaz A., Rosales-Corral S., Reiter R.J. Gene regulation by melatonin linked to epigenetic phenomena. Gene. 503 (1): 1–11. 2012. https://doi.org/10.1016/j.gene.2012.04.040

  106. Sharma R., Ottenhof T., Rzeczkowska P.A., Niles L.P. Epigenetic Targets for Melatonin: Induction of Histone H3 Hyperacetylation and Gene Expression in C17.2 Neural Stem Cells. J. Pineal Res. 45 (3): 277–84. 2008. https://doi.org/10.1111/j.1600-079X.2008.00587.x

  107. Galano A., Tan D.X., Reiter R.J. Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules. 23 (3): 530. 2018. https://doi.org/10.3390/molecules23030530

  108. Tain Y-L., Huang L-T., Hsu C-N. Developntal Programming of Adult Disease: Reprogramming by Melatonin? Int. J. Mol. Sci. 18 (2): 426–437. 2017. https://doi.org/10/3390/ijms18020426

  109. Cisternas C.D., Compagnucci M.V., Conti N.R., Ponce R.H., Vermouth N.T. Protective effect of maternal prenatal melatonin administration on rat pups born to mothers submitted to constant light during gestation. Braz. J. Med. Biol. Res. 43 (9): 874–882. 2010. https://doi.org/10.1590/s0100-879x2010007500083

  110. Perez-Gonzalez A., Castaneda-Arriaga R., Alvarez-Idaboy J.R., Reiter R.J., Galano A. Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA. J. Pineal Res. 66 (2): e12539. 2019. https://doi.org/10.1111/jpi.12539

  111. reland K.E., Maloyan A., Myatt L. Melatonin Improves Mitochondrial Respiration in Syncytiotrophoblasts From Placentas of Obese Women. Reprod. Sci. 25 (1): 120–130. 2018.https://doi.org/101177/193371911770490

  112. Chen Y-C., Sheen J.M., Tiao M.M., Tain Y.L., Huang L.T. Roles of Melatonin in Fetal Programming in Compromised Pregnancies. Int. J. Mol. Sci. 14 (3): 5380–5401. 2013. https://doi.org/10.3390/ijms14035380

  113. Lopez A., Garcia J.A., Escames G., Venegas C., Ortiz F., Lopez L.C., Acuna-Castroviejo D. Melatonin Protects the Mitochondria From Oxidative Damage Reducing Oxygen Consumption, Membrane Potential, and Superoxide Anion Production. J. Pineal Res. 46 (2): 188–198. 2009. https://doi.org/10.1111/j.1600-079X.2008.00647.x

  114. Xu D-X., Wang H., Ning H., Zhao L., Chen Y-H. Maternally administered melatonin differentially regulates lipopolysaccharide-induced pro-inflammatory and anti-inflammatory cytokines in maternal serum, amniotic fluid, fetal liver, and fetal brain. J. Pineal Res. 43 (1): 74–79. 2007. https://doi.org/10.1111.j.1600-079X.2007.004445.x

  115. Carloni C., Favrais G., Saliba E., Albertini M.C., Chalon C., Longini M., Gressens P., Buonocore G., Balduini W. Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway. J. Pineal Res. 61 (3): 370–380. 2016. https://doi.org/10.1111/jpi.12354

  116. Olivier P., Fontaine R4.H., Loron G., Steenwinckel J.V., Biran V., Massonneau V., Kaindl A., Dalous J., Charriaut-Marlangue C., Aigrot M-S., Pansiot J., Verney C., Gressens P., Baud O. Melatonin Promotes Oligodendroglial Maturation of Injured White Matter in Neonatal Rats. PLoS ONE. 4 (9): e7128. 2009. https://doi.org/10.1371/journal.pone.0007128

  117. Welin A-K., Svedin P., Lapatto R., Sultan B., Hagberg H., Gressens P., Kjellmer I., Mallard C. Melatonin reduces inflammation and cell death in white matter in the mid-gest.ation fetal sheep following umbilical cord occlusion. Pediatr. Res. 61 (2): 153–158. 2007. https://doi.org/10.1203/01.pdr.0000252546

  118. Yawno T., Castillo-Melendez M., Jenkin G., Wallace E.M., Walker D.W., Miller S.L. Mechanisms of Melatonin-Induced Protection in the Brain of Late Gestation Fetal Sheep in Response to Hypoxia. Dev. Neurosci. 34 (6): 543–551. 2012. https://doi.org/10.1159/000346323

  119. Miller S.L, Yawno T., Alers N.O., Castillo-Melendez M., Supramaniam V.G., VanZyl N., Sabaretnam T., Loose J.M., Drummond G.R., Walker D.W., Jenkin G., Wallace E.M. Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction. J. Pineal Res. 56 (3): 283–294. 2014. https://doi.org/10.1111/jpi.12121

  120. Kaur C., Sivakumar Y., Zhang Y., Ling E.A. Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum. Glia. 54 (8): 826–839. 2006. https://doi.org/10.1002/glia.20420

  121. Sivakumar J., Lu J., Ling E.A., Kaur C. Vascular endothelial growth factor and nitric oxide production in response to hypoxia in the choroid plexus in neonatal brain. Brain Pathoogy. 18 (1): 71–85. 2008. https://doi.org/10.1111/j.1750-3639.2007.00104.x

  122. Kaur C., Sivakumar Y., Lu J., Tang F.R., Ling E.A. Melatonin attenuates hypoxia-induced ultrastructural changes and increased vascular permeability in the developing hippocampus. Brain Pathology. 18 (4): 533–547. 2008. https://doi.org/10.1111/j.1750-3639.2008.00156.x

  123. El-Sokkary G.H., Cuzzocrea S., Reiter R.J. Effect of chronic nicotine administration on the rat lung and liver: beneficial role of melatonin. Toxicology. 239 (1–2): 60–67. 2007. https://doi.org/10.1016/j.tox.2007.06.092

  124. Liu S., Guo Y., Yuan Q., Pan Y., Wang L., Liu Q., Wang F., Wang J., Hao A. Melatonin prevents neural tube defects in the offspring of diabetic pregnancy. J. Pineal Res. 59 (4): 508–517. 2015. https://doi.org/10.1111/jpi.12282

  125. Lemley C.O., Vonnahme R.A. Alterations in uteroplacental hemodynamics during melatonin supplementation in sheep and cattle. J. Anim. Sci. 95 (5): 2211–2221. 2017. https://doi.org/10.2527/jas.2016.1151

  126. Sales F., Peralta O.A., Narbona E., McCoard S., Gonzalez-Bulnes A., Parraquez V.H. Rapid Communication: Maternal melatonin implants improve fetal oxygen supply and body weight at term in sheep. J. Anim. Sci. 97 (2): 839–845. 2019. https://doi.org/10.1093/jas/sky443

  127. Tare M., Parkington H.C., Wallace E.M., Sutherland A.E., Lim R., Yawno T., Coleman H.A., Jenkin G., Miller S.L. Maternal melatonin administration mitigates coronary stiffness and endothelial dysfunction, and improves heart resilience to insult in growth restricted lambs. J. Physiol. 592 (12): 2695–2709. 2014. https://doi.org/10.1113/jphysiol.2014.270934

  128. Nawathe A., David A.L. Prophylaxis and treatment of foetal growth restriction. Best Pract. Res. Clin. Obstet. Gynaecol. 49: 66–78. 2018. https://doi.org/10.1016/j.bpobgyn.2018.02.007

  129. Tan D.X., Manchester L.C., Qin L., Reiter R.J. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int. J. Mol. Sci. 17 (12): 2124. 2016. https://doi.org/10.3390/ijms17122124

  130. Welin A.K., Svedin P., Lapatto R., Sultan B., Hagberg H., Gressens P., Kjellmer I., Mallard C. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr. Res. 61 (2): 153–158. 2007. https://doi.org/10.1203/01.pdr.0000252546

  131. Parada E., Buendia I., Leon R., Negredo P., Romero A., Cuadrado A. Lopez M.G., Egea J. Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J. Pineal Res. 56 (2): 204–212. 2014. https://doi.org/10.1111/jpi.12113

  132. Juan W-S., Huang S.Y., Chang C.C., Hung Y.C., Lin Y.W., Chen T.Y., Lee A.H., Lee A.C., Wu T.S., Lee E.J. Melatonin improves neuroplasticity by upregulating growth-associated protein-43 (GAP-43) and NMDAR postsynaptic dencity-95 (PSD-95) proteins in cultured neurons exposed to glutamate excitotoxicity and in rats subjected to transient focal cerebral ischemia even during a long-term recovery period. J. Pineal Res. 56 (2): 213–223. 2014. https://doi.org/10.1111/jpi.12114

  133. Wilkinson D., Shepherd E., Wallace E.M. Melatonin for women in pregnancy for neuroprotection of the fetus. Cochrane Database Syst. Rev. 3 (3): CDO10527. 2016. https://doi.org/10.1002/14651858.CDO10527.pub2

  134. Marseglia L., Manti S., D’Angelo G., Gitto E., Barberi I. Melatonin for the newborn. J. Pediatr. Neonat. Individ. Med. 3 (2): e030232. 2014. https://doi.org/10.7363/030232

  135. Aversa S., Pellegrino S., Barberi I., Reiter R.J, Gitto E. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J. Matern. Fetal. Neonatal. Med . 25 (3): 207–21. 2012. https://doi.org/10.3109/14767058.2011.573827

  136. Tarocco A., Caroccia N., Morciano G., Wieckowski M.R., Ancora G., Garani G., Pinton P. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 10 (4): 317. 2019. https://doi.org/10.1038/s41419-019-1556-7

  137. Юрова М.Н., Тындык М.Л., Попович И.Г., Голубев А.Г., Анисимов В.Н. Гендерная специфичность влияния неонатального введения мелатонина на продолжительность жизни и ассоциированную с возрастом патологию у мышей линии 129/SV. Успехи геронтол. 32 (1–2): 66–75. 2019. [Yurova M.N., Tyndyk M.L., Popovich I.G., Golubev A.G., Anisimov V.N. Gender-specific effects of neonatal administration of melatonin on lifespan and age-associated pathology in 129/SV mice. Adv. geront. 32 (1–2): 66–75. 2019. (in Russ)].

Дополнительные материалы отсутствуют.