Известия РАН. Физика атмосферы и океана, 2023, T. 59, № 6, стр. 740-753

Аномальное селективное поглощение дымового аэрозоля при массовых лесных пожарах на Аляске в июле–августе 2019 г.

Г. И. Горчаков a*, В. М. Копейкин a, Р. А. Гущин a, А. В. Карпов a, Е. Г. Семутникова b, О. И. Даценко a, Т. Я. Пономарева c

a Институт физики атмосферы им. А.М. Обухова РАН
119017 Москва, Пыжевский пер., 3, Россия

b Московский государственный университет им. М.В. Ломоносова, Физический факультет, ГСП-1
119991 Москва, Ленинские горы, 1, стр. 2, Россия

c Гидрометеорологический научно-исследовательский центр России
123376 Москва, Большой Предтеченский переулок, д.13, стр. 1, Россия

* E-mail: gengor@ifaran.ru

Поступила в редакцию 10.03.2023
После доработки 10.07.2023
Принята к публикации 28.08.2023

Аннотация

По данным мониторинга оптических и микрофизических характеристик дымового аэрозоля на станцияхAERONET во время массовых лесных пожаров летом 2019 г. на Аляске обнаружено аномальное селективное поглощение дымового аэрозоля в видимом и ближнем инфракрасном диапазоне спектра от 440 до 1020 нм. При аномальном селективном поглощении мнимая часть коэффициента преломления дымового аэрозоля достигала 0.315 на длине волны 1020 нм. Предложена степенная аппроксимация спектральных зависимостей мнимой части коэффициента преломления при аномальном селективном поглощении с показателями степени от 0.26 до 2.35. Показано, что при аномальном селективном поглощении применимы известные степенные аппроксимации спектральных зависимостей аэрозольных оптических толщин ослабления и поглощения с показателями Ангстрема от 0.96 до 1.65 для аэрозольной оптической толщины ослабления и от –0.89 до 0.97 для аэрозольной оптической толщины поглощения, которая достигала 0.72. Альбедо однократного рассеяния на длине волны 440 нм варьировало в пределах от 0.62 до 0.96. В распределении частиц дымового аэрозоля по размерам при аномальном селективном поглощении доминировала тонкодисперсная фракция частиц. Отмечено сходство оптических и микрофизических характеристик фракции частиц дымового аэрозоля с аномальным селективным поглощением с обнаруженной методом электронной микроскопии в дымовом аэрозоле фракции “смоляных шариков” (tar balls), которые, по видимому, возникают при конденсации (полимеризации) паров терпенов и их кислородосодержащих производных. Сопоставлены экстремальные значения представленных на сайте AERONET аэрозольного радиационного форсинга на верхней границе атмосферы для аномального селективного поглощения и при пожарах в саванне.

Ключевые слова: крупномасштабные лесные пожары, дымовой аэрозоль, оптические и микрофизические характеристики, аномальное селективное поглощение, мнимая часть коэффициента преломления, аэрозольная оптическая толщина ослабления, аэрозольная оптическая толщина поглощения, альбедо однократного рассеяния, распределение частиц по размерам, аэрозольный радиационный форсинг

Список литературы

  1. Аршинов М.Ю., Белан Б.Д. Исследования дисперсного состава аэрозоля в периоды весенней дымки и лесных пожаров // Оптика атмосферы и океана. 2011. Т. 24. № 6. С. 468–474.

  2. Бондур В.Г., Гинзбург А.С. Эмиссия углеродсодержащих газов и аэрозолей от природных пожаров на территории России по данным космического мониторинга // Доклады АН. 2016. Т. 466. № 4. С. 473–477.

  3. Виноградова А.А., Смирнов Н.С., Коротков В.Н. Аномальные пожары 2010 и 2012 гг. на территории России и поступление черного углерода в Арктику. // Оптика атмосферы и океана. 2016. Т. 29. № 6. С. 482–487.

  4. Голицын Г.С., Шукуров А.Х., Гинзбург А.С., Сутугин А.Г., Андронова А.В. Комплексное исследование микрофизических и оптических свойств дымового аэрозоля // Изв. АН СССР. Физика атмосфера и океана. 1988 Т. 24. № 3. P. 227–233.

  5. Горчаков Г.И., Аникин П.П, Волох А.А., Емиленко А.С., Исаков А.А., Копейкин В.М., Пономарева Т.Я., Семутникова Е.Г., Свириденков М.А., Шукуров К.А. Исследование состава задымленной атмосферы Москвы во время пожаров торфяников летом-осенью 2002 г. // Изв. РАН. Физика атмосферы и океана. 2004. Т. 40. № 3. С. 370–384.

  6. Горчаков Г.И., Свириденков М.А, Семутникова Е.Г., Чубарова Н.Е., Холбен Б.Н., Смирнов А.В., Емиленко А.С., Исаков А.А., Копейкин В.М., Карпов А.В., Лезина Е.А., Задорожная О.С. Оптические и микрофизические характеристики аэрозоля задымленной атмосферы московского региона в 2010 году // Доклады АH. 2011. Т. 437. № 5. С. 686–690.

  7. Горчаков Г.И., Васильев А.В., Веричев К.С., Семутникова Е.Г., Карпов А.В. Тонкодисперсный коричневый углерод в задымленной атмосфере. // Доклады Академии Наук. 2016. Т. 471. № 1. С. 91–97.

  8. Горчаков Г.И., Карпов А.В., Панкратова Н.В., Семутникова Е.Г., Васильев А.В., Горчакова И.А. Коричневый и черный углерод в задымленной атмосфере при пожарах в бореальных лесах // Исследования Земли из Космоса. 2017. № 3. С. 11–21.

  9. Горчаков Г.И., Голицын Г.С., Ситнов С.А., Карпов А.В, Горчакова И.А., Гущин Р.А., Даценко О.И. Крупномасштабные дымки Евразии в июле 2016 г. // Доклады АН. 2018. Т 482. № 2. С. 211–214.

  10. Горчаков Г.И., Ситнов С.А., Карпов А.В., Горчакова И.А., Гущин Р.А., Даценко О.И. Крупномасштабные дымки Евразии летом 2016 г. // Известия РАН. Физика атмосферы и океана. 2019. Т. 55. № 3. С. 41–51.

  11. Грин Х., Лейн В. Аэрозоли-пыли, дымы и туманы: Л.: Химия. 1969. 427с.

  12. Зуев В.Е., Креков Г.М. Оптические модели атмосферы. Гидрометеоиздат, 1986. 256 с.

  13. Мохов И.И., Горчакова И.А. Радиационный и температурный эффект летних пожаров 2002 г. в московском регионе // Доклады АН. 2005. Т. 400. № 4. С. 528–531.

  14. Панченко М.В., Журавлева Т.Б., Козлов В.С., Насртдинов И.М., Полькин В.В., Терпугова С.А., Чернов Д.Г. Оценка радиационных эффектов аэрозоля в дымовых и задымленных условиях атмосферы Сибири // Метеорология и Гидрология. 2016. № 2. С. 45–54.

  15. Чичибабин А.Е. Основные начала органической химии. Том II. М.: Госуд. научно-техн. изд-во химич. литературы, 1957. 767 с.

  16. Adachi K., Sedlacek III A.J., Kleinman L. Huble J.M., Shilling J.E., Onash T.B., Kinase T., Sakata K., Takahashi J., Buseck P.R... Spherical tarball particles form through rapid chemical and physical changes of organic matter in biomass-burning smoke // Proceedings of the National Academy of Sciences. 2019. V. 116. № 39. P. 19 336–19 341.

  17. Alexander D.T., Crozier P.A., Anderson J.R. Brown carbon spheres in East Asian outflow and their optical properties // Science. 2008. V. 321. P. 833–836.

  18. Bergstrom R.W., Russell P.B., Hignett P. Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo // J. Atm. Sci. 2002. V. 59. № 3. P. 567–577.

  19. Bohren C.F., Huffman D.R. Absorption and scattering of light by small particles. N.Y.: John Wiley & Sons; 2008. 232 p.

  20. Chakrabarty R.K., Moosmuller H., Garro M.A., Arnott W.P., Walker J., Susott R.A., Rabbitt R.E., Wold C.E., Lincoln E.N., Hao W.M. Emissions from the laboratory combustion of widland fuels: Particle morphology and size // J. Geophys. Res. 2006. V. 111. D07204.

  21. Chubarova N., Nezval’ Y., Sviridenkov M., Smirnov A., Slutsker I. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010 // Atmos. Meas. Tech. Discuss. 2011. V. 4. P. 6351–6386.

  22. Dubovik O., King M.A. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. // J. Geophys. Res.: Atmospheres. 2000. V.105. № D16. P. 20673–20696.

  23. Dubovik O., Smirnov A., Holben B.N., King M.D., Kaufman Y.J., Eck T.F., Slutsker I. Accuracy assessment of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements // J. Geophys. Res. 2000. V. 105. P. 9791–9806.

  24. Dubovik O., Holben B., Eck T.F., Smirnov A, Kaufman Y.J., King M.D., Tanré D., Slutsker I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations // J. Atm. Sci. 2002. V. 59. № 3. P. 590–608.

  25. Eck T.F., Holben B.N., Reid J.S., Sinyuk A., Hyer E.J., O’Neill N.T., Shaw G.E., Vande Castle J.R., Chapin F.S., Dubovik O., Smirnov A. Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site. Journal of Geophysical Research: Atmospheres. 2009. V. 16. № 114. D11208.

  26. Feng Y., Ramanathan V., Kotamarthi V.R. Brown carbon: a significant atmospheric absorber of solar radiation? // Atmospheric Chemistry and Physics. 2013 V. 13. № 17. P. 8607–8621.

  27. Girroto G., China S., Bhadari J., Gorkovski K., Scanalo B., Capek T., Mainovski A., Veghte D., Kalkarni G., Aiken A., Dubey M.K., Mazzoleni C. Fractal-like tar ball aggregates from wildfire smoke. Environ. Sci. Technol. Lett. 2018. V. 5. P. 360–365.

  28. Gorchakov G.I., Sitnov S.A., Sviridenkov M.A., Semoutnikova E.G., Emilenko A.S., Isakov A.A., Kopeikin V.M., Karpov A.V., Gorchkova I.A., Verichev K.S., Kurbatov G.A., Ponomareva T.Ya. Satellite and ground – based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012 // Int. J. Remote Sens. 2014. V. 35. № 15. P. 5698–5721.

  29. Gorchakov G.I., Sitnov S.A., Karpov A.V., Kopeikin V.M., Gorchakova I.A., Isakov A.A., Gushin R.A, Datsenko O.I., Ponomareva T.Ya. Siberian smoke haze over Europe in July 2016 // Proc. SPIE 10833, 24th international Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 2018. 108330O. P. 1–8.

  30. Hand J.L., Malm W.C., Laskin A., Day D., Lee T.B., Wang C., Carrico C., Carrillo J., Cowin J.P., Collett Jr J., Iedema, M.J. Optical, physical, and chemical properties of tar balls observed during the Yosemite Aerosol Characterization Study // J. Geophys. Res.: Atmospheres. 2005. V. 110. D21210. P. 1–14.

  31. Hoffer A., Kiss G., Blazso M., Gelencser A. Chemical characterization of humic-like substances (HULIS) formed from a lignin-type precursor in model cloud water // Geophys. Res. Lett. 2004. V. 31. Z06115.

  32. Hoffer A., Tóth A., Nyirő-Kósa I., Pósfai M., Gelencsér A. Light absorption properties of laboratory-generated tar ball particles // Atmos. Chem. Phys. 2016. V. 16. P. 239–246.

  33. Holben B.N., Eck T.F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET–A Federated Instrument Network and Data Archive for Aerosol Characterization // Remote Sensing Environment. 1998. V. 66. № 1. P. 1–16.

  34. Ju J., Dunne J.P., Shevliakoka E., Ginox P., Malyshevs., John J.G., Krasting J.P. Increased Risk of the 2019 Alaskan July Fires due to Anthropogenic Activity // Bulletin of the American Meteorological Society. 2021. V. 102. № 1. P. S1–S7.

  35. Konovalov I.B., Beekmann M., Berezin E.V., Petetin H., Mielonen T., Kuznetsova I.N., Andreae M.A. The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia // Atmos. Chem. Phys. 2015. V. 15. P. 13269–13297.

  36. Konovalov I.B., Beekmann M., Golovushkin N.A., Andrea M.O. Nonlinear behavior of organic aerosol in biomass burning plumes: a microphysical model analysis // Atmos. Chem. Phys. Discussions. 2019. V. 19. P. 12 091–12 119.

  37. Kozlov V.S., Yausheva E.P., Terpugova S.A., Panchenko M.V., Chernov D.G., Shmargunov V.P. Optical – microphysical properties of smoke haze from Siberian forest fires in summer 2012 / Int. J. Remote Sens. 2014. V. 35. № 15. P. 5722–5741.

  38. Li C., He Q., Schade,J., Passig J. Zimmermann R., Meidan D., Laskin A., Rudich Y. Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging // Atmos. Chem. Phys. 2019. V. 19. P. 139–163.

  39. Masson-Delmotte V., Zhai P., Portner H.O. et al. IPCC, 2018: Summary for Policymakers. In:Global Warming of 1.5C. Geneva, Switzerland: World Meteorological Organization. 2018.

  40. Nikonovas T., North P.R.J., Doerr S.H. Smoke aerosol properties and ageing effects for northern temperate and boreal regions derived from AERONET source and age attribution // Atmos. Chem. Phys. 2015. V. 15. P. 7929–7943.

  41. Posfai M., Simonics R., Li J., Hobbs P.V., Buseck P.R. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. // J. Geophys. Res.: Atmospheres. 2003. V. 108. № D13. 8483. SAF19. P. 1–13.

  42. Posfai M., Gelencser A., Simonics R., Arato K., Li J., Hobbs P.V., Buseck P.R. Atmospheric tar balls: Particles from biomass and biofuel burning // J. Geophys. Res.: Atmospheres. 2004. V. 109. D06213.

  43. Russell P.B., Redemann, J., Schmid B., Bergstrom R.W., Livingston J.M., McIntosh D.M., Ramirez S.A., Hartley S., Hobbs P.V., Quinn P.K., Carrico C.M., Rood M.J., Ostrom E., Noon K.J., von Houningen-Huene W., Remer L. Comparison of Aerosol Single Scattering Albedos Derived By Diverse Techniques in Two North Atlantic Experiments // J. Atm. Sci. 2002. V. 59. № 3. Part 2. P. 609–619.

  44. Sayer A.M., Hsu N.C., Eck T.F., Smirnov A., Holben B.N. AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth // Atmos. Chem. Phys. 2014. V. 14. № 20. P. 11 493–11 523.

  45. Sinyuk A., Holben B.N., Eck T.F., Giles D.M., Slutsker I., Korkin S., Schafer J.S., Smirnov A., Sorokin M., Lyapustin A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2 // Atmos. Meas. Tech. 2020. V. 13. P. 3375–3411.

  46. Sedlasec III A.J., Buseck P.R., Adachi K., Onasch T.B., Springstons S.K., Kleinman J. Formation and evolution of tar balls from Northwestern US wildfires // Atmos. Chem. Phys. 2018. V. 18. № 15. P. 11289–11301.

  47. Seinfeld J.H., Pandis S.N. From air pollution to climate change. N.Y.: Wiley and Sons. 1998. 1326 p.

  48. Zhuravleva T.B., Kabanov D.M., Nasrtdinov I.M., Russkova T.V., Sakerin S.M., Smirnov A., Holben B.N. Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012 // Atmos. Meas. Tech. 2017. № 10. P. 179–198.

Дополнительные материалы отсутствуют.