Журнал физической химии, 2023, T. 97, № 9, стр. 1272-1277

Квантово-химическое моделирование химических сдвигов ЯМР 13С экзо-производных фуллерена С60

А. Р. Тулябаев a*, Л. М. Халилов a

a Институт нефтехимии и катализа, Уфимский федеральный исследовательский центр, Российская академия наук
Уфа, Россия

* E-mail: tulebeich@gmail.com

Поступила в редакцию 31.03.2023
После доработки 31.03.2023
Принята к публикации 04.04.2023

Аннотация

В работе приводятся результаты квантово-химических расчетов химических сдвигов ЯМР 13С ряда экзо-производных фуллерена С60, полученные с использованием гибридных функционалов в сочетании с базисными наборами Попла, корреляционно-согласованными базисными наборами Данинга и валентно-расщепленного базисного набора def2-TZVP с учетом влияния растворителя (модель поляризационного континуума). Дается количественная оценка взаимосвязи между теоретическими и экспериментальными химическими сдвигами (ХС) ЯМР 13С с целью подбора комбинации функционал/базисный набор. Установлено, что наилучшую сходимость с экспериментальными данными при моделировании ХС ЯМР 13С для sp3-фуллереновых углеродных атомов производных С60 имеет комбинация CAM-B3LYP/6-31G и M06L/6-31G, а для sp2-углеродных атомов – X3LYP/6-31G и CAM-B3LYP/6-31G(d).

Ключевые слова: фуллерен С60, ЯМР, теория функционала плотности, базисный набор, средняя ошибка

Список литературы

  1. Hauke F., Chen Z.-F., Hirsch A. // Polish J. Chem. 2007. V. 81. № 5–6. P. 973.

  2. Fileti E.E., Rivelino R. // Chem. Phys. Lett. 2009. V. 467. № 4–6. P. 339.

  3. Liu T., Misquitta A.J., Abrahams I. et al. // Carbon. 2021. V. 173. № P. 891.

  4. Kaminský J., Buděšínský M., Taubert S. et al. // Phys. Chem. Chem. Phys. 2013. V. 15. № 23. P. 9223.

  5. Sun G., Kertesz M. // J. Phys. Chem. A. 2000. V. 104. № 31. P. 7398.

  6. Sun G., Kertesz M. // Ibid. 2001. V. 105. № 22. P. 5468.

  7. Sun G., Kertesz M. // Chem. Phys. 2002. V. 276. № 2. P. 107.

  8. Tulyabaev A.R., Khalilov L.M. // Comput. Theor. Chem. 2011. V. 976. № 1–3. P. 12.

  9. Tulyabaev A.R., Kiryanov I.I., Samigullin I.S. et al. // Int. J. Quantum Chem. 2017. V. 117. № 1. P. 7.

  10. Frisch M.J., Trucks G.W., Schlegel H.B. et al., Gaussian 09. 2009, Gaussian, Inc.: Wallingford, CT, USA.

  11. Meier M.S., Spielmann H.P., Bergosh R.G. et al. // J. Am. Chem. Soc. 2002. V. 124. № 27. P. 8090.

  12. Meier M.S., Spielmann H.P., Bergosh R.G. et al. // J. Org. Chem. 2003. V. 68. № 20. P. 7867.

  13. Djojo F., Herzog A., Lamparth I. et al. // Chem. Eur. J. 1996. V. 2. № 12. P. 1537.

Дополнительные материалы отсутствуют.