Физика плазмы, 2023, T. 49, № 10, стр. 1003-1009

О применимости приближения ячеек Вигнера–Зейтца для кулоновских кластеров

Е. С. Шпилько ab, Д. И. Жуховицкий ab*

a Объединенный институт высоких температур РАН
Москва, Россия

b Московский физико-технический институт (национальный исследовательский университет)
Долгопрудный, Московская область, Россия

* E-mail: dmr@ihed.ras.ru

Поступила в редакцию 20.05.2023
После доработки 10.06.2023
Принята к публикации 20.06.2023

Аннотация

Проведено моделирование методом молекулярной динамики системы массивных заряженных частиц на компенсирующем однородном фоне, ограниченном сферической поверхностью. Кристаллизованный кластер представляет собой набор вложенных сферических оболочек практически одинаковой структуры и ядро. Показано, что плавление кластера является комбинацией плавления в оболочках и плавления ядра. Обнаружено, что значения кулоновского параметра неидеальности Γ, соответствующие этим двум видам плавления, не зависят от размера кластера. Обсуждаются методы определения Γ, основанные на модели ячеек Вигнера–Зейтца. Показано, что оценка по среднеквадратичному отклонению частицы от центра ее ячейки ненадежна из-за самодиффузии частиц. Предложено соотношение, определяющее Γ через среднеквадратичные скорость и ускорение частицы и не включающее среднеквадратичного отклонения частицы от ее усредненного положения. Показано, что это соотношение выполняется с высокой точностью не только для кристалла, но и для жидкого состояния. Тем самым продемонстрировано, что модель ячеек Вигнера–Зейтца хорошо применима для рассматриваемой сильно неоднородной системы.

Ключевые слова: комплексная плазма, однокомпонентная плазма, сильнонеидеальная плазма, кулоновский кластер, плавление

Список литературы

  1. Slattery W.L., Doolen G.D., De Witt H.E. // Phys. Rev. A. 1980. V. 21. P. 2087. https://doi.org/10.1103/PhysRevA.21.2087

  2. Hamaguchi S., Farouki R.T., Dubin D.H.E. // Phys. Rev. E. 1997. V. 56. P. 4671. https://doi.org/10.1103/PhysRevE.56.4671

  3. Complex and Dusty Plasmas: From Laboratory to Space. Series in Plasma Physics / Eds. V. E. Fortov and G. E. Morfill. CRC Press: Boca Raton, FL, 2010.

  4. Arp O., Block D., Klindworth M., and Piel A. // Phys. Plasmas. 2005. V. 12. P. 122102. https://doi.org/10.1063/1.2147000

  5. Arp O., Block D., Bonitz M., Fehske H., Golubnychiy V., Kosse S., Ludwig P., Melzer A., and Piel A. // J. Phys.: Conf. Series. 2005. V. 11. P. 234. https://doi.org/10.1088/1742-6596/11/1/023

  6. Käding S., Melzer A. // Phys. Plasmas. 2006. V. 13. P. 090701. https://doi.org/10.1063/1.2354149

  7. Block D., Käding S., Melzer A., Piel A., Baumgartner H., Bonitz M. // Phys. Plasmas. 2008. V. 15. P. 040701. https://doi.org/10.1063/1.2903549

  8. Arp O., Block D., Piel A. // Phys. Rev. Lett. 2004. V. 93. P. 165004. https://doi.org/10.1103/PhysRevLett.93.165004

  9. Totsuji H., Ogawa T., Totsuji C., Tsuruta K. // J. Phys. A: Math. Gen. 2006. V. 39. P. 4545. https://doi.org/10.1088/0305-4470/39/17/S36

  10. Apolinario S.W.S., Albino Aguiar J., Peeters F.M. // Phys. Rev. E. 2014. V. 90. P. 063113. https://doi.org/10.1103/PhysRevE.90.063113

  11. Wineland D.J., Bergquist J.C., Itano W.M., Bollinger J.J., Manney C.H. // Phys. Rev. Lett. 1987. V. 59. P. 2935. https://doi.org/10.1103/PhysRevLett.59.2935

  12. Dubin D.H.E., O’Neil T.M. // Rev. Mod. Phys. 1999. V. 71. P. 87.

  13. Zhukhovitskii D.I., Naumkin V.N., Khusnulgatin A.I., Molotkov V.I., Lipaev A.M. // Phys. Rev. E. 2017. V. 96. P. 043204. https://doi.org/10.1103/PhysRevE.96.043204

  14. Baiko D.A., Yakovlev D.G., De Witt H.E., Slattery W.L. // Phys. Rev. E. 2000. V. 61. P. 1912. https://doi.org/10.1103/PhysRevE.61.1912

  15. Chugunov A.I., Baiko D.A. // Physica A. 2005. V. 352. P. 397. https://doi.org/10.1016/j.physa.2005.01.005

Дополнительные материалы отсутствуют.