Физика Земли, 2023, № 3, стр. 33-47

Возможный сейсмогенно-триггерный механизм эмиссии метана, разрушения ледников и потепления климата в Арктике и Антарктике

Л. И. Лобковский 12*, А. А. Баранов 3, М. М. Рамазанов 4, И. С. Владимирова 12, Ю. В. Габсатаров 12**, Д. А. Алексеев 12

1 Институт океанологии им. П.П. Ширшова РАН
г. Москва, Россия

2 Московский физико-технический институт (национальный исследовательский университет)
г. Долгопрудный, Россия

3 Институт физики Земли им. О.Ю. Шмидта РАН
г. Москва, Россия

4 Институт проблем геотермии и возобновляемой энергетики – филиал Объединенного института высоких температур РАН
г. Махачкала, Россия

* E-mail: llobkovsky@ocean.ru
** E-mail: yuryg@gsras.ru

Поступила в редакцию 20.09.2022
После доработки 02.12.2022
Принята к публикации 09.12.2022

Аннотация

Предлагается сейсмогенно-триггерный механизм активизации эмиссии метана на Арктическом шельфе в конце 70-х годов 20-го в., вызвавшей начало резкого потепления климата в Арктике, а также интенсивного разрушения покровно-шельфовых ледников Западной Антарктиды в конце 20-го и начале 21-го в., сопровождаемого выделением метана из подстилающих гидратсодержащих осадочных пород и быстрым потеплением климата в Антарктиде. Данный механизм связан с действием деформационных тектонических волн в системе литосфера–астеносфера, вызванных сильнейшими землетрясениями, происходящими в наиболее близко расположенных к полярным областям зонах субдукции: Алеутской, находящейся в северной части Тихого океана, Чилийской и Кермадек–Маккуори, расположенных в юго-восточной и юго-западной частях Тихоокеанской литосферы. Возмущения литосферы передаются со средней скоростью около 100 км/год на большие расстояния порядка 2000–4000 км и связанные с ними добавочные напряжения, приходящие в Арктику и Антарктиду через несколько десятков лет после землетрясений, приводят к разрушению метастабильных газогидратов, находящихся в мерзлых породах арктического шельфа или в подледных осадочных породах Антарктиды, вызывая парниковый эффект потепления, а также к уменьшению сцепления покровных ледников с подстилающими породами, ускоренному их скольжению и разрушению покровно-шельфовых ледников Антарктики. Рассмотренная гипотеза приводит к выводу, что в грядущие десятилетия процессы разрушения ледников и потепления климата в Антарктиде будут нарастать из-за беспрецедентного роста числа сильнейших землетрясений в зонах субдукции юга Тихого океана в конце 20-го и начале 21-го веков.

Ключевые слова: Западная Антарктида, разрушение ледников, эмиссия метана, потепление климата, сильнейшие землетрясения, зоны субдукции южной части Тихоокеанской литосферы, тектонические волны, триггерный механизм, метастабильные газогидраты.

Список литературы

  1. Адушкин В.В., Кудрявцев В.П., Турунтаев С.Б. Глобальный поток метана в межгеосферном газообмене // Докл. РАН. Науки о Земле. 2003. Т. 391. № 6. С. 813–816.

  2. Баренблатт Г.И., Лобковский Л.И., Нигматулин Р.И. Математическая модель истечения газа из газонасыщенного льда и газогидратов // Докл. РАН. Науки о Земле. 2016. Т. 470. № 4. С. 721–754.

  3. Баранов Б.В., Лобковский Л.И., Дозорова К.А., Цуканов Н.В. Система разломов, контролирующая метановые сипл на шельфе моря Лаптевых // Докл. РАН. Науки о Земле. 2019. Т. 486. № 3. С. 354–358.

  4. Биргер Б.И. Распространение напряжений в литосфере Земли // Изв. АН СССР. Сер. Физика Земли. 1989. № 12. С. 3–18.

  5. Быков В.Г. Предсказание и наблюдение деформационных волн Земли // Геодинамика и тектонофизика. 2018. Т. 9. № 3. С. 721–754.

  6. Гарагаш И.А., Лобковский Л.И. Деформационные тектонические волны как возможный триггерный механизм активизации эмиссии метана в Арктике // Арктика: экология и экономика. 2021. Т. 11. № 1. С. 42–50.

  7. Епифанов В.П. Физическое моделирование режимов движения ледников // Снег и лед. 2016. Т. 56. № 3. С. 333–344.

  8. Зотиков И.А. Тепловой режим ледникового покрова Антарктиды. Л.: Гидрометеоиздат. 1977. 168 с.

  9. Кочарян Г.Г., Кишкина С.Б., Новиков В.А., Остапчук А.А. Медленные перемещения по разломам: параметры, условия возникновения, перспективы исследовааний // Геодинамика и тектонофизика. 2014. Т. 5. № 4. С. 863–891.

  10. Кузьмин Ю.О. Деформационные автоволны в разломных зонах // Физика Земли. 2012. № 1. С. 3–20.

  11. Кузьмин Ю.О. Современная геодинамика и медленные деформационные волны // Физика Земли. 2020. № 4. С. 172–182.

  12. Лейченков Г.Л., Гусева Ю.Б., Гандюхин В.В., Иванов С.В. Строение земной коры и история геологического развития осадочных бассейнов индокеанской акватории Антарктики. СПб: ВНИИОкеангеология. 2015. 200 с.

  13. Лобковский Л.И. Возможный сейсмогенно-триггерный механизм резкой активизации эмиссии метана и потепления климата в Арктике // Арктика: экология и экономика. 2020. № 3(39). С. 62–72.

  14. Лобковский Л.И., Рамазанов М.М. К теории фильтрации с двойной пористостью // Докл. РАН. Науки о Земле. 2019. Т. 484. № 3. С. 348–351.

  15. Лобковский Л.И., Рамазанов М.М. Термомеханические волны в системе упругая литосфера–вязкая астеносфера // Изв. РАН. Механика жидкости и газа. 2021. № 6. С. 4–18.

  16. Лобковский Л.И., Рамазанов М.М. Обобщенная модель фильтрации в трещиновато-пористой среде с низкопроницаемыми включениями и ее возможные приложения // Физика Земли. 2022. № 2. С. 144–154.

  17. Л. И. Лобковский,  А. Баранов, И. С. Владимирова, В. Габ-сатаров. Возможный сейсмогенно-триггерный механизм активизации разрушения ледников, эмиссии метана и потепления климата в Антарктиде // Океанология. — 2023. Т. 63, № 1. — С. 1–11.

  18. Матвеева Т.В. Образование гидратов углеводородных газов в субаквальных обстановках. Мировой океан. Т. 3. Твердые полезные ископаемые и газовые гидраты / Под ред. Л.И. Лобковского и Г.А. Черкашева. М.: Научный Мир, 2018. С. 586–694.

  19. Николаевский В.Н. Математическое моделирование уединенных деформационных и сейсмических волн // Докл. РАН. Науки о Земле. 1995. Т. 341. № 3. С. 403–405.

  20. Николаевский В.Н. Геомеханика и флюидодинамика. М.: Недра. 1996. 447 с.

  21. Ружич В.В., Кочарян Г.Г., Левина Е.А. Оценка геодинамического влияния зон коллизии и субдукции на сейсмотектонический режими Байкальского лифта // Геодинамика и тектонофизика. 2016. Т. 7. № 3. С. 383–406.

  22. Сергиенко В.И., Лобковский Л.И., Семилетов И.П. и др. Деградация подводной мерзлоты и разрушение газогидратов шельфа морей Восточной Арктики как возможная причина “метановой катастрофы”: некоторые результаты комплексных исследований 2011 г. // Докл. РАН. Науки о Земле. 2012. Т. 446. № 3. С. 330–335.

  23. Суетнова Е.И. Моделирование аккумуляции газогидратов при осадконакоплении и уплотнении осадков в субаквальных условиях // Физика Земли. 2007. № 9. С. 87–93.

  24. Якушев В.С. Природный газ и газовые гидраты в криолитозоне. М.: ВНИИГАЗ. 2009. 192 с.

  25. Anderson D.L. Accelerated plate tectonics // Science. 1975. V. 187 (4181). P. 1077–1079.

  26. Baranov, A., Morelli, A. The Moho depth map of the Antarctica region // Tectonophysics. 2013. V. 609. P. 299–313.

  27. Baranov, A., Tenzer, R., Bagherbandi, M. Combined Gravimetric-Seismic Crustal Model for Antarctica. Surv. Geophys. 2018. V. 39. P. 23–56.

  28. Baranov A., Morelli A., Chuvaev A. ANTASed – An Updated Sediment Model for Antarctica // Frontiers in Earth Science. 2021. V. 9. 722699.

  29. Baranov A., Morelli A. The structure of sedimentary basins of Antarctica and a new three-layer sediment model // Tectonophysics. 2023. V. 846. P. 299–313.

  30. Bogoyavlensky V., Bogoyavlensky I., Nikonov R., Kargina T., Chuvilin E., Bukhanov B., Umnikov A. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing // Geosciences. 2021. V. 11, 71.

  31. Bott M.H.P., Dean D.S. Stress diffusion from plate boundaries // Nature. 1973. V. 243 (5406). P. 339–341.

  32. Bykov V.G. Nonlinear waves and solitons in models of fault block geological media // Russian Geology and Geophysics. 2015. V. 56 (5). P. 793–803.

  33. Christie F.D.W., Benham T.J., Batchelor C.L. et al. Antarctic ice-shelf advance driven by anomalous atmospheric and sea-ice circulation // Nature Geoscience. 2022. V. 15. P. 356–362.

  34. Chuvilin E.M., Tumskoy V. E., Tipenko G.S., Gavrilov A.V., Bukhanov B.A., Tkacheva E.V., Audibert-Hayet A. Cauquil E. Relic gas hydrate and possibility of their existence in permafrost within the South-Tambey gas field. Conference proceedings. SPE Arctic and Extreme environments. 2013. SPE 166925. P. 1945–1962.

  35. Chuvilin E., Bukhanov B., Davletshina D., Grebenkin S., Istomin V. Dissociation and Self-Preservation of Gas Hydrates in Permafrost // Geosciences. 2018. V. 8(12). P. 431.

  36. Chuvilin E., Ekimova V., Davletshina D., Sokolova N., Bukhanov B. Evidence of Gas Emissions from Permafrost in the Russian Arctic // Geosciences. 2020. V. 10. P. 383.

  37. Climate at a Glance: Global Time Series: [Электронный ресурс] // NOAA National Centers for Environmental information. URL: https://www.ncei.noaa.gov/cag/. (Дата обращения: 15.09.2022).

  38. Cook A.J., Vaughan D.G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years // Cryosphere. 2010. V. 4. P. 77–98.

  39. Danesi S., Morelli A. Structure of the upper mantle under the Antarctic Plate from surface wave tomography // Geophysical Research Letters. 2001. V. 28. P. 4395–4398.

  40. Davidson D.W., Garg S.K., Gough S.R. et al. Laboratory analysis of naturally occurring gas hydrate from sediment of the Gulf Mexico // Geochimica et Cosmochimica Acta. 1986. V. 50. P. 619–623.

  41. Dickens G.R., O’Neil J.R., Rea D.K., Owen R.M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene // Paleoceanography. 1995. V. 10. P. 965–971.

  42. Domack E., Ishman S., Leventer A. et al. A chemotrophic ecosystem found beneath Antarctic Ice Shelf // Eos Trans. AGU. 2005. V. 86 (29). P. 269–272.

  43. Elsasser W.V. Convection and stress propagation in the upper mantle. The Application of Modern Physics to the Earth and Planetary Interiors / S.K. Runcorn (ed.). N.Y.: John Wiley. 1969. P. 223–246.

  44. Fretwell P., Pritchard H.D., Vaughan D.G. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica // Cryosphere. 2013. V. 7. P. 375–393.

  45. Kennett J., Cannariato K.G., Henry I.L., Behl P.J. Methane hydrate in Quaternary climate change: the clathrate gun hypothesis. Washington, D.C: AGU. 2003. 217 p.

  46. Kizyakov A., Leibman M., Zimin M., Sonyushkin A., Dvornikov Y., Khomutov A., Dhont D., Cauquil E., Pushkarev V., Stanilovskaya Y. Gas emission craters and mound-predecessors in the north of West Siberia, similarities and differences // Remote Sens. 2020. V. 12. 2182.

  47. Koven C.D., Ringeval B., Friedlingstein P., Ciais P., Cadule P., Khvorostyanov D., Krinner G., Tarnocai C. Permafrost carbon-climate feedback accelerated global warming // Proc. Natl. Acad. Sci. USA. 2011. V. 108(36). P. 14769–14774.

  48. Kvenvolden K.A. Methane hydrates and global climate // Glob. Biogeochem. Cycles. 1988. V. 2. P. 221–229.

  49. Lay T., Kanamori H. An asperity model of large earthquake sequences. Earthquake prediction: An international review / Simpson, D.W., Richards P.G. (eds.) AGU Washington DC. 1981. P. 579–592.

  50. Lay T. The surge of great earthquakes from 2004 to 2014 // Earth and Planetary Science Letters. 2015. V. 409. P. 133–146.

  51. Leibman M.O., Kizyakov A., Plekhanov A.V., Streletskaya I. New permafrost feature – deep crater in Central Yamal (West Siberia, Russia) as a response to local climate fluctuations // Geogr. Environ. Sustain. 2014. V. 7. P. 68–79.

  52. Lobkovsky L. Seismogenic-Triggering Mechanism of Gas Emission Activizations on the Arctic Shelf and Associated Phases of Abrupt Warming // Geosciences. 2020. V. 10 (11). P. 428.

  53. Lobkovsky, L.I., Baranov, A.A., Ramazanov, M.M., Vladimirova, I.S., Gabsatarov, Y.V., Semiletov, I.P., Alekseev, D.A. Trigger Mechanisms of Gas Hydrate Decomposition, Methane Emissions, and Glacier Breakups in Polar Regions as a Result of Tectonic Wave Deformation. Geosciences. 2022. V. 12(10). P. 372.

  54. Lösing M., Ebbing J., Szwillus W. Geothermal heat flux in Antarctica: assessing models and observations by Bayesian inversion // Frontiers in Earth Science. 2020. V. 8. P. 105.

  55. Marshall G.J., Orr A., van Lipzig N.P.M. et al. The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures // J. Climate. 2006. V. 19. P. 5388–5404.

  56. Maslin M., Owen M., Day S., Long D. Linking continental-slope failure and climate change: testing the clathrate gun hypothesis // Geology. 2004. V. 32. P. 53–56.

  57. Melosh H.J. Nonlinear stress propagation in the Earth’s upper mantle // J. Geophysical Research. 1976. V. 32 (81). P. 5621–5632.

  58. Meuler A.J., Smith J.D., Varanasi K.K. et al. Relationships between water wettability and ice adhesion // Applied Materials Interfaces, American Chemical Society. 2010. V. 2(11). P. 3100–3110.

  59. Morelli A., Danesi S. Seismological imaging of the Antarctic continental lithosphere: a review // Global and Planetary Change. 2004. V. 42. P. 155–165.

  60. Rice J.R. The mechanics of earthquake rupture. Physics of the Earth’s Interior / Ed. by Dziewonski A.M., Boschi E. North-Holland, Amsterdam: Italian Physical Society. 1980. P. 555–649.

  61. Ruppel C.D., Kessler J.D. The interaction of climate change and methane hydrates // Rev. Geophys. 2017. V. 55. P. 126–168.

  62. Scambos T.A., Bohlander J.A., Shuman C.A. et al. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica // Geophysical Research Letters. 2004. V. 31. P. L18402.

  63. Shakhova N., Semiletov I., Sergienko V. et al. The East Siberian Arctic Shelf: Towards further assessment of permafrost related methane flux and role of sea ice // Nature Comm. 2017. V. 8. P. 15872.

  64. Smith J., Hillenbrand C.-D., Subt C. et al. History of the Larsen C Ice Shelf reconstructed from sub–ice shelf and offshore sediments // Geology. 2021. V. 49 (8). P. 978–982.

  65. Straume E.O., Gaina C., Medvedev S. et al. GlobSed: Updated total sediment thickness in the world’s oceans // Geochemistry, Geophysics, Geosystems. 2019. V. 20. P. 1756–1772.

  66. Thurber A.R., Seabrook S., Welsh R.M. Riddles in the cold: Antarctic endemism and microbial succession impact methane cycling in the Southern Ocean // Proceeding of the Royal Society B, Biological Sciences. 2020. V. 287. P. 20201134.

  67. Wadham J.L., Arndt S., Tulaczyk S. et al. Potential methane reservoirs beneath Antarctica // Nature. 2012. V. 488. P. 633–637.

  68. Wallmann K., Pinero E., Burwicz E., Haeckel M., Hensen C., Dale A., Ruepkeet L. The global inventory of methane hydrate in marine sediments: a theoretical approach // Energies. 2012. V. 5. P. 2449–2498.

  69. Wallmann K., Riedel M., Hong W.L., Patton H., Hubbard A., Pape T., Hsu C.W., Schmidt C., Johnson J.E., Torres M.E., Andreassen K., Berndt C., Bohrmann G. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming // Nature Comm. 2018. V. 9. P. 83.

  70. Wang S., Liu H., Jezek K. et al. Controls on Larsen C Ice Shelf retreat from a 60-year satellite data record // J. Geophysical Research: Earth Surface. 2022. V. 127. P. e2021JF006346.

  71. Wille J.D., Favier V., Jourdain N.C. et al. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula // Communications Earth & Environment. 2022. V. 3. P. 90.

  72. World Climate Declaration: [Электронный ресурс] // Climate Intelligence (CLINTEL). URL: https://clintel.org/wp-content/uploads/2022/09/WCD-version-091522.pdf (дата обращения: 15.09.2022).

  73. Yakushev V.S., Istomin V.A. Gas hydrate self-preservation effect. Physics and Chemistry of Ice / N. Maeno, T. Hondoh (eds.). Sapporo: Hokkaido Univ. Press. 1992. P. 136–140.

Дополнительные материалы отсутствуют.