Генетика, 2020, T. 56, № 6, стр. 636-647

Основные сценарии генетически регулируемой клеточной гибели в оогенезе Drosophila melanogaster

Е. У. Болоболова 1*, Н. В. Дорогова 1, С. А. Федорова 12**

1 Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
630090 Новосибирск, Россия

2 Новосибирский национальный исследовательский государственный университет
630090 Новосибирск, Россия

* E-mail: elbol@bionet.nsc.ru
** E-mail: fsveta@bionet.nsc.ru

Поступила в редакцию 01.07.2019
После доработки 25.11.2019
Принята к публикации 17.12.2019

Аннотация

Процесс регулируемой клеточной гибели (РКГ), наряду с пролиферацией и дифференцировкой, является важной и неотъемлемой частью развития любого многоклеточного организма. Существует ряд разнообразных механизмов РКГ, которые могут быть активированы в ответ на сигналы развития и окружающей среды. В данном обзоре суммированы современные представления об основных клеточных событиях и молекулярных механизмах, характеризующих различные процессы гибели клеток в оогенезе Drosophila melanogaster. Во время оогенеза дрозофилы реализуется как минимум пять различных стадиоспецифичных сценариев РКГ: 1) каспаза-зависимая гибель клеток зародышевой линии (КЗЛ) во время раннего оогенеза, которая опосредуется через аутофагию; 2) канонический апоптоз, удаляющий избыток соматических полярных клеток на 4–5-й стадиях оогенеза; 3) РКГ яйцевых камер в среднем оогенезе, начинающаяся с гибели КЗЛ каспаза-зависимым путем при участии аутофагии и завершающаяся их поглощением окружающими фолликулярными клетками (ФК); 4) неапоптозная РКГ питающих клеток в позднем оогенезе, инициируемая и контролируемая окружающими ФК; 5) каспаза-независимая гибель выполнивших свои функции ФК посредством аутофагии в конце 14-й стадии.

Ключевые слова: оогенез, Drosophila, регулируемая клеточная гибель, апоптоз, аутофагия.

DOI: 10.31857/S001667582006003X

Список литературы

  1. Schweichel J.U., Merker H.J. The morphology of various types of cell death in prenatal tissues // Teratology. 1973. V. 7. № 3. P. 253–266. https://doi.org/10.1002/tera.1420070306

  2. Galluzzi L., Vitale I., Aaronson S.A. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 // Cell Death Differ. 2018. V. 25. № 3. P. 486–541. https://doi.org/10.1038/s41418-017-0012-4

  3. Jenkins V.K., Timmons A.K., McCall K. Diversity of cell death pathways: insight from the fly ovary // Trends Cell Biol. 2013. V. 23. № 11. P. 567–574. https://doi.org/10.1016/j.tcb.2013.07.005

  4. King R.C. Ovarian Development in Drosophila melanogaster. N.Y.: Acad. Press, 1970.

  5. King R.C., Rubinson A.C., Smith R.F. Oogenesis in adult Drosophila melanogaster // Growth. 1956. V. 20. № 2. P. 121–157.

  6. Ables E.T., Drummond-Barbosa D. The steroid hormone ecdysone functions with intrinsic chromatin remodeling factors to control female germline stem cells in Drosophila // Cell. Stem. Cel. 2010. V. 7. № 5. P. 581–592. https://doi.org/10.1016/j.stem.2010.10.001

  7. Belles X., Piulachs M.D. Ecdysone signalling and ovarian development in insects: from stem cells to ovarian follicle formation // Biochim. Biophys. Acta. 2015. V. 1849. № 2. P. 181–186. https://doi.org/10.1016/j.bbagrm.2014.05.025

  8. Badisco L., Van Wielendaele P., Vanden Broeck J. Eat to reproduce: a key role for the insulin signaling pathway in adult insects // Front. Physiol. 2013. V. 4. art. 202. https://doi.org/10.3389/fphys.2013.00202

  9. Buszczak M., Cooley L. Eggs to die for: cell death during Drosophila oogenesis // Cell Death Differ. 2000. V. 7. № 11. P. 1071–1074. https://doi.org/10.1038/sj.cdd.4400755

  10. McCall K. Eggs over easy: cell death in the Drosophila ovary // Dev. Biol. 2004. V. 274. № 1. P. 3–14. https://doi.org/10.1016/j.ydbio.2004.07.017

  11. Pritchett T.L., Tanner E.A., McCall K. Cracking open cell death in the Drosophila ovary // Apoptosis. 2009. V. 14. № 8. P. 969–979. https://doi.org/10.1007/s10495-009-0369-z

  12. Drummond-Barbosa D., Spradling A.C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis // Dev. Biol. 2001. V. 231. № 1. P. 265–278. https://doi.org/10.1006/dbio.2000.0135

  13. Огиенко А.А., Федорова С.А., Баричева Э.М. Основные аспекты развития половой системы самок Drosophila melanogaster // Генетика. 2007. Т. 43. № 10. С. 1341–1357.

  14. Wu X., Tanwar P.S., Raftery L.A. Drosophila follicle cells: morphogenesis in an eggshell // Semin. Cell Dev. Biol. 2008. V. 19. № 3. P. 271–282. https://doi.org/10.1016/j.semcdb.2008.01.004

  15. Kumar S. Caspase function in programmed cell death // Cell Death Differ. 2007. V. 14. № 1. P. 32–43. https://doi.org/10.1038/sj.cdd.4402060

  16. Kumar S., Doumanis J. The fly caspases // Cell Death Differ. 2000. V. 7. № 11. P. 1039–1044. https://doi.org/10.1038/sj.cdd.4400756

  17. Dorstyn L., Colussi P.A., Quinn L.M. et al. DRONC, an ecdysone-inducible Drosophila caspase // Proc. Natl Acad. Sci. USA. 1999. V. 96. № 8. P. 4307–4312. https://doi.org/10.1073/pnas.96.8.4307

  18. Fraser A.G., McCarthy N.J., Evan G.I. drICE is an essential caspase required for apoptotic activity in Drosophila cells // EMBO J. 1997. V. 16. № 20. P. 6192–6199. https://doi.org/10.1093/emboj/16.20.6192

  19. Song Z., McCall K., Steller H. DCP-1, a Drosophila cell death protease essential for development // Science. 1997. V. 275. № 5299. P. 536–540. https://doi.org/10.1126/science.275.5299.536

  20. Xu D., Li Y., Arcaro M. et al. The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila // Development. 2005. V. 132. № 9. P. 2125–2134. https://doi.org/10.1242/dev.01790

  21. Xu D., Wang Y., Willecke R. et al. The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila // Cell Death Differ. 2006. V. 13. № 10. P. 1697–1706. https://doi.org/10.1038/sj.cdd.4401920

  22. Deveraux Q.L., Reed J.C. IAP family proteins-suppressors of apoptosis // Genes Dev. 1999. V. 13. № 3. P. 239–252. https://doi.org/10.1101/gad.13.3.239

  23. Orme M., Meier P. Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death // Apoptosis. 2009. V. 14. № 8. P. 950–960. https://doi.org/10.1007/s10495-009-0358-2

  24. Denton D., Aung-Htut M.T., Kumar S. Developmentally programmed cell death in Drosophila // Biochim. Biophys. Acta. 2013. V. 1833. № 12. P. 3499–3506. https://doi.org/10.1016/j.bbamcr.2013.06.014

  25. Goyal L., McCall K., Agapite J. et al. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function // EMBO J. 2000. V. 19. № 4. P. 589–597. https://doi.org/10.1093/emboj/19.4.589

  26. Chai J., Yan N., Huh J.R. et al. Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1‑dependent Dronc ubiquitination // Nat. Struct. Biol. 2003. V. 10. № 11. P. 892–898. https://doi.org/10.1038/nsb989

  27. Rodriguez A., Oliver H., Zou H. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway // Nat. Cell Biol. 1999. V. 1. № 5. P. 272–279. https://doi.org/10.1038/12984

  28. Yu X., Wang L., Acehan D. et al. Three-dimensional structure of a double apoptosome formed by the Drosophila Apaf-1 related killer // J. Mol. Biol. 2006. V. 355. № 3. P. 577–89. https://doi.org/10.1016/j.jmb.2005.10.040

  29. Xu D., Woodfield S.E., Lee T.V. et al. Genetic control of programmed cell death (apoptosis) in Drosophila // Fly. 2009. V. 3. № 1. P. 78–90. https://doi.org/10.4161/fly.3.1.7800

  30. Mukae N., Yokoyama H., Yokokura T. et al. Identification and developmental expression of inhibitor of caspase activated DNase (ICAD) in Drosophila melanogaster // J. Biol. Chem. 2000. V. 275. № 28. P. 21402–21408. https://doi.org/10.1074/jbc.M909611199

  31. Taylor R.C., Cullen S.P., Martin S.J. Apoptosis: controlled demolition at the cellular level // Nat. Rev. Mol. Cell Biol. 2008. V. 9. № 3. P. 231–241. https://doi.org/10.1038/nrm2312

  32. Adrain C., Creagh E.M., Cullen S.P., Martin S.J. Caspase-dependent inactivation of proteasome function during programmed cell death in Drosophila and man // J. Biol. Chem. 2004. V. 279. № 35. P. 36923–36930. https://doi.org/10.1074/jbc.M402638200

  33. Burlacu A. Regulation of apoptosis by Bcl-2 family proteins // J. Cell. Mol. Med. 2003. V. 7. № 3. P. 249–257. https://doi.org/10.1111/j.1582-4934.2003.tb00225.x

  34. Willis S., Day C.L., Hinds M.G., Huang D.C.S. The Bcl-2-regulated apoptotic pathway // J. Cell Sci. 2003. V. 116. № 20. P. 4053–4056. https://doi.org/10.1242/jcs.00754

  35. Pang Y., Bai X.C., Yan C. et al. Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila // Genes Dev. 2015. V. 29. № 3. P. 277–287. https://doi.org/10.1101/gad.255877.114

  36. Abdelwahid E., Yokokura T., Krieser R.J. et al. Mitochondrial disruption in Drosophila apoptosis // Dev. Cell. 2007. V. 12. № 5. P. 793–806. https://doi.org/10.1016/j.devcel.2007.04.004

  37. Goyal G., Fell B., Sarin A. et al. Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster // Dev. Cell. 2007. V. 12. № 5. P. 807–816. https://doi.org/10.1016/j.devcel.2007.02.002

  38. Martinou J.C., Youle R.J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics // Dev. Cell. 2011. V. 21. № 1. P. 92–101. https://doi.org/10.1016/j.devcel.2011.06.017

  39. Krieser R.J., White K. Inside an enigma: do mitochondria contribute to cell death in Drosophila ? // Apoptosis. 2009. V. 14. № 8. P. 961–968. https://doi.org/10.1007/s10495-009-0362-6

  40. Thomenius M., Freel C.D., Horn S. et al. Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death // Cell Death Differ. 2011. V. 18. № 10. P. 1640–1650. https://doi.org/10.1038/cdd.2011.26

  41. Das G., Shravage B.V., Baehrecke E.H. Regulation and function of autophagy during cell survival and cell death // Cold Spring Harb. Perspect. Biol. 2012. V. 4. № 6. P. a008813. https://doi.org/10.1101/cshperspect.a008813

  42. Ковалева О.В., Шитова М.С., Зборовская И.Б. Аутофагия: клеточная гибель или способ выживания? // Клиническая онкогематология. 2014. Т. 7. № 2. С. 103–113.

  43. Yu L., Chen Y., Tooze S.A. Autophagy pathway: Cellular and molecular mechanisms // Autophagy. 2018. V. 14. № 2. P. 207–215. https://doi.org/10.1080/15548627.2017.1378838

  44. Zirin J., Perrimon N. Drosophila as a model system to study autophagy // Semin. Immunopathol. 2010. V. 32. № 4. P. 363–372. https://doi.org/10.1007/s00281-010-0223-y

  45. Ryoo H.D., Baehrecke E.H. Distinct death mechanisms in Drosophila development // Curr. Opin. Cell Biol. 2010. V. 22. № 6. P. 889–895. https://doi.org/10.1016/j.ceb.2010.08.022

  46. Barth J.M., Szabad J., Hafen E., Köhler K. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis // Cell Death Differ. 2011. V. 18. № 6. P. 915–924. https://doi.org/10.1038/cdd.2010.157

  47. Kroemer G., Galluzzi L., Vandenabeele P. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 // Cell Death Differ. 2009. V. 16. № 1. P. 3–11. https://doi.org/0.1038/cdd.2008.150

  48. Vlachos M., Tavernarakis N. Non-apoptotic cell death in Caenorhabditis elegans // Developmental Dynamics. 2010. V. 239. № 5. P. 1337–1351. https://doi.org/10.1002/dvdy.22230

  49. Berghe T., Linkermann A., Jouan-Lanhouet S. et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways // Nat. Rev. Mol. Cell Biol. 2014. V. 15. № 2. P. 134–146. https://doi.org/10.1038/nrm3737

  50. Dondelinger Y., Hulpiau P., Saeys Y. et al. An evolutionary perspective on the necroptotic pathway // Trends Cell Biol. 2016. V. 26. № 10. P. 721–732. https://doi.org/0.1016/j.tcb.2016.06.004

  51. Kanda H., Igakib T., Okanoa H., Miuradet M. Conserved metabolic energy production pathways govern Eiger/TNF induced nonapoptotic cell death // Proc. Natl Acad. Sci. USA. 2011. V. 108. № 47. P. 18977–18982. https://doi.org/10.1073/pnas.1103242108

  52. Yang Y., Hou L., Li Y., Ni J., Liu L. Neuronal necrosis and spreading death in a Drosophila genetic model // Cell Death Dis. 2013. V. 4. № 7. P. e723. https://doi.org/10.1038/cddis.2013.232

  53. Myllymaki H., Valanne S., Rämet M. The Drosophila imd signaling pathway // J. Immunol. 2014. V. 192. № 8. P. 3455–3462. https://doi.org/10.4049/jimmunol.1303309

  54. LaFever L., Drummond-Barbosa D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila // Science. 2005. V. 309. № 5737. P. 1071–1073. https://doi.org/10.1126/science.1111410

  55. Peterson J.S., Timmons A.K., Mondragon A.A., McCall K. The end of the beginning: cell death in the germline // Curr. Top. Dev. Biol. 2015. V. 114. P. 93–119. https://doi.org/10.1016/bs.ctdb.2015.07.025

  56. Carney G.E., Bender M. The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis // Genetics. 2000. V. 154. № 3. P. 1203–1211.

  57. Hou Y.C., Chittaranjan S., Barbosa S.G. et al. Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis // J. Cell Biol. 2008. V. 182. № 6. P. 1127–1139.https://doi.org/10.1083/jcb.200712091

  58. Nezis I.P., Lamark T., Velentzas A.D. Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy // Autophagy. 2009. V. 5. № 3. P. 298–302. https://doi.org/10.4161/auto.5.3.7454

  59. Besse F., Pret A.M. Apoptosis-mediated cell death within the ovarian polar cell lineage of Drosophila melanogaster // Development. 2003. V. 130. № 5. P. 1017–1027. https://doi.org/10.1242/dev.00313

  60. Khammari A., Agnès F., Gandille P., Pret A.-M. Physiological apoptosis of polar cells during Drosophila oogenesis is mediated by Hid-dependent regulation of Diap1 // Cell Death Differ. 2011. V. 18. № 5. P. 793–805. https://doi.org/10.1038/cdd.2010.141

  61. Borensztejn A., Boissoneau E., Fernandez G. et al. JAK/STAT autocontrol of ligand-producing cell number through apoptosis // Development. 2013. V. 140. № 1. P. 195–204. https://doi.org/10.1242/dev.079046

  62. Giorgi F., Deri P. Cell death in ovarian chambers of Drosophila melanogaster // J. Emb. Exp. Morph. 1976. V. 35. № 3. P. 521–533.

  63. Nezis I.P., Stravopodis D.J., Papassideri I. et al. Stage-specific apoptotic patterns during Drosophila oogenesis // Eur. J. Cell Biol. 2000. V. 79. № 9. P. 610–620. https://doi.org/10.1078/0171-9335-00088

  64. Etchegaray J.I., Timmons A.K., Klein A.P. et al. Draper acts through the JNK pathway to control synchronous engulfment of dying germline cells by follicular epithelial cells // Development. 2012. V. 139. № 21. P. 4029–4039. https://doi.org/10.1242/dev.082776

  65. Templeman N.M., Murphy C.T. Regulation of reproduction and longevity by nutrient-sensing pathways // J. Cell Biol. 2018. V. 217. № 1. P. 93–106. https://doi.org/10.1083/jcb.201707168

  66. Terashima J., Takaki K., Sakurai S., Bownes M. Nutritional status affects 20-hydroxyecdysone concentration and progression of oogenesis in Drosophila melanogaster // J. Endocrinol. 2005. V. 187. № 1. P. 69–79. https://doi.org/10.1677/joe.1.06220

  67. Terashima J., Bownes M. E75A and E75B have opposite effects on the apoptosis/development choice of the Drosophila egg chamber // Cell Death Differ. 2006. V. 13. № 3. P. 454–464. https://doi.org/10.1038/sj.cdd.4401745

  68. Pritchett T.L., McCall K. Role of the insulin/Tor signaling network in starvation-induced programmed cell death in Drosophila oogenesis // Cell Death Differ. 2012. V. 19. № 6. P. 1069–1079. https://doi.org/10.1038/cdd.2011.200

  69. McCall K., Steller H. Requirement for DCP-1 caspase during Drosophila oogenesis // Science. 1998. V. 279. № 5348. P. 230–234. https://doi.org/0.1126/science.279.5348.230

  70. Laundrie B., Peterson J.S., Baum J.S. et al. Germline cell death is inhibited by P-element insertions disrupting the dcp-1/pita nested gene pair in Drosophila // Genetics. 2003. V. 165. № 4. P. 1881–1888.

  71. Peterson J.S., Bass B.P., Jue D. et al. Noncanonical cell death pathways act during Drosophila oogenesis // Genesis. 2007. V. 45. № 6. P. 396–404. https://doi.org/10.1002/dvg.20306

  72. Baum J.S., Arama E., Steller H., McCall K. The Drosophila caspases Strica and Dronc function redundantly in programmed cell death during oogenesis // Cell Death Differ. 2007. V. 14. № 8. P. 1508–1517. https://doi.org/10.1038/sj.cdd.4402155

  73. DeVorkin L., Go N.E., Hou Y.C. et al. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB // J. Cell Biol. 2014. V. 205. № 4. P. 477–492. https://doi.org/10.1083/jcb.201303144

  74. Tanner E.A., Blute T.A., Brachmann C.B., McCall K. Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary // Development. 2011. V. 138. № 2. P. 327–338. https://doi.org/10.1242/dev.057943

  75. Lauber K., Blumenthal S.G., Waibel M., Wesselborg S. Clearance of apoptotic cells: getting rid of the corpses // Mol. Cell. 2004. V. 14. № 3. P. 277–287. https://doi.org/10.1016/S1097-2765(04)00237-0

  76. Serizier S.B., McCall K. Scrambled eggs: apoptotic cell clearance by non-professional phagocytes in the Drosophila ovary // Front. Immunol. 2017. V. 8. Article 1642. https://doi.org/10.3389/fimmu.2017.01642

  77. Meehan T.L., Kleinsorge S.E., Timmons A.K. et al. Polarization of the epithelial layer and apical localization of integrins are required for engulfment of apoptotic cells // Dis. Model. Mech. 2015. V. 8. № 12. P. 1603–1614. https://doi.org/10.1242/dmm.021998

  78. Igaki T. Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling // Apoptosis. 2009. V. 14. № 8. P. 1021–1028. https://doi.org/0.1007/s10495-009-0361-7

  79. Finnemann S.C., Silverstein R.L. Differential roles of CD36 and ανβ5 integrin in photoreceptor phagocytosis by the retinal pigment epithelium // J. Exp. Med. 2001. V. 194. № 9. P. 1289–1298. https://doi.org/10.1084/jem.194.9.1289

  80. Sexton D.W., Blaylock M.G., Walsh G.M. Human alveolar epithelial cells engulf apoptotic eosinophils by means of integrin- and phosphatidylserine receptor-dependent mechanisms: a process upregulated by dexamethasone // J. Allergy Clin. Immunol. 2001. V. 108. № 6. P. 962–969. https://doi.org/10.1067/mai.2001.119414

  81. Flannagan R.S., Canton J., Furuya W. et al. The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis // Mol. Biol. Cell. 2014. V. 25. № 9. P. 1511–1522. https://doi.org/10.1091/mbc.E13-04-0212

  82. Hsieh H.-H., Hsu T.-Y., Jiang H.-S., Wu Y.-C. Integrin α PAT-2/CDC-42 signaling is required for muscle-mediated clearance of apoptotic cells in Caenorhabditis elegans // PLoS Genet. 2012. V. 8. № 5. P. e1002663. https://doi.org/10.1371/journal.pgen.1002663

  83. Manaka J., Kuraishi T., Shiratsuchi A. et al. Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages // J. Biol. Chem. 2004. V. 279. № 46. P. 48466–48476. https://doi.org/10.1074/jbc.M408597200

  84. Shiratsuchi A., Mori T., Sakurai K. et al. Independent recognition of Staphylococcus aureus by two receptors for phagocytosis in Drosophila // J. Biol. Chem. 2012. V. 287. № 26. P. 21663–21672. https://doi.org/10.1074/jbc.M111.333807

  85. Nonaka S., Nagaosa K., Mori T. et al. Integrin αPS3/βν-mediated phagocytosis of apoptotic cells and bacteria in Drosophila // J. Biol. Chem. 2013. V. 288. № 15. P. 10374–10380. https://doi.org/10.1074/jbc.M113.451427

  86. Evans I.R., Rodrigues F.S., Armitage E.L., Wood W. Draper/CEd-1 mediates an ancient damage response to control inflammatory blood cell migration in vivo // Curr. Biol. 2015. V. 25. № 12. P. 1606–1612. https://doi.org/10.1016/j.cub.2015.04.037

  87. Meehan T.L., Joudi T.F., Timmons A.K. et al. Components of the engulfment machinery have distinct roles in corpse processing // PLoS One. 2016. V. 11. № 6. P. e0158217. https://doi.org/10.1371/journal.pone.0158217

  88. Tepass U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival // Annu. Rev. Cell Dev. Biol. 2012. V. 28. № 1. P. 655–685. https://doi.org/10.1146/annurev-cellbio-092910-154033

  89. Vieira O.V., Bucci C., Harrison R.E. et al. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase // Mol. Cell. Biol. 2003. V. 23. № 7. P. 2501–2514. https://doi.org/10.1128/MCB.23.7.2501-2514.2003

  90. Kinchen J.M., Doukoumetzidis K., Almendinger J. et al. A pathway for phagosome maturation during engulfment of apoptotic cells // Nat. Cell Biol. 2008. V. 10. № 5. P. 556–566. https://doi.org/10.1038/ncb1718

  91. Gutierrez M.G. Functional role(s) of phagosomal Rab GTPases // Small GTPases. 2013. V. 4. № 3. P. 148–158. https://doi.org/10.4161/sgtp.25604

  92. Cummings M.R., King R.C. Ultrastructural changes in nurse and follicle cells during late stages of oogenesis in Drosophila melanogaster // Z. Zellforsch. 1970. V. 110. P. 1–8

  93. Cavaliere V., Taddei C., Gargiulo G. Apoptosis of nurse cells at the late stages of oogenesis of Drosophila melanogaster // Dev. Genes Evol. 1998. V. 208. № 2. P. 106–112.

  94. Peterson J.S., McCall K. Combined inhibition of autophagy and caspases fails to prevent developmental nurse cell death in the Drosophila melanogaster ovary // PLoS One. 2013. V. 8. № 9. P. e76046. https://doi.org/10.1371/journal.pone.0076046

  95. Peterson J.S., Barkett M., McCall K. Stage-specific regulation of caspase activity in Drosophila oogenesis // Dev. Biol. 2003. V. 260. № 1. P. 113–123. https://doi.org/10.1016/S0012-1606(03)00240-9

  96. Nezis I.P., Shravage B.V., Sagona A.P. et al. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster ooge-nesis // J. Cell Biol. 2010. V. 190. № 4. P. 523–531. https://doi.org/10.1083/jcb.201002035

  97. Timmons A.K., Mondragon A.A., Schenkel C.E. et al. Phagocytosis genes nonautonomously promote deve-lopmental cell death in the Drosophila ovary // Proc. Natl Acad. Sci. USA. 2016. V. 113. № 9. P. 1246–1255. https://doi.org/10.1073/pnas.1522830113

  98. Timmons A.K., Mondragon A.A., Meehan T.L., McCall K. Control of non-apoptotic nurse cell death by engulfment genes in Drosophila // Fly. 2017. V. 11. № 2. P. 104–111. https://doi.org/10.1080/19336934.2016.1238993

  99. Timmons A.K., Meehan T.L., Gartmond T.D., McCall K. Use of necrotic markers in the Drosophila ovary // Methods Mol. Biol. 2013. V. 1004. P. 215–228. https://doi.org/10.1007/978-1-62703-383-1_16

  100. Matova N., Mahajan-Miklos S., Mooseker M.S., Cooley L. Drosophila Quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells // Development. 1999. V. 126. № 24. P. 5645–5657.

  101. Golstein P., Kroemer G. Cell death by necrosis: towards a molecular definition // Trends Biochem. Sci. 2007. V. 32. № 1. P. 37–43. https://doi.org/10.1016/j.tibs.2006.11.001

  102. Nezis I.P., Stravopodis D.J., Margaritis L.H., Papassideri I.S. Autophagy is required for the degeneration of the ovarian follicular epithelium in higher Diptera // Autophagy. 2006. V. 2. № 4. P. 297–298. https://doi.org/10.4161/auto.2858

  103. Marcozzi S., Rossi V., Salustri A. et al. Programmed cell death in the human ovary // Minerva Ginecol. 2018. V. 70. № 5. P. 549–560. https://doi.org/10.23736/S0026-4784.18.04274-0

  104. Зенкина В.Г. Формирование фолликулярного резерва яичников // Бюл. сиб. медицины. 2018. Т. 17. № 3. С. 197–206.

  105. Sun Y.C., Sun X.F., Dyce P.W. et al. The role of germ cell loss during primordial follicle assembly: a review of current advances // Int. J. Biol. Sci. 2017. V. 13. № 4. P. 449–457. https://doi.org/10.7150/ijbs.18836

  106. Yadav P.K., Tiwari M., Gupta A. et al. Germ cell depletion from mammalian ovary: possible involvement of apoptosis and autophagy // J. Biomed. Sci. 2018. V. 25. P. 36. https://doi.org/10.1186/s12929-018-0438-0

  107. Pajokh M., Talaei-Khozani T., Bordbar H., Mesbah F. Apoptosis, autophagy, and necrosis in murine embryonic gonadal ridges and neonatal ovaries: an animal model // I. J. Med. Sci. 2019. V. 44. № 1. P. 36–43.

  108. Chaudhary G.R., Yadav P.K., Yadav A.K. et al. Necroptosis in stressed ovary // J. Biomed. Sci. 2019. V. 26. № 1. P. 1–6. https://doi.org/10.1186/s12929-019-0504-2

  109. Thomson T.C., Fitzpatrick K.E., Johnson J. Intrinsic and extrinsic mechanisms of oocyte loss // Mol. Hum. Reprod. 2010. V. 16. № 12. P. 916–927. https://doi.org/10.1093/molehr/gaq066

  110. Thomson T.C., Johnson J. Inducible somatic oocyte destruction in response to rapamycin requires wild-type regulation of follicle cell epithelial polarity // Cell Death Differ. 2010. V. 17. № 11. P. 1717–1727. https://doi.org/10.1038/cdd.2010.49

  111. Onodera Y., Nam J.M., Sabe H. Intracellular trafficking of integrins in cancer cells // Pharmacol. Ther. 2013. V. 140. № 1. P. 1–9. https://doi.org/10.1016/j.pharmthera.2013.05.007

Дополнительные материалы отсутствуют.