Генетика, 2020, T. 56, № 6, стр. 619-635

Наследственные симбионты: интеграция геномов

И. А. Захаров 1*, И. И. Горячева 2**

1 Институт общей генетики им. Н.И. Вавилова Российской академии наук
119991 Москва, Россия

2 Московский государственный областной университет
114014 Московская область, Мытищи, Россия

* E-mail: iaz34@mail.ru
** E-mail: iigoryacheva@mail.ru

Поступила в редакцию 16.11.2019
После доработки 17.12.2019
Принята к публикации 30.12.2019

Аннотация

Обобщены сведения о наследственных симбионтах насекомых, т.е. о симбиотических бактериях, обитающих в цитоплазме клеток и передающихся в ряду поколений трансовариально, через яйцо. Рассмотрены случаи облигатного симбиоза, при котором бактерии обеспечивают хозяина теми веществами, которые насекомое не получает из пищи (аминокислоты, витамины), и случаи репродуктивного паразитизма, при котором бактерия манипулирует размножением хозяина, обеспечивая преимущественную передачу симбионта в ряду поколений. Обсуждается интеграция геномов хозяина и симбионта, функциональное объединение которых создает объединенный геном, или симбиогеном.

Ключевые слова: бактерии, насекомые, симбиоз, трансовариальная передача, синтрофия, репродуктивные паразиты, андроцид, феминизация, цитоплазматическая несовместимость, партеногенез, симбиогеном.

DOI: 10.31857/S0016675820060120

Список литературы

  1. Лобашев М.Е. Генетика. Л.: Изд-во Ленинградского университета, 1967. 752 с.

  2. Lederberg J. Cell genetics and hereditary symbionts // Physiol. Rev. 1952. V. 32. P. 403–430.

  3. Preer J.R. Extrachromosomal inheritance: hereditary symbionts, mitochondria, chloroplasts // Ann. Rev. Genetics. 1971. V. 5. P. 361–406.

  4. Пиневич А.В., Кожевникова Е.В., Аверина С.Г. Биопленки и другие прокариотные консорциумы. СПб.: Химиздат, 2018. 264 с.

  5. Regassa L.B., Gasparich G.E. Spiroplasmas: evolutionary relationships and biodiversity // Frontiers in Bioscience. 2006. V. 11. P. 2983–3002.

  6. Bolanos L.M., Serv’ın-Garciduenas L.E., Mart’ınez-Romero E. Arthropod–Spiroplasma relationship in the genomic era // FEMS Microbiol. Ecol. 2015. V. 91. P. 1–8. https://doi.org/10.1093/femsec/fiu008

  7. Cacciola S.O., Bertaccini A., Pane A., Furneri P.M. Spiroplasma spp.: a plant, arthropod, animal and human pathogen. Ch. 2 // Citrus Phathology / Ed. Gill H. 2017. P. 31–51. IntechOpen. https://doi.org/10.5772/66481

  8. Davis R.E., Lee I.M., Worley J.F. Spiroplasma floricola, a new species isolated from surfaces of flowers of the tulip tree, Liriodendron tulipifera L. // Int. J. Syst. Bacteriol. 1981. V. 31. P. 456–464. https://doi.org/10.1099/00207713-31-4-456

  9. Ebbert M.A., Nault L.R. Improved overwintering ability in Dalbulus maidis (Homoptera: Cicadellidae) vectors infected with Sprioplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) // Environ. Ent. 1994. V. 23. P. 634–644.

  10. Xie J., Tiner B., Vilchez I., Mateos M. Effect of the Drosophila endosymbiont Spiroplasma on parasitoid wasp development and on the reproductive fitness of wasp-attacked fly survivors // Evol. Ecol. 2011. V. 53. Iss. 5. P.1065–1079. https://doi.org/10.1007/s10682-010-9453-7

  11. Majerus T.M., Graf von der Schulenburg J.H., Majerus M.E., Hurst G.D. Molecular identification of a male-killing agent in the ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) // Insect Mol. Biol. 1999. V. 8. Iss. 4. P. 551–555.

  12. Захаров И.А., Зинкевич Н.С., Шайкевич Е.В. и др. Соотношение полов и явление бессамцовости в сибирских популяциях Harmonia axyridis (Pall) // Генетика. 1999. Т. 35. № 6. С. 771–776.

  13. Malogolowkin C. Maternally inherited “sex-ratio” conditions in Drosophila willistoni and Drosophila paulistorum // Genetics. 1958. V. 43. P. 274–286.

  14. Williamson D.L., Sakaguchi B., Hackett K.J. et al. Spiroplasma poulsonii sp. nov., a new species associated with male-lethality in Drosophila willistoni, a neotropical species of fruit fly // Int. J. Syst. Bacteriol. 1999. V. 49. P. 611–618. https://doi.org/10.1099/00207713-49-2-611

  15. Baumann P., Moran N.A., Baumann L. Bacteriocyte-associated endosymbionts of insects. Ch. 2.3 // Prokaryotes. V. 1 / Ed. Dworkin M. 2006. P. 403–438. https://doi.org/10.1007/0-387-30741-9_16

  16. Nikoh N., McCutcheon J.P., Kudo T. et al. Bacterial genes in the aphid genome: Absence of functional gene transfer from Buchnera to its host // PLoS Genet. 2010. V. 6. Iss. 2. P. e1000827. https://doi.org/10.1371/journal.pgen.1000827

  17. McCutcheon J.P., von Dohlen C.D. An interdependent metabolic patchwork in the nested symbiosis of mealybugs // Curr. Biol. 2011. V. 21. Iss. 16. P. 1366–1372. https://doi.org/10.1016/j.cub.2011.06.051

  18. Spaulding A.W., von Dohlen C.D. Phylogenetic characterization and molecular evolution of bacterial endosymbionts in Psyllids (Hemiptera: Sternorrhyncha) // Mol. Biol. Evol. 1998. V. 15. Iss. 11. P. 1506–1513.

  19. Spaulding A.W., von Dohlen C.D. Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA // Insect Mol. Biology. 2001. V. 10. Iss. 1. P. 57–67.

  20. Tamames J., Gil R., Latorre A. et al. The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii // BMC Evol. Biol. 2007. 7:181.https://doi.org/10.1186/1471-2148-7-181

  21. Chen X., Li S., Aksoy S. Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia // J. Mol. Evol. 1999. V. 48. Iss. 1. P. 49–58.

  22. Aksoy S., Chen X., Hypsa V. Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera: Glossinidae) // Insect Mol. Biol. 1997. V. 6. Iss. 2. P. 183–190.

  23. Attardo G.M., Lohs C., Heddi A. et al. Analysis of milk gland structure and function in Glossina morsitans: Milk protein production, symbiont populations and fecundity // J. Insect Physiol. 2008. V. 54. Iss. 8. P. 1236–1242 https://doi.org/10.1016/j.jinsphys.2008.06.008

  24. Balmand S., Lohs C., Aksoy S. et al. Tissue distribution and transmission routes for the Tsetse fly endosymbionts // J. Invertebr. Pathol. 2013. V. 112. P. 116–122. https://doi.org/10.1016/j.jip.2012.04.002

  25. Hosokawa T., Koga R., Kikuchi Y. et al. Wolbachia as a bacteriocyte-associated nutritional mutualist // Proc. Natl Acad. Sci. USA. 2010. V. 107. № 2. P. 769–774. https://doi.org/10.1073/pnas.0911476107

  26. Nikoh N., Hosokawa T., Moriyama M. et al. Evolutionary origin of insect-Wolbachia nutritional mutualism // Proc. Natl Acad. Sci. USA. 2014. V. 111. № 28. P. 10257–10262. https://doi.org/10.1073/pnas.1409284111

  27. Yen J.H., Barr A.R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. // Nature. 1971. V. 232. P. 657–658.

  28. Stouthamer R., Kazmer J.D. Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps // Heredity. 1994. V. 73. P. 317–327.

  29. Rousset F.F., Bouchon D., Pintureau B. et al. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods // Proc. R. Soc. Lond. B. 1992. V. 250. Iss. 1328. P. 91–98. https://doi.org/10.1098/rspb.1992.0135

  30. Лус Я.Я. Некоторые закономерности размножения популяций Adalia bipunctata L. Бессамцовые семьи в популяциях // ДАН СССР. 1947. Т. 57. № 9. С. 951–954.

  31. Matsuka M., Hashi H., Okada I. Abnormal sex-ratio found in the lady beetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae) // Appl. Entomol. Zool. 1975. V. № 2. P. 84–89. https://doi.org/10.1303/aez.10.84

  32. Werren J.H., Hurst G.D.D., Zhang W. et al. Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata) // J. Bacteriol. 1994. V. 176. P. 388–394.

  33. Takano S.I., Tuda M., Takasu K. et al. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle // Proc. Natl Acad. Sci. USA. 2017. V. 114. Iss. 23. P. 6110–6115. https://doi.org/10.1073/pnas.1618094114

  34. Nakanishi K., Hoshino M., Nakai M., Kunimi Y. Novel RNA sequences associated with late male killing in Homona magnanima // Proc. R. Soc. Lond. B. 2008. V. 275. P. 1249–1254. https://doi.org/10.1098/rspb.2008.0013

  35. Kageyama D., Narita S., Watanabe M. Insect sex determination manipulated by their endosymbionts: incidences, mechanisms and implications // Insects. 2012. V. 3. P. 161–199. https://doi.org/10.3390/insects3010161

  36. Ma W.-J., Schwander T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis // J. Evol. Biol. 2017. V. 30. Iss. 5. P. 868–888. https://doi.org/10.1111/jeb

  37. Zug R., Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected // PLoS One. 2012. V. 7. Iss. 6. P. e38544. https://doi.org/10.1371/journal.pone.0038544

  38. Oliver K.M., Russell J.A., Moran N.A., Hunter M.S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps // Proc. Natl Acad. Sci. USA. 2003. V. 100. P. 1803–1807. https://doi.org/10.1073/pnas.0335320100

  39. Scarborough C.L., Ferrari J., Godfray H.C.J. Aphid protected from pathogen by endosymbiont // Science. 2005. V. 310. P. 1781. https://doi.org/10.1126/science.1120180

  40. Haine E.R. Symbiont-mediated protection // Proc. R. Soc. B. 2008. V. 275. P. 353–361. https://doi.org/10.1098/rspb.2007.1211

  41. Teixeira L., Ferreira A., Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster // PLoS Biol. 2008. Iss. 6. P. e1000002. https://doi.org/10.1371/journal.pbio.1000002

  42. Brownlie J.C., Cass B.N., Riegler M. et al. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress // PLoS Pathogens. 2009. V. 5. Iss. 4. P. e1000368. https://doi.org/10.1371/journal.ppat.1000368

  43. Jaenike J., Unckless R., Cockburn S.N. et al. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont // Science. 2010. V. 329. P. 212–215. https://doi.org/10.1126/science.1188235

  44. Xie J., Vilchez I., Mateos M. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma // PLoS One. 2010. V. 5. Iss. 8. P. e12149. https://doi.org/10.1371/journal.pone.0012149

  45. Brumin M., Kontsedalov S., Ghanim M. Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype // Insect Sci. 2011. V. 18. Iss. 1. P. 57–66. https://doi.org/10.1111/j.1744-7917.2010.01396.x

  46. Weiss B.L., Wang J., Aksoy S. Tsetse immune system maturation requires the presence of obligate symbionts in larvae // PLoS Biol. 2011. V. 9. Iss. 5. P. e1000619. https://doi.org/10.1371/journal.pbio.1000619

  47. Jaenike J. Population genetics of beneficial heritable symbionts // Trends Ecol. Evol. 2012. V. 27. P. 226–232. https://doi.org/10.1016/j.tree.2011.10.005

  48. Xie J., Butler S., Sanchez G., Mateos M. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasp // Heredity (Edinb.). 2014. V. 112. Iss. 4. P. 399–408. https://doi.org/10.1038/hdy.2013.118

  49. Kiuchi T., Koga H., Kawamoto M. et al. A single female-specific piRNA is the primary determiner of sex in the silkworm // Nature. 2014. V. 509. P. 633–636. https://doi.org/10.1038/nature13315

  50. Criscione F., Qi Y., Tu Z. GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi // eLife. 2016. V. 5. P. e19281. https://doi.org/10.7554/eLife.19281

  51. Hall A.B., Basu S., Jiang X. et al. A male-determining factor in the mosquito Aedes aegypti // Science. 2015. V. 348. P. 1268–1270. https://doi.org/10.1126/science.aaa2850

  52. Erickson J.W., Quintero J.J. Indirect effects of ploidy suggest X chromosome dose, not the X:A ratio, signals sex in Drosophila // PLoS Biol. 2007. V. 5. Iss. 12. P. e332. https://doi.org/10.1371/journal.pbio.0050332

  53. Beye M., Hasselmann M., Fondrk M.K. et al. The gene csd is the primary signal for sexual development in the honeybee and encodes an SRtype protein // Cell. 2003. V. 114. P. 419–429. https://doi.org/10.1016/S0092-8674(03)00606-8

  54. Hasselmann M., Gempe T., Schiøtt M. Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees // Nature. 2008. V. 454. P. 519–523. https://doi.org/10.1038/nature07052

  55. Nagoshi R.N., McKeown M., Burtis K.C. et al. The control of alternative splicing at genes regulating sexual differentiation in D. melanogaster // Cell. 1988. V. 53. P. 229–336.

  56. Clough E., Jimenez E., Kim Y.A. et al. Sex- and tissue-specific functions of Drosophila doublesex transcription factor target genes // Dev. Cell. 2014. V. 31. P. 761–773. https://doi.org/10.1016/j.devcel.2014.11.021

  57. Sánchez L. Sex-determining mechanisms in insect // Int. J. Dev. Biol. 2008. V. 52. P. 837–856. https://doi.org/10.1387/ijdb.072396ls

  58. Beukeboom L.W. Microbial manipulation of host sex determination. Endosymbiotic bacteria can directly manipulate their host’s sex determination towards the production of female offspring // BioEssays. 2012. V. 3. P. 484–488. https://doi.org/10.1002/bies.201100192

  59. Sugimoto T.N., Ishikawa Y. A male-killing Wolbachia carries a feminizing factor and is associated with degradation of the sex-determining system of its host // Biol. Lett. 2012. V. 8. P. 412–415. https://doi.org/10.1098/rsbl.2011.1114

  60. Fukui T., Kawamoto M., Shoji K. et al. The endosymbiotic bacterium Wolbachia selectively kills male hosts by targeting the masculinizing gene // PLoS Pathog. 2015. V. 11. Iss. 7. P. e1005048. https://doi.org/10.1371/journal.ppat.1005048

  61. Harumoto T., Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila // Nature. 2018. V. 557. P. 252–255. https://doi.org/10.1038/s41586-018-0086-2

  62. LePage D.P., Metcalf J.A., Bordenstein S.R. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility // Nature. 2017. V. 543. Iss. 7644. P. 243–247. https://doi.org/10.1038/nature21391

  63. Hurst G.D.D., Jiggins F.M., Schulenburg J.H. et al. Male-killing Wolbachia in two species of insect // Proc. R. Soc. Lond. B. 1999. V. 266. P. 735–740. https://doi.org/10.1098/rspb.1999.0698

  64. Werren J.H., Skinner S.W., Huger A.M. Male-killing bacteria in a parasitic wasp // Science. 1986. V. 231. P. 990–992.

  65. Ferree P.M., Avery A., Azpurua J. et al. A bacterium targets maternally inherited centrosomes to kill males in Nasonia // Curr. Biol. 2008. V. 18. P. 1409–1414. https://doi.org/10.1016/j.cub.2008.07.093

  66. Simon J.C., Boutin S., Tsuchida T. et al. Facultative symbiont infections affect aphid reproduction // PLoS One. 2011. V. 6. Iss. 7. P. e21831. https://doi.org/10.1371/journal.pone.0021831

  67. Hurst L.D. The incidences and evolution of cytoplasmic male killers // Proc. R. Soc. Lond. B. 1991. V. 244. Iss. 1310. P. 91–99. https://doi.org/10.1098/rspb.1991.0056

  68. Hurst G.D.D., Majerus M.E.N. Why do maternally inherited microorganisms kill males? // Heredity. 1993. V. 71. P. 81–95.

  69. Dyson E.A., Gregory D.D. Persistence of an extreme sex ratio bias in a natural population // Proc. Natl Acad. Sci. USA. 2004. V. 101. № 17. P. 6520–6523. https://doi.org/10.1073/pnas.0304068101

  70. Hornett E.A., Moran B., Reynolds L.A. et al. The evolution of sex ratio distorter suppression affects a 25 cM genomic region in the butterfly Hypolimnas bolina // PLoS Genet. 2014. V. 10. Iss. 12. P. e1004822. https://doi.org/10.1371/journal.pgen.1004822

  71. Kageyama D., Ohno S., Hoshizaki S., Ishikawa Y. Sexual mosaics induced by tetracycline treatment in the Wolbachia-infected adzuki bean borer, Ostrinia scapulalis // Genome. 2003. V. 46. P. 983–989. https://doi.org/10.1139/g03-082

  72. Kageyama D., Traut W. Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis // Proc. R. Soc. Lond. B. 2004. V. 271. P. 251–258. https://doi.org/10.1098/rspb.2003.2604

  73. Sakamoto H., Kageyama D., Hoshizaki S., Ishikawa Y. Sex-specific death in the Asian corn borer moth (Ostrinia furnacalis) infected with Wolbachia occurs across larval development // Genome. 2007. V. 50. P. 645–652. https://doi.org/10.1139/g07-041

  74. Sugimoto T.N., Fujii T., Kayukawa T. et al. Expression of a doublesex homologue is altered in sexual mosaics of Ostrinia scapulalis moths infected with Wolbachia // Insect Biochem. Mol. Biol. 2010. V. 40. P. 847–854. https://doi.org/10.1016/j.ibmb.2010.08.004

  75. Katsuma S., Kiuchi T., Kawamoto M. et al. Unique sex determination system in the silkworm, Bombyx mori: current status and beyond // Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2018. V. 94. № 5. P. 205–216. https://doi.org/10.2183/pjab.94.014

  76. Kiuchi T., Koga H., Kawamoto M. et al. A single female-specific piRNA is the primary determiner of sex in the silkworm // Nature. 2014. V. 509. P. 633–636. https://doi.org/10.1038/nature13315

  77. Fukui T., Kiuchi T., Shoji K. et al. In vivo masculinizing function of the Ostrinia furnacalis Masculinizer gene // Biochem. Biophys. Res. Commun. 2018. V. 503. Iss. 3. P. 1768–1772. https://doi.org/10.1016/j.bbrc.2018.07.111

  78. Williamson D.L., Poulson D.F. Plant and insect mycoplasmas // The Mycoplasmas. V. III / Eds Whitcomb R.F., Tully J.G. N.Y., 1979. Ch. 6. P. 175–208.

  79. Martin J., Chong T., Ferree P.M. Male killing Spiroplasma preferentially disrupts neural development in the Drosophila melanogaster embryo // PLoS One. 2013. V. 8. Iss. 11. P. e79368. https://doi.org/10.1371/journal.pone.0079368

  80. Harumoto T., Anbutsu H., Fukatsu T. Male-killing Spiroplasma induces sex-specific cell death via host apoptotic pathway // PLoS Pathog. 2014. V. 10. Iss. 2. P. e1003956. https://doi.org/10.1371/journal.ppat.1003956

  81. Gilfillan G.D., Dahlsveen I.K., Becker P.B. Lifting a chromosome: Dosage compensation in Drosophila melanogaster // FEBS Lett. 2004. V. 567. P. 8–14. https://doi.org/10.1016/j.febslet.2004.03.110

  82. Harumoto T., Fukatsu T., Lemaitre B. Common and unique strategies of male killing evolved in two distinct Drosophila symbionts // Proc. R. Soc. B. 2018. V. 285. P. 20172167. https://doi.org/10.1098/rspb.2017.2167

  83. Hurst L.D. The incidences and evolution of cytoplasmic male killers // Proc. R. Soc. B. 1991. V. 244. P. 91–99. https://doi.org/10.1098/rspb.1991.0056

  84. Adachi-Hagimori T., Miura K., Stouthamer R. A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera // Proc. R. Soc. B. 2008. V. 275. P. 2667–2673. https://doi.org/10.1098/rspb.2008.0792

  85. Rössler Y., Debach P. The biosystematics relations between a thelytokous and an arrhenotokous form of Aphytis mytilaspidis (Le Baron) [Hymenoptera: Aphelinidae] // Entomophaga. 1972. V. 17. P. 425–435. https://doi.org/10.1007/BF02371647

  86. Rössler Y., Debach P. Genetic variability in a thelytokous form of Aphytis mytilaspidis (Le Baron) (Hymenoptera: Aphelinidae) // Hilgardia. 1973. V. 42. P. 149–176. https://doi.org/10.3733/hilg.v42n05p149

  87. Zchori-Fein E., Perlman S.J., Kelly S.E. et al. Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae) // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 961–968. https://doi.org/10.1099/ijs.0.02957-0

  88. Giorgini M., Hunter M.S., Mancini D., Pedata P.A. Cytological evidence for two different mechanisms of thelytokous parthenogenesis in Encarsia parasitoids harbouring Wolbachia or Cardinium bacteria // Poster: Abstr. X Eur. Workshop Insect Parasit. 2007. Erice (TP). P. 17–21. https://doi.org/10.13140/RG.2.1.4712.4243

  89. Pannebakker B.A., Pijnacker L.P., Zwaan B.J., Beukeboom L.W. Cytology of Wolbachia-induced parthenogenesis in Leptopilina clavipes (Hymenoptera: Figitidae) // Genome. 2004. V. 303. P. 299–303. https://doi.org/10.1139/g03-137

  90. Gottlieb Y., Zchori-Fein E., Werren J.H., Karr T.L. Diploidy restoration in Wolbachia-infected Muscidifurax uniraptor (Hymenoptera: Pteromalidae) // J. Invertebr. Pathol. 2002. V. 81. P. 166–174. https://doi.org/10.1016/S0022-2011(02)00149-0

  91. Heimpel G.E., de Boer J.G. Sex determination in the Hymenoptera // Annu. Rev. Entomol. 2008. V. 53. P. 209–230. https://doi.org/10.1146/annurev.ento.53.103106.093441

  92. Ma W.-J., Pannebakker B.A., van de Zande L. et al. Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp // BMC Evol. Biol. 2015. P. 15. P. 84. https://doi.org/10.1186/s12862-015-0370-9

  93. Tulgetske G.M. Investigations into the mechanisms of Wolbachia-induced parthenogenesis and sex determination in the parasitoid wasp, Trichogramma. Riverside, California: PhD thesis, 2010.

  94. Giorgini M., Monti M., Caprio E. et al. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium // Heredity. 2009. V. 10. P. 365–371. https://doi.org/10.1038/hdy.2008.135

  95. Hiroki M., Tagami Y., Miura K., Kato Y. Multiple infection with Wolbachia inducing different reproductive manipulations in the butterfly Eurema hecabe // Proc. R. Soc. Lond. B. 2004. V. 271. P. 1751–1755. https://doi.org/10.1098/rspb.2004.2769

  96. Narita S., Kageyama D., Nomura M., Fukatsu T. Unexpected mechanism of symbiont-induced reversal of insect sex: Feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development // Appl. Environ. Microbiol. 2007. V. 73. P. 4332–4341. https://doi.org/10.1128/AEM.00145-07

  97. Narita S., Nomura M., Kageyama D. Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: Transmission efficiencies and population density dynamics of each Wolbachia strain // FEMS Microbiol. Ecol. 2007. V. 61. P. 235–245. https://doi.org/10.1111/j.1574-6941.2007.00333.x

  98. Narita S., Kageyama D., Hiroki M. et al. Wolbachia-induced feminisation newly found in Eurema hecabe, a sibling species of Eurema mandarina (Lepidoptera: Pieridae) // Ecol. Entomol. 2011. V. 36. P. 309–317. https://doi.org/10.1111/j.1365-2311.2011.01274.x

  99. Negri I., Pellecchia M., Mazzoglio P.J. Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/X0 sex-determination system // Proc. R. Soc. Lond. B. 2006. V. 273. P. 2409–2416. https://doi.org/10.1098/rspb.2006.3592

  100. Kageyama D., Ohno M., Sasaki T. et al. Feminizing Wolbachia endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species // Evolution Letters. V. 1. Iss. 5. P. 232–244. https://doi.org/10.1002/evl3.28

  101. Negri I., Franchini A., Gonella E. et al. Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting // Proc. R. Soc. B. 2009. V. 276. P. 2485–2491. https://doi.org/10.1098/rspb.2009.0324

  102. Harris H.L., Braig H.R. Sperm chromatin remodelling and Wolbachia-induced cytoplasmic incompatibility in Drosophila // Biochem. Cell Biol. 2003. V. 81. P. 229–240. https://doi.org/10.1139/o03-053

  103. Breeuwer J.A., Werren J.H. Microorganisms associated with chromosome destruction and reproductive isolation between insect species // Nature. 1990. V. 346. P. 558–560. https://doi.org/10.1038/346558a0

  104. Gebiola M., Giorgini M., Kelly S.E. et al. Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin Wolbachia // Proc. R. Soc. B. 2017. V. 284: 20171433. https://doi.org/10.1098/rspb.2017.1433

  105. Callaini G., Dallai R., Riparbelli M.G. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans // J. Cell Sci. 1997. V. 110. Pt. 2. P. 271–280.

  106. Tram U., Fredrick K., Werren J.H., Sullivan W. Paternal chromosome segregation during the first mitotic division determines Wolbachia-induced cytoplasmic incompatibility phenotype // J. Cell Sci. 2006. V. 119. P. 3655–3663. https://doi.org/10.1242/jcs.03095

  107. Penz T., Schmitz-Esser S., Kelly S.E. et al. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii // PLoS Genet. 2012. V. 8. Iss. 10. P. e1003012. https://doi.org/10.1371/journal.pgen.1003012

  108. Vavre F., Dedeine F., Quillon M. et al. Within-species diversity of Wolbachia-induced cytoplasmic incompatibility in haplodiploid insects // Evolution. 2001. V. 55. P. 1710–1714. https://doi.org/10.1111/j.0014-3820.2001.tb00691.x

  109. Reed K.M., Werren J.H. Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events // Mol. Reprod. Dev. 1995. V. 40. P. 408–418. https://doi.org/10.1002/mrd.1080400404

  110. Zabalou S., Apostolaki A., Pattas S. et al. Multiple rescue factors within a Wolbachia strain // Genetics. 2008. V. 178. P. 2145–2160. https://doi.org/10.1534/genetics.107.086488

  111. Hurst L.D. The evolution of cytoplasmic incompatibility or when spite can be successful // J. Theor. Biol. 1991. V. 148. P. 269–277. https://doi.org/10.1016/S0022-5193(05)80344-3

  112. Beckmann J.F., Fallon A.M. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility // Insect Biochemistry and Mol. Biol. 2013. V. 43. P. 867–878. https://doi.org/10.1016/j.ibmb.2013.07.002

  113. Poinsot D., Charlat S., Mercot H. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confronting the models with the facts // BioEssays. 2003. V. 25. P. 259–265. https://doi.org/10.1002/bies.10234

  114. Beckmann J.F., Ronau J., Hochstrasser M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility // Nat. Microbiol. 2017. V. 2. Article number 17007. https://doi.org/10.1038/nmicrobiol.2017.7

  115. Serbus L.R., Casper-Lindley C., Landmann F., Sullivan W. The genetics and cell biology of Wolbachia-host interactions // Ann. Rev. Genetics. 2008. V. 42. P. 683–707. https://doi.org/10.1146/annurev.genet.41.110306.130354

  116. Bordenstein S.R., Bordenstein S.R. Lateral genetic transfers between eukaryotes and bacteriophages // BioRxiv. 2016. https://doi.org/10.1101/049049

  117. Lorenzen M.D., Gnirke A., Margolis J. et al. The maternal-effect, selfish genetic element Medea is associated with a composite Tc1 transposon // Proc. Natl Acad. Sci. USA. 2008. V. 105. P. 10085–10089. https://doi.org/10.1073/pnas.0800444105

  118. Iyer L.M., Burroughs A.M., Aravind L. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains // Genome Biol. 2006. V. 7. Iss. 7. Article R60. https://doi.org/10.1186/gb-2006-7-7-r60

  119. Тихонович И.А., Проворов Н.А. Эпигенетика экологических ниш // Экол. генетика. 2010. Т. 8. № 4. С. 30–38.

  120. Проворов Н.А., Тихонович И.А. Надвидовые генетические системы // Журн. общ. биологии. 2014. Т. 75. № 4. С. 247–260.

  121. Zilber-Rosenberg I., Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution // FEMS Microbiol. Rev. 2008. V. 32. P. 723–735.

  122. Захаров И.А. Горизонтальный перенос генов в геномы насекомых // Генетика. 2016. Т. 52. № 7. С. 804–809. https://doi.org/10.7868/S0016675816070110

Дополнительные материалы отсутствуют.