Генетика, 2023, T. 59, № 10, стр. 1103-1111

Иммуногенетические факторы в патогенезе шизофрении

М. Ю. Плотникова 123*, С. С. Кунижева 123, Е. В. Рождественских 2, Т. В. Андреева 123

1 Институт общей генетики им. Н.И. Вавилова Российской академии наук
119991 Москва, Россия

2 Центр генетики и наук о жизни, Университет “Сириус”
354340 пгт. Сириус, Краснодарский край, Россия

3 Московский государственный университет им. М.В. Ломоносова
119991 Москва, Россия

* E-mail: plotnikova.m.u.1996@gmail.com

Поступила в редакцию 27.01.2023
После доработки 06.06.2023
Принята к публикации 10.06.2023

Аннотация

Предрасположенность человека к нейропсихическим заболеваниям, таким как шизофрения, болезнь Альцгеймера, болезнь Паркинсона и другим нейропатологиям связана как с генетическими факторами, так и с факторами внешней среды. В настоящее время одним из перспективных направлений в области молекулярных нейронаук является исследование роли иммуногенетических механизмов при различных типах патологических процессов в мозге. В данном обзоре освещаются последние результаты исследований в области иммуногенетики шизофрении, а также ряда других нейропсихических патологий, в патогенезе которых подтверждена роль иммунного компонента. В рамках данного обзора рассмотрена роль генов главного комплекса гистосовместимости в патогенезе шизофрении, оценка изменений иммунного репертуара Т-клеточных и B-клеточных рецепторов при нейровоспалении. Также представлены результаты изучения генов иммуноглобулинов, изменение работы которых связано с развитием нейропсихических патологий.

Ключевые слова: иммуногенетика, шизофрения, Т-клеточные рецепторы, В-клеточные рецепторы, полногеномное секвенирование, главный комплекс гистосовместимости, нейровоспаление, иммуноглобулины.

Список литературы

  1. Cottler L.B., Zunt J., Weiss B. et al. Building global capacity for brain and nervous system disorders research // Nature. 2015. V. 527. № 7578. P. S207–S213. https://doi.org/10.1038/nature16037

  2. Misra M.K., Damotte V., Hollenbach J.A. The immunogenetics of neurological disease // Immunology. 2018. V. 153. № 4. P. 399–414. https://doi.org/10.1111/imm.12869

  3. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia // Nature. 2008. V. 455. № 7210. P. 237–241. https://doi.org/10.1038/nature07239

  4. Kato T. A renovation of psychiatry is needed // World Psychiatry. 2011. V. 10. № 3. P. 198–199. https://doi.org/10.1002/j.2051-5545.2011.tb00056.x

  5. Perälä J., Suvisaari J., Saarni S.I. et al. Lifetime prevalence of psychotic and bipolar i disorders in a general population // Arch. Gen. Psychiatry. 2007. V. 64. № 1. P. 19. https://doi.org/10.1001/archpsyc.64.1.19

  6. Trubetskoy V., Pardiñas A.F., Qi T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia // Nature. 2022. V. 604. № 7906. https://doi.org/10.1038/s41586-022-04434-5

  7. Xu B., Roos J.L., Dexheimer P. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia // Nat. Genet. 2011. V. 43. № 9. P. 864–868. https://doi.org/10.1038/ng.902

  8. Pouget J.G. The emerging immunogenetic architecture of schizophrenia // Schizophr. Bull. 2018. V. 44. № 5. P. 993–1004. https://doi.org/10.1093/schbul/sby038

  9. Anderson G., Maes M. Schizophrenia: Linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013. V. 42. P. 5–19. https://doi.org/10.1016/j.pnpbp.2012.06.014

  10. Mikocziova I., Greiff V., Sollid L.M. Immunoglobulin germline gene variation and its impact on human disease // Genes Immun. 2021. V. 22. № 4. P. 205–217. https://doi.org/10.1038/s41435-021-00145-5

  11. Malashenkova I.K., Krynskiy S.A., Ogurtsov D.P. et al. A role of the immune system in the pathogenesis of schizophrenia // Zhurnal. Nevrolog. Psikhiatr. im. S.S. Korsakova. 2018. V. 118. № 12. https://doi.org/10.17116/jnevro201811812172

  12. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder // Nature. 2009. V. 460. № 7256. P. 748–752. https://doi.org/10.1038/nature08185

  13. Bishop J.R., Zhang L., Lizano P. Inflammation subtypes and translating inflammation-related genetic findings in schizophrenia and related psychoses: A perspective on pathways for treatment stratification and novel therapies // Harv. Rev. Psychiatry. 2022. V. 30. № 1. P. 59–70. https://doi.org/10.1097/HRP.0000000000000321

  14. Upthegrove R., Manzanares-Teson N., Barnes N.M. Cytokine function in medication-naive first episode psychosis: A systematic review and meta-analysis // Schizophr. Res. 2014. V. 155. № 1–3. P. 101–108. https://doi.org/10.1016/j.schres.2014.03.005

  15. Rodrigues-Amorim D., Rivera-Baltanás T., Spuch C. et al. Cytokines dysregulation in schizophrenia: A systematic review of psychoneuroimmune relationship // Schizophr. Res. 2018. V. 197. P. 19–33. https://doi.org/10.1016/j.schres.2017.11.023

  16. Fernandes B.S., Steiner J., Bernstein H.-G. et al. C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: Meta-analysis and implications // Mol. Psychiatry. 2016. V. 21. № 4. P. 554–564. https://doi.org/10.1038/mp.2015.87

  17. Ermakov E.A., Melamud M.M., Buneva V.N., Ivanova S.A. Immune system abnormalities in schizophrenia: an integrative view and translational perspectives // Front. Psychiatry. 2022. V. 13. https://doi.org/10.3389/fpsyt.2022.880568

  18. Trépanier M.O., Hopperton K.E., Mizrahi R. et al. Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review // Mol. Psychiatry. 2016. V. 21. № 8. P. 1009–1026. https://doi.org/10.1038/mp.2016.90

  19. Gelderblom M., Arunachalam P., Magnus T. Î3δ T cells as early sensors of tissue damage and mediators of secondary neurodegeneration // Front. Cell. Neurosci. 2014. V. 8. https://doi.org/10.3389/fncel.2014.00368

  20. Debnath M. Adaptive immunity in schizophrenia: Functional implications of T cells in the etiology, course and treatment // J. of Neuroimmune Pharmacology. 2015. V. 10. № 4. P. 610–619. https://doi.org/10.1007/s11481-015-9626-9

  21. Miller B.J., Buckley P., Seabolt W. et al. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects // Biol. Psychiatry. 2011. V. 70. № 7. P. 663–671. https://doi.org/10.1016/j.biopsych.2011.04.013

  22. Potvin S., Stip E., Sepehry A.A. et al. Inflammatory cytokine alterations in schizophrenia: A systematic quantitative review // Biol. Psychiatry. 2008. V. 63. № 8. P. 801–808. https://doi.org/10.1016/j.biopsych.2007.09.024

  23. Bernstein H.-G., Steiner J., Bogerts B. Glial cells in schizophrenia: Pathophysiological significance and possible consequences for therapy // Expert Rev. Neurother. 2009. V. 9. № 7. P. 1059–1071. https://doi.org/10.1586/ern.09.59

  24. Van Berckel B.N., Bossong M.G., Boellaard R. et al. Microglia activation in recent-onset schizophrenia: A quantitative (R)-[11C]PK11195 positron emission tomography study // Biol. Psychiatry. 2008. V. 64. № 9. P. 820–822. https://doi.org/10.1016/j.biopsych.2008.04.025

  25. Ermakov E.A., Mednova I.A., Boiko A.S. et al. Chemokine dysregulation and neuroinflammation in schizophrenia: A systematic review // Int. J. Mol. Sci. 2023. V. 24. № 3. P. 2215. https://doi.org/10.3390/ijms24032215

  26. Murphy C.E., Walker A.K., Weickert C.S. Neuroinflammation in schizophrenia: The role of nuclear factor kappa B // Transl. Psychiatry. 2021. V. 11. № 1. P. 528. https://doi.org/10.1038/s41398-021-01607-0

  27. Cho M., Lee T.Y., Kwak Y.B. et al. Adjunctive use of anti-inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials // Australian & New Zeal. J. of Psychiatry. 2019. V. 53. № 8. P. 742–759. https://doi.org/10.1177/0004867419835028

  28. Warren R.L., Freeman J.D., Zeng T. et al. Exhaustive T‑cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes // Genome Res. 2011. V. 21. № 5. P. 790–797. https://doi.org/10.1101/gr.115428.110

  29. Rosati E., Dowds C.M., Liaskou E. et al. Overview of methodologies for T-cell receptor repertoire analysis // BMC Biotechnol. 2017. V. 17. № 1. P. 61. https://doi.org/10.1186/s12896-017-0379-9

  30. Aliseychik M., Patrikeev A., Gusev F. et al. Dissection of the human T-cell receptor γ gene repertoire in the brain and peripheral blood identifies age- and Alzheimer’s disease-associated clonotype profiles // Front. Immunol. 2020. V. 11. https://doi.org/10.3389/fimmu.2020.00012

  31. Robinson J., Barker D.J., Georgiou X. et al. IPD-IMGT/HLA Database // Nucl. Ac. Res. 2019. https://doi.org/10.1093/nar/gkz950

  32. Bagaev D.V., Vroomans R.M.A., Samir J. et al. VDJdb in 2019: Database extension, new analysis infrastructure and a T-cell receptor motif compendium // Nuc. Ac. Res. 2020. V. 48. № D1. P. D1057–D1062. https://doi.org/10.1093/nar/gkz874

  33. Fan X., Pristach C., Liu E.Y. et al. Elevated serum levels of C-reactive protein are associated with more severe psychopathology in a subgroup of patients with schizophrenia // Psychiatry Res. 2007. V. 149. № 1–3. P. 267–271. https://doi.org/10.1016/j.psychres.2006.07.011

  34. Dickerson F., Stallings C., Origoni A. et al. C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia // Schizophr. Res. Elsevier. 2007. V. 93. № 1–3. P. 261–265.

  35. Jacomb I., Stanton C., Vasudevan R. et al. C-reactive protein: Higher during acute psychotic episodes and related to cortical thickness in schizophrenia and healthy controls // Front. Immunol. 2018. V. 9. https://doi.org/10.3389/fimmu.2018.02230

  36. Fillman S.G., Weickert T.W., Lenroot R.K. et al. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area Vume // Mol. Psychiatry. 2016. V. 21. № 8. P. 1090–1098. https://doi.org/10.1038/mp.2015.90

  37. Debnath M., Berk M., Leboyer M., Tamouza R. The MHC/HLA gene complex in major psychiatric disorders: Emerging roles and implications // Curr. Behav. Neurosci. Rep. Springer. 2018. V. 5. № 2. P. 179–188.

  38. Eberhard G., Franzén G., Löw B. Schizophrenia susceptibility and HL-A antigen // Neuropsychobiology. 1975. V. 1. № 4. P. 211–217. https://doi.org/10.1159/000117496

  39. Cazzullo C.L., Smeraldi E. HLA system, psychiatry and psychopharmacology // Prog. Neuropsychopharmacol. 1979. V. 3. № 1–3. P. 137–146. https://doi.org/10.1016/0364-7722(79)90079-1

  40. Morozova A.Yu., Zubkov E.A., Zorkina Ya.A. et al. Genetic aspects of schizophrenia // Zhurnal. Nevrol. Psikhiatr. im. S.S. Korsakova. 2017. V. 117. № 6. P. 126. https://doi.org/10.17116/jnevro201711761126-132

  41. Druart M., le Magueresse C. Emerging roles of complement in psychiatric disorders // Front. Psychiatry. 2019. V. 10. https://doi.org/10.3389/fpsyt.2019.00573

  42. Trowsdale J., Knight J.C. Major histocompatibility complex genomics and human disease // Annu. Rev. Genomics Hum. Genet. 2013. V. 14. № 1. P. 301–323. https://doi.org/10.1146/annurev-genom-091212-153455

  43. IMGT/HLA Database [Electronic resource]. 2020. URL: https://www.ebi.ac.uk/ipd/imgt/hla/

  44. Khandaker G.M., Dantzer R., Jones P.B. Immunopsychiatry: Important facts // Psychol. Med. 2017. V. 47. № 13. P. 2229–2237. https://doi.org/10.1017/S0033291717000745

  45. Tamouza R., Krishnamoorthy R., Leboyer M. Understanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic context // Brain Behav. Immun. 2021. V. 91. P. 731–739. https://doi.org/10.1016/j.bbi.2020.09.033

  46. International Schizophrenia Consortium, Purcell S.M., Wray N.R., Stone J.L. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder // Nature. 2009. V. 460. № 7256. P. 748–752. https://doi.org/10.1038/nature08185

  47. Shi J., Levinson D.F., Duan J. et al. Common variants on chromosome 6p22.1 are associated with schizophrenia // Nature. 2009. V. 460. № 7256. P. 753–757. https://doi.org/10.1038/nature08192

  48. Stefansson H., Ophoff R.A., Steinberg S. et al. Common variants conferring risk of schizophrenia // Nature. 2009. V. 460. № 7256. P. 744–747. https://doi.org/10.1038/nature08186

  49. Irish Schizophrenia Genomics Consortium and the Wellcome Trust Case Control Consortium 2. Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia // Biol. Psychiatry. 2012. V. 72. № 8. P. 620–628. https://doi.org/10.1016/j.biopsych.2012.05.035

  50. Tamouza R., Krishnamoorthy R., Giegling I. et al. The HLA 8.1 ancestral haplotype in schizophrenia: Dual implication in neuro – synaptic pruning and autoimmunity? // Acta Psychiatr. Scand. 2020. V. 141. № 2. P. 169–171. https://doi.org/10.1111/acps.13125

  51. Sekar A., Bialas A.R., de Rivera H. et al. Schizophrenia risk from complex variation of complement component 4 // Nature. 2016. V. 530. № 7589. P. 177–183. https://doi.org/10.1038/nature16549

  52. Bian B., Couvy-Duchesne B., Wray N.R., McRae A.F. The role of critical immune genes in brain disorders: Insights from neuroimaging immunogenetics // Brain Commun. 2022. V. 4. № 2. https://doi.org/10.1093/braincomms/fcac078

  53. Eaton W.W., Rodriguez K.M., Thomas M.A. et al. Immunologic profiling in schizophrenia and rheumatoid arthritis // Psychiatry Res. 2022. V. 317. https://doi.org/10.1016/j.psychres.2022.114812

  54. Shivakumar V., Debnath M., Venugopal D. et al. Influence of correlation between HLA-G polymorphism and Interleukin-6 (IL6) gene expression on the risk of schizophrenia // Cytokine. 2018. V. 107. P. 59–64. https://doi.org/10.1016/j.cyto.2017.11.016

  55. Li J., Yoshikawa A., Alliey-Rodriguez N., Meltzer H.Y. Schizophrenia risk loci from xMHC region were associated with antipsychotic response in chronic schizophrenic patients with persistent positive symptom // Transl. Psychiatry. 2022. V. 12. № 1. P. 92. https://doi.org/10.1038/s41398-022-01854-9

  56. Tamouza R., Fernell E., Eriksson M.A. et al. HLA polymorphism in regressive and non-regressive autism: A preliminary study // Autism Research. 2020. V. 13. № 2. P. 182–186. https://doi.org/10.1002/aur.2217

  57. Druart M., Le Magueresse C. Emerging roles of complement in psychiatric disorders // Front. Psychiatry. 2019. V. 10. https://doi.org/10.3389/fpsyt.2019.00573

  58. Wissemann W.T., Hill-Burns E.M., Zabetian C.P. et al. Association of Parkinson disease with structural and regulatory variants in the HLA region // Am. J. Hum. Genet. 2013. V. 93. № 5. P. 984–993. https://doi.org/10.1016/j.ajhg.2013.10.009

  59. Hollenbach J.A., Norman P.J., Creary L.E. et al. A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinson’s disease // PNAS. 2019. V. 116. № 15. P. 7419–7424. https://doi.org/10.1073/pnas.1821778116

  60. Kunkle B.W., Grenier-Boley B., Sims R. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing // Nat. Genet. 2019. V. 51. № 3. P. 414–430. https://doi.org/10.1038/s41588-019-0358-2

  61. Jansen I.E., Savage J.E., Watanabe K. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk // Nat. Genet. 2019. V. 51. № 3. P. 404–413. https://doi.org/10.1038/s41588-018-0311-9

  62. Lincoln M.R., Montpetit A., Cader M.Z. et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis // Nat. Genet. 2005. V. 37. № 10. P. 1108–1112. https://doi.org/10.1038/ng1647

  63. Patsopoulos N.A., Baranzini S.E., Santaniello A. et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility // Science. 2019. V. 365. № 6460. https://doi.org/10.1126/science.aav7188

  64. Kordi-Tamandani D.M., Vaziri S., Dahmardeh N., Torkamanzehi A. Evaluation of polymorphism, hypermethylation and expression pattern of CTLA4 gene in a sample of Iranian patients with schizophrenia // Mol. Biol. Rep. 2013. V. 40. № 8. P. 5123–5128. https://doi.org/10.1007/s11033-013-2614-3

  65. Lu Y., Ruan Y., Hong P. et al. T cell senescence: A crucial player in autoimmune diseases // Clin. Immunology. 2022. https://doi.org/10.1016/j.clim.2022.109202

  66. Langerak A.W., Groenen P.J.T.A., Brüggemann M. et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations // Leukemia. 2012. V. 26. № 10. P. 2159–2171. https://doi.org/10.1038/leu.2012.246

  67. Израельсон М., Касацкая С., Погорелый М. и др. Анализ индивидуальных репертуаров Т-клеточных рецепторов // Иммунология. ООО Изд. гр. “ГЭОТАР-Медиа”. 2016. V. 37. № 6. P. 347–352.

  68. Calsolaro V., Edison P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions // Alzheimer’s & Dementia. 2016. V. 12. № 6. P. 719–732. https://doi.org/10.1016/j.jalz.2016.02.010

  69. De Chirico F., Poeta E., Babini G. et al. New models of Parkinson’s like neuroinflammation in human microglia clone 3: Activation profiles induced by INF-γ plus high glucose and mitochondrial inhibitors // Front. Cell.Neurosci. 2022. V. 16. https://doi.org/10.3389/fncel.2022.1038721

  70. Pandey J.P., Namboodiri A.M., Elston R.C. Immunoglobulin G genotypes and the risk of schizophrenia // Hum. Genet. 2016. V. 135. № 10. P. 1175–1179. https://doi.org/10.1007/s00439-016-1706-2

  71. Shirts B., Prasad K., Poguegeile M. et al. Antibodies to cytomegalovirus and Herpes Simplex Virus 1 associated with cognitive function in schizophrenia // Schizophr. Res. 2008. V. 106. № 2–3. P. 268–274. https://doi.org/10.1016/j.schres.2008.07.017

  72. Atherton A., Armour K.L., Bell S. et al. The herpes simplex virus type 1 Fc receptor discriminates between IgG1 allotypes // Eur. J. Immunol. 2000. V. 30. № 9. P. 2540–2547. https://doi.org/10.1002/1521-4141(200009)30:9<25-40::AID-IMMU2540>3.0.CO;2-S

  73. Pandey J.P., Namboodiri A.M., Radwan F.F., Nietert P.J. The decoy Fcγ receptor encoded by the cytomegalovirus UL119-UL118 gene has differential affinity to IgG proteins expressing different GM allotypes // Hum. Immunol. 2015. V. 76. № 8. P. 591–594. https://doi.org/10.1016/j.humimm.2015.09.005

  74. Pandey J.P., Namboodiri A.M., Mohan S. et al. Genetic markers of immunoglobulin G and immunity to cytomegalovirus in patients with breast cancer // Cell. Immunol. 2017. V. 312. P. 67–70. https://doi.org/10.1016/j.cellimm.2016.11.003

  75. Pandey J.P., Namboodiri A.M., Nietert P.J. et al. Immunoglobulin genotypes and cognitive functions in schizophrenia // Immunogenetics. 2018. V. 70. № 1. P. 67–72. https://doi.org/10.1007/s00251-017-1030-6

  76. Kezai A.M., Lecoeur C., Hot D. et al. Association between schizophrenia and Toxoplasma gondii infection in Algeria // Psychiatry Res. 2020. V. 291. https://doi.org/10.1016/j.psychres.2020.113293

  77. Wang A.W., Avramopoulos D., Lori A. et al. Genome-wide association study in two populations to determine genetic variants associated with Toxoplasma gondii infection and relationship to schizophrenia risk // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2019. V. 92. P. 133–147. https://doi.org/10.1016/j.pnpbp.2018.12.019

  78. Whelan R., St Clair D., Mustard C.J. et al. Study of novel autoantibodies in schizophrenia // Schizophr. Bull. 2018. V. 44. № 6. P. 1341–1349. https://doi.org/10.1093/schbul/sbx175

  79. Mehr R. Immune system modeling and analysis // Front. Immunol. 2014. V. 5. https://doi.org/10.3389/fimmu.2014.00644

  80. Agorastos A., Bozikas V.P. Gut microbiome and adaptive immunity in schizophrenia // Psychiatriki. 2019. V. 30. № 3. P. 189–192. https://doi.org/10.22365/jpsych.2019.303.189

  81. Li Q., Zhou J., Cao X. et al. Clonal characteristics of T‑cell receptor repertoires in violent and non-violent patients with schizophrenia // Front. Psychiatry. 2018. V. 9. https://doi.org/10.3389/fpsyt.2018.00403

  82. Luo C., Pi X., Hu N. et al. Subtypes of schizophrenia identified by multi-omic measures associated with dysregulated immune function // Mol. Psychiatry. 2021. V. 26. № 11. P. 6926–6936. https://doi.org/10.1038/s41380-021-01308-6

  83. Gao Y., Fan Y., Yang Z. et al. Systems biological assessment of altered cytokine responses to bacteria and fungi reveals impaired immune functionality in schizophrenia // Mol. Psychiatry. 2022. V. 27. № 2. P. 1205–1216. https://doi.org/10.1038/s41380-021-01362-0

Дополнительные материалы отсутствуют.